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Inhomogeneous Diophantine approximation
on curves with non-monotonic error function

In this paper we prove a convergent part of inhomogeneous Groshev type theo-
rem for non—degenerate curves in Euclidean space where an error function is not
necessarily monotonic. Our result naturally incorporates and generalizes the ho-
mogeneous measure theorem for non-degenerate curves. In particular, the method
of Inhomogeneous Transference Principle and Sprindzuk’s method of essential and
inessential domains are used in the proof.

Key words: Inhomogeneous Diophantine approrimation, Khintchine theorem, non-
degenerate curve.

DOI:  https://doi.org/10.47910/FEMJ2024

Introduction and Statements

In 1998 Kleinbock and Margulis [1] established the Baker —Sprindzuk conjecture con-
cerning homogeneous Diophantine approximation on manifolds. An inhomogeneous ver-
sion was then proved by Beresnevich and Velani [2]. The theory of inhomogeneous Dio-
phantine approximation on manifolds was started with the result of V. I. Bernik, D.
Dickinson and M. Dodson [3]. The significantly stronger Groshev type theory for dual
Diophantine approximation on manifolds is established in [4-6] for the homogeneous case
and in [7] for the inhomogeneous case. In all of these results the error function ¥ was
assumed to be monotonic. In 2005 Beresnevich [8] showed that the condition that ¥ is
monotonic could be removed for the Veronese curve V,, = = {(x,2?,...,2"):x € R}; he
conjectured that the result should also hold for any non—degenerate curve in Euclidean
space. This was proved in [9].

Our main result below is a convergent part of Groshev type theorem for inhomoge-
neous Diophantine approximation on non—degenerate curves in Euclidean space without
monotonicity condition. First some notation is needed. Let JF,, be the set of functions

an fn(x) + ... + a1 fi(z) + ao,
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with n>2, a=(ag,...,a,) € Z"*\ {0}, and f1, fo,..., fn be C™ functions from R —R
with non—vanishing Wronskian wr(f1,..., f,)(x) almost everywhere. For F € F,, define
the height of F as H=H(F)=maxo<;<pn|a;|. The Lebesgue measure of a measurable set
ACR is denoted by p(A).

Define a real valued function ¥:R* —R™ and a function §: R —R. Denote by L,, o(¥)
the set of x € R such that the inequality

[F(z) +0(z)] < W(H(F)) (1)
has infinitely many solutions F € F,.
The main result of this paper is the following statement.
Theorem 1. Let n>2 and #:R— R be a function such that 6 € C™. Let ¥: Rt - R*
be an arbitrary function (not necessarily monotonic) such that the sum Y. h"~1U(h)

h=1
converges. Then p(Ly, ¢(¥))=0.

1 Proof of Theorem 1

First note that since Y h"~1W(h) converges, h"~'W(h) tends to 0 as h— oo. There-
h=1
fore,
W(h) = o(h~""1).

The set S={zeR:wr(f],...,f])(x) =0} is closed and of zero measure. Thus R\ S is open
and therefore an F,, set. We can write R\.S= | [ag,bx]. It is therefore sufficient to prove

=1
the theorem for a closed interval I. Also, since |wr(f1,..., f})(z)|#0 almost everywhere
we will assume from now on, without loss of generality that

fwr(ff,.., fo)@)] 2 e=¢e(I) >0 (2)

for all  in such an interval I. Since the functions f = (fi,...,f,) and 6 are C"™) then we
can assume that there exists a constant Ko= Ky (I,f,0) such that

(4) < (4) <
(Rax Sup £(2)] < Ko and - max Sup 108 (z)| < Ko.
Lemma 1 [9). If [wr(f],..., f})(@)]| > & then | fi(x) f}(x) — F1(2) f; (2)| > yhgeg for all i,
jin{l,...,n}.
From now on, it is therefore assumed without loss of generality that

2
|fi(@) fi (@) = fi(2) f; ()] = 62 = 2"+€1+Kg

for all i,5€{1,...,n} with i#j.

For the proof of main result we will need some properties of the functions F € F,,. The
following lemma is a modification and combination of Lemmas 2 and 3 of Pyartli, [10].
We are assuming that (2) holds.
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Lemma 2 (Borel-Cantelli). Let A; be a family of Lebesgue measurable sets and let

As be the set of points x € R which lie in infinitely many A;. If > u(A;) < oo then
j=1
1(Asc) =0.

1.1 The case of small derivative
Proposition 1. Let n>2. Then, u(L1(n,0))=0.
Proof. First £1(n,0) is written as a lim sup set. For F € F,, define
B(F)={zxcl:|F(x)+0(x) < HF)""" |F'(z)+0'(x)] < H(F)""}.

Then

Lin0)=( U U B®),

N=1¢=N FeFt

where
Fi={FeF,, 2" <H(F) <2}

To prove the proposition it will be shown that a larger set (containing £(n,0)) has
measure zero and then the Inhomogeneous Transference Principle proved in [2] will be
used. The Inhomogeneous Transference Principle allows the transfer of zero measure
statements for homogeneous lim sup sets to inhomogeneous lim sup sets and is described
below.

Inhomogeneous Transference Principle. Most of this section is adapted from [2,
Case B]. For our purposes the two countable indexing sets T and A from [2] are the sets
T=NU{0} and A=F,. Throughout, J denotes a finite open interval in R with closure
denoted by J. Let H and Z be two maps from (NU{0}) x F,, x R* into the set of open
subsets of R such that

H(t, F,e) :IS(F, €), I(t,F,e)=T}(F,e).

For the specific case considered in this article the sets Zf(F,e) and Zj(F\e) are defined as
follows:

{zel: |F(x)+0(z)| <2t e, |F(z)+60'(x)| <2 e} if FEFL,

0 else;

Ti(Fe) ={

and H(—nt1) , —tv . t+1 s
{zel: |F(x)|<2'" e, |F'(z)| <277e} if FelU,oFs

Ti(F €) =
o(F>€) {@ else.
Let § €R and define the function ¢s(t)=2%. Also, define ® ={¢s: 0<§ <v/2}. For

any ¢ € ® define
Tie) = |J TFem) = |J ZHF 6(1)

FeF, FEFL
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and denote by Az(¢) the limsup set
=N Uz
N=1t=N
Contracting Property: Let {k:}.cn be a sequence of positive numbers such that
Z ]{it < 0. (3)
teNu{0}

The measure p is said to be contracting with respect to (Z,®) if for any ¢ € ® there exists
¢t € ® such that for all but finitely many ¢ and all F' € F,, there exists a collection Cy
of balls B centred in .J satisfying the following three conditions:

INZy(Fe(t)c |J B, (4)
BeCy,r
I U BeTiFe* @),
BGCt,F
p(5BNIH(F,¢(t))) < kep(5B). (5)

We now state the theorem from [2].

Theorem 2 (Inhomogeneous Transference Principle). Suppose that (H,Z,®) satisfies
the intersection property and that p is contracting with respect to (Z,®). If, for all p € D,
1w(Ay (6))=0 then for all p € ®, u(Az(p))=0.

First the contracting and intersection properties are verified and then it will be shown
that p(As(¢s)) =0. This will imply using the transference principle that Az(¢s) has
measure zero and further that p(Lq(n,d)) =0 as required.

1.1.1 Verifying the intersection property
Let teNU{0} and F,F € F,, with F'# F. Suppose that
x € TH(F, ¢s(t)) NTH(F, ds(t)).
Then, the inequalities
|F(2)+0(x)| <¢s(6)2"D and  [F(x) +0(2)] < ¢5(t)2" Y,
[F'(2)+0' ()| <5()27"" and  |F'(x)+6'(x)| <¢s()2""

holds. 3
Let R(z)=(F(z)+6(z)) — (F(x)+6(z)). Then,

|R(z)| <265 (1)2' " < gy (1) 21,
IR (2)] < 2"~ 65(t) <2 (1),
for all ¢t > U/Q%(; and where ¢4 € ®. Clearly R cannot be constant for n>2 and ¢ >2, so

t+1
Re |J F. Thus, z € ZE(R,¢5 (1)) and (77?) is satisfied with ¢* = ¢g.

s=0
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1.1.2 Verifying the contracting property

The following definition from [1] will be used.

Definition 1. Let C and « be positive numbers and f:I—R be a function defined on
the open interval I CR. Then f is called (C,a)-good on I if, for any open interval BC I
and any € >0,

0 ({x € B |f(@) < esup |f<x>}) < Ceu(B).

zeB

Several useful facts about (C,«a)-good functions are listed below.

Lemma 3. [6, Lemma 3.1] Let I CR and C,a>0 be given.

(i) If f is (C,&)-good on I then so is Af for any A€R.

(ii) If f;, i€ Iy, are (C,a)-good on I then so is sup;cp, | fil-

(iii) If f is (C,a)-good on I and ¢; < llgggll <cg forallz€l, then g is (C(ca/c1)%,a)-good
on I.

(iv) If f is (C,«)-good on I then f is (C',a’)-good on I' for every C' >C, o/ <« and
I'cl.

Lemma 4. [7, Corollary 3] Let U be an open subset of R™, xo €U and let £ =(f1,...,fn):
U —R" be n-nondegenerate at xo for some n>2. Let 0 € C")(U). Then there exists a
neighborhood V C U of xy and a positive constants C' and H, such that for any a€R"”
satisfying |a| > Hy

(a) ag+a-£40 is (C,-2-)-good on V for every ag €R, and

(b) [V(a-f+0)| is (C,ﬁ)—good onV.

Here V denotes the gradient operator. Note that in the case m =1 the map f is
nondegenerate iff wr(fy,...,f))(x)#0 almost everywhere.

Lemma 5. [7, Corollary 4] Let U,xo,f and 6 be as in Lemma 4. Then for every suffi-
ciently small neighborhood V C U of xg, there exists Hy>1 such that

inf sup |ap +a - f(x) + 6(x)| > 0.
(a,a0)€ER™ 1 a|>Ho xeV

Since Fy p is a (C,1)-good on 5J for sufficiently large t it follows from (4)—(5), that

1 (Z5(F, ¢5(t)) NEB) < p <{:c €5B: Fyp(z) <27 sup FLF(x)}) < 2*6r:tCu(5B)
€58

for sufficiently large t. This verifies (5) with k; :=2-%C and it is easily seen that the

convergence condition (3) is fulfilled. a

1.2 The case of big derivative
Proposition 2. Let n>2. Then, u(L£2(n,0,¥))=0.

Proof. Let F,(H)={F€F,: HF)=H}, then F,, =U%_,F,(H). Now consider
FeF,(H) satisfying H™" <|F'(z)+6'(z)|. For the remaining case we need the following.
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The set of solutions of (1) in I consists of at most n intervals. Each of these intervals can
be further divided into subintervals on which F’ 46’ is also monotonic (at most n—1 of
them). Each of these new intervals is finally further subdivided into intervals with respect
to the value of F'(z)+6'(x). Any interval on which |F’(x)+6'(x)| < H ™" has already been
considered. For F € F,,(H), let I;(F,0) be one of the remaining intervals; thus, on I;(F.,§),
F+0 and F'+6¢ are monotonic and |F(z)+0(x)| <Y (H(F)), H " <|F'(z)+0'(x)]| for
all x € I;(F,0). The number of I;(F,0) is clearly finite. Let I;(F,0) denote the closure of
I;(F,0) and a; r denote a point in I;(F,0) such that

|F' (e r) +0' (e p)| = min |F'(z) +6'(z)].
xel;(F)

For convenience we will use Fy to denote the function F(z)+6(z).

Lemma 6 [10]. Let aj,as >0. Let ¢ be an n-times continuously differentiable function
on (by,by) satisfying (™ (z)| >ay for all z € (by,bs). Then

p({x € (b1,b2) : ¥(z) < az}) < c(n)(az/ar)"/".
From Lemma 6 we have
p(I;(F,0)) < e(n)¥(H)|Fy(eyr)| " (6)

It follows from the choice of a; p that H=V <|Fj(aj r)|.

Now we are ready to complete the proof of Theorem 1. The three remaining cases in
the proof concern different ranges for the size of Fy(a; ).
Case I. For FeF,(H), let o(Fy) be the union of intervals I;(F,6) for which |Fj(c;)|>
c1H'/2. Hence, o(Fy) is the set of 2 € I which satisfy |Fy(z)| < ¥(H) and 2 lies in some

interval I;(F,6) for which
By )] = e HV2.

For every F' € F,,(H) and every j, where oj p € 0(Fy), and some constant co =cp(n) define
the set o1 ;(Fy) of points x € I which satisfy

|z — o p| < cal Fyloyr)| ™!

| for o p € o(Fy). Let 01(Fyp) =Ujo1,;(Fp). From (6), for H > Hy(cz), the inequality
o(Fy) Co1(Fy) holds and

w(o(Fo)) < eln)eg " U(H)p(or (Fy).

Case II. This time, for F'€ F,,(H) use o(Fy) to denote the union of intervals I;(F,0)
for which 1 <|F'(e; )| <ciHY?. Hence o(Fjp) is the set of = € I which satisfy

|[Fy(2)| < U(H),
and x lies in some I;(F,8) for which

1< ‘Fé(aj7p)‘ < 01H1/2.
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Now define expansion of I;(F,0) as follows:
02, (Fy) = {z € I : dist(x, I;(F,0)) < csH '|F'(oj,p)| "'}, e3> c(n).

Let o2(Fy) =02 ;(Fy). It is readily verified that
J

1o (Fp)) < ezt e(n) HY(H)p(o2(Fp)). (7
First, the essential intervals are investigated. Summing the measure of essential in-
tervals gives
> > (o2, (Fp)) < 1]
FeFn b, (H) joz,;(Fe) essential
From this, (7) and the fact that the number of vectors by is < H" "2, we have
S wlo(Fy) < HHU(H)|I.
bi Fe]—'n,bl (H)

Finally, we obtain

Z Z Z u(o(Fp)) < oo.

H=1 by FEF, b, (H)

Thus, by the Borel - Cantelli Lemma, the set of points = which belong to infinitely many
essential domains is of measure zero.
The proof of the theorem is therefore complete. a

Error

-5 I | | ) ) ‘
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AHHOTAIINS

B nmammoit craTbe J10Ka3bIBAETCS HEOIHOPOIHBIN aHaJIOr TeopeMbl Tura, ['po-
meBa B Cay4dae CXOAUMMOCTHU IJIs HEBBLIPDOXKJICHHBIX KPHBBIX B €BKJIXJI0BOM
IIPOCTPAHCTBE, KOI/Ia (PYHKIUS AMMPOKCUMAIINN SIBJISIETCS He 00sI3aTe/IbHO
MoHoTOHHOW. Harmm pesysbraT ecrecTBEHHO BKJIIOUaeT B cebst u 0bobIaeT
TeopeMy JJjid MEPbl MHO2KECTBa TOYIEK HEBBIPDO2KJICHHBIX KPUBBLIX B OTHODO/I-
HoM caydae. B mokasarebCcTBe UCIOIB3YIOTCS HEOHOPOTHBIN METOJ, mepe-
HOCA W METOJI CYIIECTBEHHBIX U HECYIECTBEHHBIX obstacteit CIpuHKYKA.

Kirouessie ciioBa: HeodHopodHvie duodarmosv, npubausicerus, meopema Xut-
YUHG, HEGDIPOHCOCHHAA KPUBAA.



