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Let X be a right homogeneous space of a connected linear algebraic group G’ over a number
field k, containing a k-point x. Assume that the stabilizer of z in G’ is connected. Using
the notion of a quasi-trivial group introduced by Colliot-Thélene, we can represent X in the
form X = H\G, where G is a quasi-trivial k-group and H C G is a connected k-subgroup.

Let S be a finite set of places of k. Applying results of [1], we compute the defect of weak
approximation for X with respect to S in terms of the biggest toric quotient H'' of H.
In particular, we show that if H*" splits over a metacyclic extension of k, then X has the
weak approximation property. We show also that any homogeneous space X with connected
stabilizer (without assumptions on H'°") has the real approximation property.
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1. Introduction

This note is a sequel for [1], and we use the notation of that paper. Let k be a number field,
and let k be a fixed algebraic closure of k. We write ¥ for the set of all places of k, and ¥4 for
the set of its archimedean places. If v € ¥, we write k, for the completion of k at v.

Let X be an algebraic variety over k. We refer to [1] for preliminaries on weak approximation
for X. If S C ¥ is a finite set of places, we write (WAg) for the weak approximation property
with respect to S. Thus, “X has (WAg)” means that X (k) is dense in [],.g X (k,). We say that
X has the weak approximation property, if X has (WAg) for any finite subset S C 7. We say
that X has the real approzimation property, if X has the weak approximation property (WAg)
with respect to S = Y.

In [1] we considered the case X = H\G, where H C G is a connected k-subgroup of a
connected k-group G, assuming that III(G) = 0 and A(G) = 0 (the assumption A(G) = 0
means that G has the weak approximation property). Under these assumptions we constructed
a certain abelian group Cs(H,G) which is the defect of weak approximation for X with respect
to S: the variety X has (WAg) if and only if Cs(H,G) = 0. We initially constructed Cs(H, Q)
in terms of H and G, but then we computed it in terms of the Brauer group of X.

In the present note we consider the case of an arbitrary homogeneous space with connected
stabilizer X = H'\G’, where G’ is any connected linear k-group and H' C G’ is a connected
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k-subgroup. Using the notions of a quasi-trivial k-group and a flasque resolution, introduced by
J.-L. Colliot-Thélene [2], we notice that we can represent X in the form X = H\G, where G is
a quasi-trivial group and H C G is a connected k-subgroup (Lemma 2.5). We have II(G) =0
and A(G) = 0, because G is quasi-trivial. Now we can apply [1, Theorem 1.3]. We obtain that
X has (WAg) if and only if Cs(H,G) = 0.

Moreover, we have Pic(Gg) = 0 for any field extension K /k, because G is quasi-trivial. Using
this fact, we show that the group Cs(H,G) can be computed in terms of H only. Namely, we
construct a group Cg(H) in terms of H as in [3] and prove that Cs(H,G) = Cg(H) (Lemma
3.4).

We see that X has (WAg) if and only if Cg(H) = 0. We say that Cg(H) is the defect of
weak approzimation for X with respect to S. Note that the group Cs(H) does not depend on the
representation of X in the form X = H\G with quasi-trivial G and connected H, because it can
be computed in terms of the Brauer group of X ([1, Theorem 1.11]).

Let H'* denote the biggest quotient torus of H. We show that the canonical homomorphism
Cs(H) — Cg(H™") is an isomorphism (Proposition 3.7). It follows that X has (WAg) if and
only if Cs(H"") = 0. We notice that

Cs(H™) ~ coker | H' (k, H'") — [ [ H' (kv, H*")| .
vES

Let L/k be a Galois extension splitting the torus H''. Let Sp denote the set of
(nonarchimedean, ramified in L) places v of k such that the decomposition group of v in Gal(L/k)
is noncyclic. We prove that Cs(H) = Csng,(H) (Corollary 3.11).

Assume that S N Sy = 0, i.e. all the places in S have cyclic decomposition subgroups in
Gal(L/k). Then Cs(H) = 0, hence X has (WAg) (Theorem 3.12). In particular, Cy,_(H) = 0
for any H. Thus any homogeneous space X of a connected k-group with connected stabilizer has
the real approximation property (Corollary 3.13).

Now assume that H" splits over a cyclic extension of k (e.g. H** = 1). Then Sy = ), hence
Cg(H) = 0 for any S, and X has the weak approximation property (Corollary 3.14). Moreover,
we prove that if H'" splits over a metacyclic extension, then X has the weak approximation
property (Theorem 4.2).

These results generalize the results of [3], where we assumed that G is semisimple simply
connected. They also generalize results of Sansuc [4] on weak approximation for connected linear
groups.

We could state and prove our results thanks to the notion of a quasi-trivial group introduced
by Colliot-Thélene [2]. The constructions and proofs are based on results of Kottwitz [5]. Of
course, our results are based on the classical results of Kneser, Harder, Chernousov, and Platonov
on the Hasse principle and weak approximation for simply connected semisimple groups.

Acknowledgements. This note was written when the author was visiting the Max-Planck-
Institut fiir Mathematik, Bonn (MPIM). The author is grateful to MPIM for hospitality, support,
and excellent working conditions. The author is grateful to Boris Kunyavskii for useful discussions
and for help in proving Theorem 4.2.

2. Preliminaries on quasi-trivial groups

The results of this section are actually due to J.-L. Colliot-Thélene [2].
2.1. Let k be a field of characteristic 0, k a fixed algebraic closure of k. Let G be a connected
linear k-group. We set G = G X k. We use the following notation:

G" is the unipotent radical of G;
G™d = G/G" (it is reductive);
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G® is the derived group of G™4 (it is semisimple);
Gtor = G4 /G (it is a torus);
G=' = ker[G — G*'] (it is an extension of G* by G").
Definition 2.2 (J.-L. Colliot-Thélene). A connected linear k-group G over a field & of
characteristic 0 is called quasi-trivial, if G*°* is a quasi-trivial torus and G** is simply connected.
Recall that a k-torus T is called quasi-trivial if its character group X (7)) is a permutation
Gal(k/k)-module.
Note that if G is quasi-trivial, then for any field extension K /k the group G is quasi-trivial.
Lemma 2.3. Let G be a quasi-trivial group over a field k of characteristic 0. Then Pic(G) = 0,
where Pic denotes the Picard group.
Proof. If
1-G —-G—-G"—1

is a short exact sequence of connected linear k-groups, then we have an exact sequence
X(G") — Pic(G") — Pic(G) — Pic(G"), (1)

where X(G’) denotes the group of k-characters of G', see [4, Corollary 6.11].

Since G" is a unipotent k-group, the exponential map exp: LieG" — G" is a biregular
isomorphism of algebraic varieties (because char(k) = 0), hence Pic(G") = 0. By [4, Lemme 6.9]
Pic(G**) = 0 (because G* is simply connected) and Pic(G*") = H!(k, X(é“’r)). Since X(étor)
is a permutation module, we see that Pic(G'*") = 0. Using exact sequence (1), we conclude by
dévissage that Pic(G) = 0.

Lemma 2.4. Let G be a quasi-trivial k-group over a number field k. Then II(G) =0 and
A(G) =0.

P r o o f. By [2, Proposition 9.2] we have III(G™%) =0 and A(G™?) = 0. By [4, Proposition
4.1] II(G) = HI(G™9). By [4, Proposition 3.2] A(G) = A(G*%). Thus II(G) = 0 and A(G) =
0.

Lemma 2.5. Let k be a field of characteristic 0 and X a right homogeneous space with
connected stabilizer over k, i.e. X = H'\G', where G’ is a connected linear k-group and H' C G’
is a connected k-subgroup. Then one can represent X as X = H\G, where G is a quasi-trivial
k-group and H C G is a connected k-subgroup.

P r oo f. By |2, Proposition-Définition 3.1] there exists a flasque resolution of G, i.e. a central
extension of connected k-groups

l1-F—-G—=G =1,

where G is quasi-trivial and F is a flasque k-torus. Let H be the preimage of H' in G. From the
exact sequence
1-F—H—-H -1

we see that H is connected, because H' and F are connected. We have X = H\G.

3. Defect of weak approximation

3.1. Let X be a homogeneous space with connected stabilizer over a number field k, i.e.
X = H'\G', where G’ is a connected linear k-group and H' C G’ is a connected k-subgroup.
By Lemma 2.5 we may write X = H\G, where G is a quasi-trivial k-group and H C G is a
connected k-subgroup.

By Lemma 2.4 III(G) = 0 and A(G) = 0. Therefore we can apply the results of [1].
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3.2. Let X, G, H be as in 3.1. Let S C ¥ be a finite subset. Set

B(H) = Hom(Pic(H),Q/Z) = (m1(H)r)tors
B,(H) = B(Hy,) forve?V

with the notation of [1]. Consider the canonical homomorphism
\o: By(H) — B(H).
Set:

BS(H) = <AU(B’U(H))>”L)€7/\S
B'(H) = BY(H) = (A\y(By(H)))ver
Cs(H) = B'(H)/B*(H),

where (A, (B, (H)))pey s denotes the subgroup of B(H) generated by the subgroups A, (B,(H))
forallve 7\ S.

3.3. For a homogeneous space X = H\G over k, without assuming that G is quasi-trivial,
we defined in [1] the following groups:

B(H,G) = ker[B(H) — B(G)],
B,(H,G) = B(Hy,,Gy,) = ker|B,(H) — B, (G)],

and also B%(H,G), B'(H,G), and Cs(H,G), see |1, Section 1.2].

Lemma 3.4. Let k, X, G, H be as in 3.1 (in particular G is quasi-trivial). Then there is a
canonical isomorphism Cs(H,G) = Cs(H).

P roof. Since G is quasi-trivial, by Lemma 2.3 Pic(G) = 0, hence B(G) = 0. Since Gy, is also
quasi-trivial, we see that B,(G) = 0. We obtain successively that B(H,G) = B(H), B,(H,G) =
B,(H), BS(H,G) = B%(H), B'(H,G) = B'(H), whence Cs(H,G) = Cs(H).

Theorem 3.5. Let k, X, G, H be as in 3.1 (in particular G is quasi-trivial). Let S C ¥V be
a finite set of places of k. Then X has (WAg) if and only if Cs(H) = 0.

P roof By Lemma 24 II(G) = 0 and A(G) = 0. By [1, Theorem 1.3] X has (WAg) if
and only if Cs(H,G) = 0. By Lemma 3.4 Cs(H,G) = Cs(H), and the theorem follows.

Lemma 3.6. Let H be a connected linear k-group over a number field k. Assume that H*" =
1. Then for any place v of k the map \,: By,(H) — B(H) is surjective.

P roof. See [6, Proof of Theorem 3.4(b)].

Proposition 3.7 ([3, Theorem 1.4]). Let H be a connected k-group over a number field k.
Let S C V¥ be a finite set of places of k. Then the canonical homomorphism Cs(H) — Cs(H®™")
18 an isomorphism.

P r o o f. Since [3] is not easily accessible, we reproduce the proof here.

First, consider H®". Since (H®")'*' = 1, by Lemma 3.6 for any place v of k we have
Ao (By(H*Y)) = B(H*"). We see that BY(H*") = B'(H*") = B(H*").

Consider the canonical short exact sequence

1— H® —» H— H° — 1.
Exact sequence (1) from the proof of Lemma 2.3 gives us an exact sequence
X(H®") — Pic(H™") — Pic(H) — Pic(H™"),
where clearly X(H®*") = 0. We obtain the dual exact sequence

B(H®") — B(H) — B(H"™") -0
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and similar exact sequences for the groups B,. Since BY(H*") = B(H*"), we obtain an exact
sequence
B(H*") — B%(H) — B%(H'"") - 0.

Set B = im[B(H*") — B(H)], then we obtain an exact sequence
0 — B — BY(H) — BY(H'"") =0
and a commutative diagram with exact rows

0——B—— B%(H)—— B5(H"") ——0

L

0 —> B — B/(H) — B/(H"") —>

Now the snake lemma gives us an isomorphism Cs(H) = B'(H)/B%(H) = B'(H*")/BY(H"") =
Cs(Htor).

Corollary 3.8. Let k, X, G, H be as in 3.1 (in particular G is quasi-trivial and H is
connected). Assume that H*" = 1. Then X has the weak approzimation property.

P r o o f. By Proposition 3.7 we have Cs(H) = Cg(H"") = 0 for any S. By Theorem 3.5, X
has (WAg) for any S.

R e m ar k. In the case when G is semisimple simply connected, this result was proved in
[3, Corollary 1.7]. For a simple proof see [6, Theorem 3.4(b)].

The following result relates Cis(H) to the Galois cohomology of H'*.

Proposition 3.9. Let T be a k-torus over a number field k. Let S C ¥ be a finite set of
places of k. Then there is a canonical isomorphism

Cs(T) = coker | H (k,T) — H H'(k,,T)| .
veSsS

P r o o f. We have canonical duality isomorphisms
By H'(ky, T) = Hom(H' (ky, X(T)),Q/Z) = By(T),
cf. |7, Chapter I, Corollary 2.3 and Theorem 2.13]. Moreover, we have an exact sequence

loc

Hl(kaT) — @UE“I/Hl(kvaT) L> B(T)a (2)
where loc is the localization map, pu((§y)vey) = D po(&), and g, is the composed map
jot H(ky, T) 225 B,(T) 25 B(T),

cf. [7, Chapter I, Theorem 4.20(b)].

Consider the localization map locg: H'(k,T) — [[,cq H'(kv, T). Let &s = (&)ves €
[Toes H' (ky, T) = ®yesBy(T), where we identify H'(k,,T) with By,(T) using f,. From exact
sequence (2) we see that g is contained in the image of locg if and only if there exists an element
e D©ugsBy(T) such that w(€s, &%) = 0. Such an element &° exists if and only if

S (€) € BS(T) € B(T).

veS
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Set Bs(T) = (\y(By(T)))ves. Then we see that there is a canonical isomorphism

coker | H'(k,T) — [[ H'(kw, T)| = Bs(T)/ (Bs(T) N B(T)) ~
vES

~ (Bs(T) + BY(T)) /BS(T) = B'(T)/BS(T) =Cs(T).

Proposition 3.10. Let T be a k-torus over a number field k. Let L/k be a Galois extension
splitting T'. Let Sp be the set of (nonarchimedean, ramified in L) places v of k whose decomposition
groups in Gal(L/k) are noncyclic. Let S C ¥ be any finite set of places of k. Then the canonical
homomorphism Cs(T) — Csns,(T) is an isomorphism.

Proof Let v € S. Let w be a place of L lying over v. Let D,, C Gal(L/k) be the
decomposition group of w. Then by [4, Lemme 6.9] Pic(Ty,) = H' (D, X(Ty). We see that the
image A\, (By(T)) C B(T') depends only on the conjugacy class of D,, C Gal(L/k).

IfvesS vé Sy, then Dy, is cyclic for w lying over v. By Chebotarev’s density theorem there
exists v’ ¢ S and w’ lying over v’ such that D,y = D,,. It follows that \,(By(T)) = Ay (B (T)).
But v' ¢ S, hence Ay (By/(T)) C B5(T). We see that \,(B,(T)) C BS(T). Thus BS0(T) =
B3(T). We conclude that Cgng, (T) = Cs(T).

Corollary 3.11. Let H be a connected linear k-group over a number field k. Let L/k be a
Galois extension splitting HY™". Let Sy be the set of places v of k whose decomposition groups
in Gal(L/k) are noncyclic. Let S C ¥ be any finite set of places of k. Then the canonical
homomorphism Cs(H) — Csns,(H) is an isomorphism.

P r o o f. We have a commutative diagram of canonical homomorphisms

~

Cs(H) Cs(H"™)

| i~

Csns,(H) —— Csns, (H™)

By Proposition 3.7 the horizontal arrows are isomorphisms. By Proposition 3.10 the right vertical
arrow is an isomorphism. We conclude that the left vertical arrow is also an isomorphism.

Theorem 3.12. Let k, X, G, H be as in 3.1 (in particular G is quasi-trivial and H is
connected). Let L/k be a Galois extension splitting H'*". Let Sy be the set of places v of k whose
decomposition groups in Gal(L/k) are noncyclic. Let S C ¥ be a finite set of places of k such
that SN Sy =0. Then X has (WAg).

P r o o f. By Corollary 3.11 Cs(H) = Csns,(H) = Cy(H) = 0. By Theorem 3.5 X has
(WAg).

Corollary 3.13. Let X be as in 3.1. Then X has the real approximation property.

Proof. Let L and Sy be as in Theorem 3.12. Take S = #5,. A decomposition group of an
archimedean place is either 0 or Z/2, hence cyclic. We see that %5 NSy = 0. By Theorem 3.12
X has (WAy__), i.e. X has the real approximation property.

Another proof Thesubgroup H is connected, and we have III(G) = 0 and A(G) = 0.
Now by [1, Corollary 1.7] X has the real approximation property.

Corollary 3.14. Let k, X, G, H be as in 3.1 (in particular G is quasi-trivial and H
is connected). Assume that H'" splits over a cyclic extension L of k. Then X has the weak
approzrimation property.

Proof. Let Sy denote the set of places v of k whose decomposition groups in Gal(L/k) are
noncyclic, then Sy = (). Thus for any finite S C ¥ we have S NSy = (). By Theorem 3.12 X has
(WAg) for any S, i.e. X has the weak approximation property.
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4. Metacyclic extensions

In this section, inspired by [4, Lemme 1.3], we generalize Corollary 3.14.

4.1. Recall that a finite group is called metacyclic if all its Sylow subgroups are cyclic. For
example, the symmetric group Ss is metacyclic, while the group Z/2 @ Z/2 is not. Every cyclic
group is metacyclic. We say that a Galois extension L/k is metacyclic if Gal(L/k) is a metacyclic
group.

Theorem 4.2. Let k, X, G, H be as in 3.1 (in particular G is quasi-trivial and H is
connected). Assume that H*" splits over a metacyclic extension L of k. Then X has the weak
approzximation property.

Proof. Set T = H'*", then T is a k-torus splitting over L. By Theorem 3.5 and Proposition
3.7 it suffices to prove that Cs(T") = 0. Set

YL(T) = coker [Hl(k,T) — H H'(k,,T)
veS

By Proposition 3.9 Cg(T) ~ Yg(T).
We write T for X(T). Set

mWfb@4m%ﬁ%IIF%f)
VEYNS

I (k, T) = | J gk, T)
S

By [8, Theorem 0.3] R
Ug(T) ~ Hom( I y(k, T),Q/Z).

Now Hllsﬂ(k:, f) is by definition a subquotient of III. (k, T) Thus in order to prove the theorem

it suffices to show that III.(k,T) = 0. N

Denote by g the image of Gal(L/k) in Aut(7T). Then g is a finite metacyclic group. We may
and shall assume that Gal(L/k) = g. For a place v of k, let D,, C g denote the decomposition
group of a place w of L extending v. We write g, for Dy, it is defined up to conjugacy in g.
Since Gal(k/L) is a profinite group and 7 is a free abelian group, we have H'(L,T) = 0. From
the inflation-restriction exact sequence

0— HY9,T) —» H'(k,T) — HY(L,T) =0

it follows that the inflation homomorphism H (g, f) —H Lk, T ) is an isomorphism. Similarly,
for each v the homomorphism H'(g,,T) — H'(k,,T) is an isomorphism. Thus we obtain an
isomorphism

~

ker [Hl(g,f)—> T #'.T)| > M4k, T).

VEYNS

It follows from Chebotarev’s deunsity theorem that

I (k,T) ~ ker [Hl(g,f) = [[H"(C.T)], (3)

C

where C runs over all cyclic subgroups of g.
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~ Now let F' be any finite group and Y a finitely generated F-module. Let ¢ € Z. We write
H'(F,Y) for the i-th Tate cohomology group. Following an idea of [9, page 734], we set

I (F,Y) =ker |H/(F,Y) = [[H'(C,Y)],
C

where C' runs over all cyclic subgroups of F. Then by (3) IH&)(k,T\) ~ H_I%l(g,j”\) In order to
prove Theorem 4.2 it suffices to show that III}(g,T) = 0, which follows from the next lemma.

Lemma 4.3. (B. Kunyavskii, private communication). Let g be a metacyclic finite group and
Y a finitely generated g-module. Then T4 (g,Y) =0 for all i € 7.

Proof Lety € IlI5(g,Y) C f]i(g, Y'). For a subgroup h C glet Resy(y) € fli(b, Y') denote
the restriction of y to b. Since y € III4(g,Y), we have Res(y) = 0 for any cyclic subgroup
C C g. Since g is metacyclic, every Sylow subgroup of g is cyclic. We see that Res g(y) = 0 for
for any Sylow subgroup S of g. By [10, Chapter IV, Section 6, Corollary 4 of Proposition 8] we
have y = 0. Thus III4(g,Y) = 0. This completes the proofs of the lemma and of Theorem 4.2.
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AHHOTAITIS

IIycte X — mpaBoe ogHOPOIHOE MPOCTPAHCTBO CBA3HOW JIMHEWHON airedpamvecKoit
rpynnsl G' Hajg monem  anrebpamdecKux umcena kK, comepxkamiee K-TOUKY .
ITpeamosi0:KuM, 4TO cralmoHapHas noarpynna Touku x B G casnas. Vcnonbsys
MOHATHE KBAa3WUTPUBMAJIBbHON Tpymmbl, BBegennoe Komapo — Temernom, Mbl MoxkeM
npeacrasute X B Buge X = H\G, rme G — HEKOTOpas KBa3UTPUBHUAJILHAS
k-rpynmma w H C G — ee cBasumag k-momrpymma. Ilycts S — mexkoropoe
KOHEYHOE MHOXKECTBO HopMmupoBaHuit noJisi k. Ilpumensisi pesysabrarbl paboThI
[B2], mbr BRUucasem gedert caaboii ammporcuMarmn st X OTHOCHTETHHO S
B TepMmHaX Hambosbimero daxtop-Topa HY™' rpymmer H. B wacTmoCTH, MBI
MoKa3biBaeM, uTo ecju Top H' paciensiercss HaJl HEKOTOPHIM METAIMKINIeCKIM
paciiupenuem moJjs k, ToO 0HOPOHOE TTPOCTPAHCTBO X 00/1a7aeT CBOUCTBOM c1aboit
ammporcuMarnuu. Mbl MOKa3bIBaeM TaKZKe, UTO JiI000€ OHOPOIHOE MPOCTPAHCTBO X
CO CBA3HON CTanmoHapHOH moArpymnmoit (6e3 ycaosuit na H'') obnagaer cBoitcTBoM
BEIIECTBEHHO! AIIIPOKCUMAIIUN.

KintoueBnie cioBa: aunetinoe anzebpauseckue epynnvl, 00HOPOOHBLE NPOCMPAHCMEA,
cAa0aA aNNPOKCUMAUUA



