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Kolyvagin proved that the Tate-Shafarevich group of an elliptic curve over Q of analytic
rank 0 or 1 is finite, and that its algebraic rank is equal to its analytic rank. A program of
generalisation of this result to the case of some motives which are quotients of cohomology
motives of high-dimensional Shimura varieties and Drinfeld modular varieties is offered. We
prove some steps of this program, mainly for quotients of H7 of Siegel sixfolds. For example,
we “almost” find analogs of Kolyvagin’s trace and reduction relations. Some steps of the
present paper are new contribution, because they have no analogs in the case of elliptic curves.
There are still a number of large gaps in the program. The most important of these gaps is
a high-dimensional analog of a result of Zagier about ratios of Heegner points corresponding
to different imaginary quadratic fields on a fixed elliptic curve. The author suggests to the
readers to continue these investigations.
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0. Introduction

Let E be an elliptic curve over Q of analytic rank 0 or 1. Kolyvagin ([1], [2] and subsequent
papers) proved the

Theorem 0.1. (a) SH(Q, E) — the Tate-Shafarevich group of E over Q — is finite;

(b) the rank of E(Q) is equal to the analytic rank of E. There is the following problem

0.2. Generalise (0.1) to the case of some motives which are quotients of cohomology motives
of Shimura varieties and/or Drinfeld modular varieties.

It turns out that (0.2) is a very difficult problem. The present paper is the third in a series
of papers (the first two papers are [3|, [4]) whose purpose is

(1) To offer a program of a proof of (0.2) (quoted below as The Program);
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(2) To prove some steps of The Program, especially for submotives of H7 of a Siegel sixfold
X. The main unconditional result is Theorem 2.13. The main conditional result is described in
5.5.

The Program follows the ideas of the original Kolyvagin’s proof of (0.1), with some modifica-
tions and new steps; for the most essential new contributions see 2.1a,b and Section 3. Since the
main property of analogs of Euler systems for the present case is weaker than in [1], [2], these
analogs are called pseudo-Euler systems.

It is necessary to emphasize that for 4 different types of Shimura varieties X and Hecke
correspondences T, on X:

(a) X is a Siegel variety of genus 2, T, = T);

(b) X is a Siegel variety of genus 3, T, = T);

(c) X is a Siegel variety of genus 3, T, = T}, 1;

(d) X is a Siegel variety of genus > 4, T, =T,
we get obstacles of 4 different types to the realization of The Program (one obstacle for one type
of X, %,). See Remark 1.6a (and also [5]) for the type (a), Section 4.4 for the type (b), and
obstacles of types 2c, 2d (see below) for the types (c), (d) respectively. Maybe for the latter two
cases these obstacles will be got over.

Are there cases where there is no obstacles? I don’t know.

Let us describe now the steps of The Program which are not made yet. They can be subdivided
into 2 types.

Problems of type 1 are well-known conjectures of general mathematical interest concerning
the main objects of the present paper:

(0.3) Langlands conjecture for Siegel sixfolds X;

(0.4) Conjectures about existence and properties of quotient motives of H(X);

(0.5) Serre conjecture on the image of [-adic representations in their cohomology;

(0.6) Problem of construction and properties of smooth compact models of X.

The origin of the problems of type 2 is The Program itself. They can be subdivided into 4
subtypes.

Problems of type 2a are of purely technical nature. They are easy but time-consuming. Their
list is given in the main text.

Problems of type 2b are more complicated, but without doubt solvable. For example, these
are problems of rigorous proof of properties of reductions of some subvarieties of Siegel varieties
(Sections 4, 6).

Problems of type 2c exist thanks to a phenomenon which does not occur in the proof of
(0.1), namely the existence of the so-called bad components (see [4]). A rough analog of the first
problem of type 2c in the 1-dimensional case is a calculation of Gross-Kohnen-Zagier (|6], [7]) of
ratios of Heegner points corresponding to different imaginary quadratic fields on a fixed elliptic
curve over Q.

In our case analogs of

Heegner points corresponding to different imaginary quadratic fields

are

some cycles on X.

These cycles depend on a prime p. So, the first unsolved problem is to prove the existence of
ratios of Abel - Jacobi images of these cycles for different p, and to calculate these ratios. The
second problem is to prove existence of p such that this ratio does not satisfy a certain congruence.
See (1.7)—(1.10) for details. Maybe these problems will be solved by a method similar to [6] (see
Appendix 3).

The fact that the problems of type 2¢ seem to be the most complicated among other unsolved
problems for the case when X is a Siegel sixfold, explains the title of the paper.
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If X is a Siegel variety of genus > 4 then we cannot find reductions of some Shimura
subvarieties of X (relevant to our situation) using methods of Sections 4, 6 of the present paper,
although this is necessary for the realisation of The Program. This obstacle is of type 2d. See
section 4.5 for details.

The structure of [3], [4] and the present paper is the following. Properties of quotient motives
of H'(X) are given in [3]. These results are conditional, we assume the truth of (0.3), (0.4).
[4] contains a generalization of Kolyvagin’s trace relations (see (1.3), (1.4)) for X and a Hecke
correspondence on X.

Section 1 of the present paper contains a survey of Kolyvagin’s proof of (0.1) and the
corresponding steps of The Program, together with the detailed description of the present paper.
In Section 2 we collect together unconditional steps of The Program obtaining a criterion of
finiteness of SH(Q, F) and E(Q) of an abelian variety E over Q (Theorem 2.13). The crucial
object of the statement of Theorem 2.13 is an operator U(p); proof of its existence is equivalent
to the solution of problems of type 2c.

In Section 3 we give a universal method of construction of cycles on Shimura varieties which
are homologically equivalent to 0.

Sections 4-6 give ideas of application of Theorem 2.13 to Siegel sixfolds. Practically, their
contents is a generalization of Kolyvagin’s reduction relation (1.5). The case €, = T, (resp.
T, =T, 1) is treated in Section 4 (resp. 6). These results are conjectural. The problem of finding
the exact answers to the above problems are problems of type 2b. Moreover, we formulate all
propositions as if E were an abelian variety. Really, E is a quotient motive of H*(X). The
problem of rewriting of all propositions in terms of cohomology groups of motives is a problem
of type 2a. This is made (for another situation) in [§].

Sections 4.3—4.4 contain a “counterexample”: the case of a Siegel sixfold and a Hecke corres-
pondence T},. This case is interesting, because in spite of the existence of bad components we are
able to get an exact value of U(p). Unfortunately, in this case U(p) does not satisfy condition
(2.15b) of Theorem 2.13, so we cannot prove finiteness of SH using 7),.

This example is included for 2 reasons. Firstly, there is still the possibility of error in
arguments (change of a sign would be sufficient!), which can imply a happy end. The second
reason (the main one) is the following: maybe this method gives a non-trivial result in the
functional field case.

Further, Section 4.5 contains a case of a Siegel variety of genus 4. We get that probably in
this case there is no obstacle of type 2¢c but a new obstacle of type 2d appears.

Section 5 contains a possible example where there are no trivial arguments that U(p) is always
“bad™ the case of a Siegel sixfold and the Hecke correspondence T}, ;.

A more complete version of the present paper can be found in internet (arxiv.org).

1. Survey of Kolyvagin’s proof, and parallel steps
of the present paper

For the convenience of the reader, we give here a survey of ideas of the original Kolyvagin’s
proof for the case of E of analytic rank 0 (all details of secondary importance are omitted). They
will be marked by (*). In parallel, we indicate the corresponding steps of the present paper,
they will be marked by (**). We do not consider here the case of E of analytic rank 1, because
even the case of rank 0 is rather complicated. We use notations of Kolyvagin and we use [9] for
references.

(*) Let N be a level, Xo(IN) = I'o(N)\H the compactification of the modular curve of level
N, ¢ : Alb (Xo(N)) — E a Weil map to an elliptic curve E over Q. Let [ and M = [" be a fixed
prime and its power (both [ and M are denoted in 9] by p). Further, let K be an imaginary
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quadratic field (in order to simplify the proofs we consider only the case when h(K) = 1). We
denote by Sel (E/Q)s the Selmer group.

Recall the definition of Heegner point. Points ¢ on the open part of X((V) are in one-to-one
correspondence with the isogenies of elliptic curves ¢y : Ay — A} such that Ker ¢ = Z/NZ.
A point t € Xy(N) is called a Heegner point with respect to K if both A;, A} have complex
multiplication by the same order of K. A Heegner divisor is a Galois orbit of a Heegner point;
Heegner divisors are exactly 0-dimensional Shimura subvarieties of Xo(/V) in the sense of Deligne
([10]).

¢ is defined on divisors of degree 0 on Xo(N). To transform a Heegner divisor of degree
d to a divisor of degree 0, we subtract d times the image of the cusp ico on Xo(N). Its ¢-
image is a Heegner point on F. For a given K there exists the “principal” Heegner divisor
1 € Div (Xo(V))(K) (which is one point if A(K) = 1) and its gp-image — the “principal”
Heegner point y; € E(K) which are the main objects of [1] (see also [9], first page).

The main result of 1] is the

Proposition 1.1. If y; is not a torsion point and Tr g/g(y1) € E(Q) is a torsion point, then
there exists ¢ which does not depend on [, M such that c¢Sel (E/Q)y = 0.

Finiteness of SH(E/Q) and E(Q) follows immediately from this proposition. For simplicity,
we shall consider in this survey only the case Tr g /q(y1) = 0.

(**) In the most general setting of (0.2) an analog of Xy(N) is any “modular object” X and
an analog of a Heegner divisor on Xy(N) is a subobject V' of X. For example, in [11] we treat
the case when X is a quaternionic Shimura curve.

Particularly, let X be a smooth compact model of a Shimura variety and V' a codimension d
cycle on X such that

(a) V is homologically equivalent to 0;

(b) The support of V' is a union of Shimura subvarieties of X and cycles with support at
infinity;

(c) X and V are defined over a number field k.

There exists the [-adic Abel - Jacobi image of V'

ol '(V) € H'(k, H{ H(X @ Q, Zy(d)))

Let E be a quotient motive of H2¢~1(X); it is an analog of the elliptic curve E of [1]. We can
prolonge cl’ to the l-adic cohomology of E, this is an analog of ¢ of [1].

Definitions of analogs of SH and of the rank of E(Q) are given in [12]. The main theorem 2.13
of the present paper is formulated for the case when E is an abelian variety. Since quotients of
cohomology motives of Shimura varieties which are treated in the present paper are not motives
of abelian varieties, we need an analog of Theorem 2.13 for motives. This proof is not given; this
problem is of type 2a, it can be solved as in [8]. Analogously, in Sections 4 — 6 we treat E as if
it were an abelian variety.

Most calculations of the present series of papers are made for the case when X is a smooth
compact model of a Siegel sixfold of level N, and V is a Picard modular surface (if h(K) = 1).
So, d = 4 and E is an irreducible quotient motive of H"(X).

The definition of V' and of the inclusion V' — X is given in [4]. Recall that points of the
open part of X parametrize isogenies of abelian threefolds with kernel (Z/NZ)3 and points of V/
correspond to those threefolds whose endomorphism algebra is the maximal order of K.

We do not consider in the present paper problems related to a smooth compact model of X.
These problems are of type (0.6).

(*) We denote V = K (E)y) the field generated by M-torsion points of E (it is denoted by V'
in [1] and by L in [9], Section 9, p. 249). We consider the l-adic representation

pr: Gal (K) — Aut (Ey) = GLa(Enr)
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(1.1a) We shall consider in this survey only cases when p; is a surjection. The general case
can be easily reduced to this one.

We choose a prime p such that

(1.2) The Frobenius of p in V/Q is the complex conjugation.

(p is denoted in [9] by n =13 -- - I or, if k =1, simply by [. For the case when the analytic
rank of E is 0 we can choose k =1, n = p a prime).

Particularly, p is inert in K. Let us recall (for the case h(K) = 1) the definition of the ring
class field K? of K (denoted by K, in [9]): it is the only abelian extension of K with Galois
group Gal K?/K = 7Z/(p + 1)Z, non-ramified outside p, totally ramified at p and such that the
corresponding subgroup of the idele group of K contains the idele whose p-component is p and
other components are 1. We denote Gal K”/K by G = G}, and we choose and fix its generator
g = gp (denoted by oy in [9]).

We have the Hecke correspondence T}, on X¢(V). Its restriction to E is multiplication by a,
— the p-th Fourier coefficient of the normalised cusp form of weight 2 corresponding to E.

Attached to p are a Heegner point x, € Xo(N)(K?) and its p-image — a Heegner point
yp € E(KP) ([9], p. 238). There are formulas:

Tr go/i(zp) = Tp(z1) (1.3)

(equality of divisors on Xy(V));
Tr KP/K(?/p) = GpY1 (1.4)
yp = Ir (1) (1.5)

where tilde means reduction at a valuation over p and fr is the Frobenius automorphism of F, (|9],
Proposition 3.7). (1.3), (1.4) are called Kolyvagin’s trace relations for Xo(/N) and E respectively,
and (1.5) is called Kolyvagin’s reduction relation.

(**) The first step of The Problem is to generalize these trace and reduction relations. The
problems of generalization of (1.3), (1.5) are of independent interest regardless of their application
to a solution of The Problem for some cases.

The obtained results are the following. The paper [4] is devoted to finding of analogs of (1.3)
for the case when X is a Siegel variety and T, a p-Hecke correspondence on X. There exist 2 finite
sets Lgood; Lbad (depending on %), and for all i € Lgyoq (resp. j € Lpeq) there are irreducible
subvarieties V,;, V, ; defined over KP? (resp. over K) such that we have an equality of cycles on
X:

TV = U ai (US| Ul U epi(Vpy) | UaV (1.6)
3=0

1€ Lgood J€Lpad

where oy, opj, @ are multiplicities. [4] gives the complete answer (i.e. finding of Lgood, Lpad,
Vp,is Vo, Qpi, i, o) for the case X is a Siegel sixfold, and ¥, = T}, is the simplest p-Hecke
correspondence. Partial answers are obtained for the cases:

1. X is a Siegel sixfold, €, = T, the p-Hecke correspondence defined by the matrix
diag (1,1,p,p* p°,p).

2. X is a Siegel variety of genus > 3, ¥, = T}, is the simplest p-Hecke correspondence.

Remark 1.6a. Inclusion V' < X corresponds to an inclusion of reductive groups GU(r, s) —
G Spag where 7, s is the signature of the unitary group, r + s = g. It is known that the maximal
field of definition of components of T,(V) is KP if r # s and K if r = s, i.e. Lgooq # 0 iff 7 # s.
Existence of good components is a necessary condition for our construction of pseudo-Euler
systems. Particularly, for ¢ = 2 the method of the present paper does not give pseudo-Euler
systems. This is why we consider the case g = 3.
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In order to use Abel-Jacobi map, we apply the construction of Section 3 to V, V,;, V} ;.
This construction will give us cycles which are homologically equivalent to 0. Their Abel-Jacobi
images are denoted by y1, yp,i, Yp,; respectively. We treat them as elements of an abelian variety
E. ie yi,yp; € E(K), ypi € E(KP).

The origin of obstacle of type 2c of The Program is the existence of bad components. Since
Yp,j € E(K) and for a “general” E the rank of E(K) is 1, we can formulate

Conjecture 1.7. There exists a coefficient x, ; € Q such that

Yp.j = Tp,jY1 (1.8)

We denote rp = >, apTp,;.

It turns out that in order to use Theorem 2.13. we must

(1.9). Find the residue of z,; (or of r,) modulo M2

(1.10). Prove existence of p (satisfying other conditions of Theorem 2.13) such that r,/M is
not congruent mod [ to some number that can be calculated explicitly.

See 5.5 for the final result.

Remark 1.11. Roughly speaking, we can find x, ; modulo M (Sections 4, 6). For the case
%p = T, we have: Ly, consists of one element jq, and «y, ;, = p+ 1. Since p + 1 is a multiple of
M, knowledge of x, ; modulo M implies knowledge of x;,, modulo M 2. Unfortunately, condition
(2.15b) of Theorem 2.13 is not satisfied in this case.

(*) Condition (1.2) implies (see for example [9], (3.3) )

M(p+1) (1.12)

Ma, (1.13)
Now we consider a commutative square

E(K)/ME(K) — HYK,Ey)
! | (1.14)

[B(K?)/ME(KP)C 2% [HY(KP, Eyp)|©

(the left square of [9], (4.2) — we need only this left square). We denote the right vertical map of
(1.14) by Res. (1.1a), (1.2) imply that Res is an isomorphism.
Let P € E(KP) be an element such that its image in E(K?)/ME(KP) is G-stable. This
means that g(P) — P € ME(KP). We denote by ¢ the element Res ~!(,(P)) € H' (K, Eyr)
(1.1a), (1.2) imply that Ep N E(KP) = 0. This means that the element

€ E(KP) (1.15)

is well-defined. ) )
We can identify Fj; and Ejy. Since g acts trivially on F, we have

Be Ey=Ey (1.16)

Let us consider the localization of ¢ at p. We denote by K, K} localizations at p of K,
KP respectively. Let KI(,M) be the maximal abelian extension of K such that Gal (KI(,M)/KP)
is an M-torsion group, and let Kg’(M) be the subfield of K} of degree M over K. We restrict
g € Gal (K?/K) to an element of Gal (Kg’(M)/Kp) which we denote by g as well.

(1.16a) Since KISM)/KP is the composite of the disjoint extensions Kg’(M)/Kp and Q2n /K

— the non-ramified extension of degree M of K, = Q,2, we can consider g € Gal (Kg’(M) /Kp)
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as an element of Gal (K,(,M) /Kp). Further, we denote the Frobenius automorphism of Q21 over

K, by fr i,, and we can consider fr r, as an element of Gal (KZ()M) /Kp) as well.

Formula (1.2) implies that

HY(K,, Eyr) = Hom (Gal (K,), Ea) = Hom (Gal (K™ /K,), Ex).

We denote by loc ,, the localization map

HY(K,Ey) — HY(K,, Exr) = Hom (Gal (K™ /K,,), Eyr).

This means that loc ,(c)(g) € Ej is well-defined, and we have the following formula of purely
cohomological nature (it follows immediately from the reduction of [9], (4.6)):

loc ,(c)(g) = B (1.17)

Now we apply the above formulas to the element

p
D=D,=Y ig'(y) € E(K?) (1.18)
=0
(19], (4.1); notation of [9] is P,). (1.4), (1.12), (1.13) imply that D, € [E(KP)/ME(KP)]%; the
corresponding B, ¢ are denoted by B,, ¢(p). The element c(p) € H(K, Ey) is an element of
level 1 of an Euler system. (1.17) becomes

loc ,(c(p))(9) = Bp (1.19)

Now we consider the image of y; in E(K)/ME(K) — H(K, E);) and denote it by ¢(1).

(1.16a) shows that loc ,(c(1))(fr k,) € Ep = Ejy is well-defined. We have:
B, = —fr (loc ,(c(1))(fr K,)) (1.20)

where the first fr € Gal (F,/F,) acts on Ejy. (1.20) follows from the definitions of D,, By, ¢(1),
formulas (1.4), (1.5), (1.12), (1.13) and the formula for the characteristic polynomial of Frobenius
on E: fr 2 — apfr +p = 0. See [9], calculations on the upper half of page 246. So, we have a
formula

loc ,(c(p))(g) = —fr (loc »(c(1))(Er x,)) (1.21)

(the main property of Euler systems of level 1).
Remark 1.21a. Since for high-dimensional cases the characteristic polynomial of Frobenius
on E is distinct from fr 2 —a,fr +p = 0, (1.20) and (1.21) do not hold in high-dimensional cases.
Now let s € Sel (E/Q)y — HY(K, Ey) be any element. We want to show that s = 0 (some
non-essential multipliers that contribute to ¢ of (1.1) are neglected). We consider the Tate pairing
([9], 7.3) of s and ¢(p):
< s,c¢(p) >€ Br (K)

The global Tate pairing is the sum of local ones. The local Tate pairing of 2 non-ramified elements
is 0. The sum of invariants of elements of Br (K) is 0, ¢(p) is non-ramified at all points of K
except p, and s is non-ramified at all points of K. This means that the local Tate pairing of s
and ¢(p) at p is O:

<loc ,(s),loc ,(c(p)) >=0 (1.22)

There exists a formula for the local Tate pairing: if s1,50 € Hl(Kp,EM) =

= Hom (Gal (KI(,M)/KP), Ejr) and sp is non-ramified, then we have (after some identification of
ﬁZ/ Z and the group of M-th roots of 1 depending on a choice of g)

Inv (< 81,52 >) = [s1(fr K,), 52(9)] (1.23)
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where g and fr g, are from (1.16a), and [*, ¥] is the Weil pairing. See [9], (7.6). Applying (1.23)
to the case s; = loc p(s), s2 = loc p(c(p)) we get from (1.21), (1.22):

[loc »(s)(fr K,),loc p(c(1))(fr k,)] = 1 (1.24)

(**) We indicate in Section 1 a work-around that permits us to prove (1.24) in high-
dimensional cases, in spite of Remark 1.21a. From now on a large segment of proof of (0.1)
(formulas 1.24 — 1.37) coincides with the corresponding steps of the proof of Theorem 2.13, with
the following difference: in high-dimensional cases E is an abelian variety of dimension d (instead
of an elliptic curve). In order to avoid repeating, we give here some necessary modifications and
later (in 1.25a) we continue to give the survey of the proof of (0.1) under the assumption that
FE is an abelian variety.

As earlier we denote V = K(Eyy), so HY(V, Ey) = Hom (Gal V, Eyy). We consider the I-adic
representation

pr: Gal (K) — Aut (Ep) = GSpao(Z/M)

(1.25) We shall consider only cases when p; is a surjection (analog of (1.1a) in 1-dimensional
case).

After proving the Serre conjecture for E, the reduction of the general case to the condition
(1.25) is easy; this is a problem of type 2a.

If p; is a surjection then the restriction map H'(K, Ey) — H'(V,Ey) is an inclusion
(because for i = 1,2  HY(GSpxn(Z/M),Ey) = 0, the proof for @ = 1 in [9], (9.1) is valid
for any 0) and Gal (V/K) = GSpa(Z/M).

(*) (1.25a) There are maps

E(K) — E(K)/M — HY(K,Ey) — HY(V, Ey) = Hom (Gal V, Eyy)

For any element a € E(K) or o € H'(K, Eyr) we denote by oy its image in Hom (Gal V, Eyy).
Throughout the paper ¢ will mean an element of E(K) or H'(K, Ey). In both cases Ker (¢(1))
is a subgroup of Gal V.

(1.26) We denote by W (t) the extension of V' that corresponds to Ker (ty)).

We can consider ¢(;) as an injection from Gal (W(t)/V) to Eps; we denote this injection by
tio.
( )We denote by ¢ the complex conjugation.

Lemma 1.27. W(t)/K is a Galois extension. If moreover there exists ¢; = £1 such that

ot) =g -t (1.28)

then W (t)/Q is a Galois extension. J

The Galois group Gal (V/K) = GSpap(Z/M) acts on Gal (W (t)/V).

Lemma 1.29. t(9) is a GSpap(Z/M )-homomorphism (respectively the above action of
GSpap(Z/M) on Gal (W(t)/V) and the natural action of GSpop(Z/M) on Eyy). O

(1.29a.) Let g € Gal (W (t)/V) C Gal (W(t)/Q) and p € Z a prime such that fr ,(W(t)/Q) =
og.

Lemma 1.30. Such p satisfies (1.12), (1.13). O

Further we shall consider only p satisfying (1.29a) for some g.

Lemma 1.31. If t € H'(K, E)y) is non-ramified at p (particularly, if t € E(K)) then

t()((09)*) =loc p(t)(fr ,) O

Let Gal (V)) be the maximal abelian M-torsion quotient group of Gal (V). For each subset
C' C Hom (Gal (V), Ey) = Hom (Gal (WV)M) Eyf) we consider (following [9]) an extension
W(C) DV that corresponds to a subgroup

H(C) = (] Ker h C Gal (V)
heC
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(1.31a). Now we return to the above s, y;. Let < *,% > denote the linear envelope of
elements. We take C' =< s(1), (y1)(1) >, and we denote W (< sy, (y1)(1) >) simply by W. For
g € Gal (W/V) let g5, gy, be projections of g on Gal (W (s)/V), Gal (W (y1)/V) respectively.

We shall use the following version of 1.29a. For g € Gal (W/V) C Gal (W/Q) we shall
consider primes p € Z such that fr ,(W/Q) = og.

According (1.31), we get that (1.24) becomes

[52)((785)%), (41)(2)((085,)%)] = 1 (1.32)
Both s € HY(K, En), 11 € E(K) satisfy (1.28) with e; = 1, g, = —1. Let us calculate
t2)((cg)?) for any ¢ satisfying (1.28) and any g € Gal (W(t)/V). Clearly o acts on both
Gal (W(t)/V) and Ep;. We have (0(t(2)))(g) = o(t2)(cgo™")), hence

t2)((09)?) = t(2)(9) + £10(t(2)(a)) (1.35)

The idea of the end of the proof of (0.1) is the following. We choose g such that for both ¢ = s,
t = y1 we have

o(t2)(9)) = eit2)(9) (1.36)

In this case (1.35) becomes t(2)((0g)?) = 2t()(g) and (1.32) becomes (we consider only case
1 #2)

[5(2)(8s), (Y1) (2)(8y, )] = 1 (1.37)

(1.38). Since y; is not a torsion point, we get that (y1)(2) is “far from 0” (i.e. if lk(yl)@) =0
then k is a large number). Since the Weil pairing is non-degenerate and eigenvalues of s and 1,
with respect to o are opposite (1 for s and —1 for y;), (1.37) implies that sy is “close to 0” (i.e.
there exists a small number k£ such that lks(2) = 0). Practically this implies s = 0 (we neglect
some multipliers that contribute to ¢ of proposition 1.1).

We do not give here a more detailed exposition of the end of [1|, because in Section 2 we give
a more general and simple proof suitable for the case when E is an abelian variety.

2. Proof of the unconditional theorem. Pseudo-Euler elements

(2.1). As was indicated above, we cannot directly imitate Kolyvagin’s proof in the present
case, because:

(a) The proof of (1.20) uses a fact that the characteristic polynomial of Frobenius on a
modular curve Xo(N) is

er—Tpfr +p

which does not hold on general X.

(b) dim H?¢=1(E) = 20 where ? > 1, so arguments related with orthogonality of S(2)(9s) and
(¥1)(2)(8y,) (see (1.38)) must be changed. (The reader might think that we need 0 independent
Heegner elements in order to use arguments of orthogonality; really we need only one).

Now we formulate a theorem that formalizes the situation. Let E be an abelian variety over
Q of dimension 0. Let [, M =", K,V = K(E)) be as earlier (I # 2). We assume that F
satisfies (1.25). We denote Vo, = K(E)2). We fix a simplectic basis B of E)p2 over Z/M?, i.e.
the matrix of the Weil pairing in this basis is the simplectic matrix Jop = <_%D E@a) . Let p be
a prime satisfying the following condition

(2.2). The matrix of the action of fr ,(V2,/Q) on Ej2 in the basis B is

diag (1+aM,...,14+aM,—1+bM,...,—1+bM)

~
o times 0 times
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where a, b € Z/M are some numbers satisfying a Z0, b #Z 0, a Zb mod [.

Further, let y; € E(K), yp € E(KP) be any elements satisfying:

(2.3) Tr g/g(y1) = 0;

(2.4) y1 is not a torsion point, and, moreover, y; is not a multiple of any other element of
E(K);

(2.5) Tr go/x(Yp) = kpyr in E(K), kp is an integer coefficient.

Now let us consider W (y1) as in (1.26), and we impose the following condition on p (a stronger
version of (1.29a):

fr ,(W(y1)/Q) = og (2.6)

where g is an element of Gal (W(y1)/V) of order exactly M. Later in (2.14) we introduce a
stronger version of this condition and prove (Lemma 2.17) that (2.2) and (2.6) are compatible.

So, we can imitate the Kolyvagin’s construcion of an element of Euler system as follows. We
define D, € E(KP) like in (1.18).

Proposition 2.8. The image of D, in E(K?)/ME(KP) is G-stable.

Proof. We must prove that g(D,) — D, € ME(KP). Since

9(Dp) — Dp =Tt v/ (yp) — (0 + D)yp = ripy1 — (p+ Dyp (2.9)

and (2.2) implies that M|(p+1), it is sufficient to prove that M |k,. (2.2) implies E(Fp2)loo = Ey
(the index [*° means the [*°-torsion subgroup or the projection of elements to this subgroup).
Further, D, € E(Fpg). We consider the projection of the reduction of g(D,) — D), to E(sz)loo.
From one side, it is 0, because § on £ (IFp2) is trivial. From another side, (2.9) implies that it is
equal to Kp,(§1)ee. So, in order to prove the proposition, it is sufficient to prove that () has
the order exactly M.

Let (#1)(3) mean the projection of g1 € E(]sz) in E‘(sz)/M. Condition (#1);~ has the order
exactly M is equivalent to the condition that the order of (31)3) in E(sz)/M is exactly M.

Now we untroduce some notations for the lemma 2.10 below. Let € be any abelian variety of
dimension 0 over a finite field IF,, such that the matrix of the action of fr on &, is

diag (14+aM,...,1+aM,—-1+bM,...,—1+bM)
o times > times
We denote €(F,2)” = {z € €(F,2)|fr () = —x}. We define a map 3 : E(F,2)” — &y as
follows: for z € €(F,2)~ let 24y € H'(F,2,€y) be its image under the Kummer map. Since
Gal (F)2) acts trivially on €y, 24 (fr %) € €y is defined. We let 8(z) = 2y (fr ?).
Lemma 2.10. In the above notations 3(z) = —2bz. O
So, it is sufficient to prove that (g1)(fr ]sz) is of order M. Using (1.31) it is sufficient to

prove that (yl)(Q)((ag)Q) is of order exactly M. Since g is of order exactly M, we see that the
left hand side of (1.31) is of order exactly M, hence (f1)4)(fr FpQ) as well. O

Corollary 2.11. There exists the only element B € E(K?) such that M B = g(D,) — D,. O

Corollary 2.12. B € Ey;. O

Now we can formulate the main theorem. Let E, I, M, K, p, y1, yp, D, B, B be as above,
Y1, yp satisfy (2.3) - (2.5), s € Sel (E/Q)p any element. Let W = W (< s(1y, (y1)(1) >) be as in
(1.31a).

Theorem 2.13. If for any g € Gal (W/V) there exists p satisfying (2.2) and the following
conditions (2.14), (2.15):

(2.14) fr ,(W(s,41)/Q) = og; )

(2.15) There exists an element U(p) € End (E) such that

(a) B = U(p)(dn): ~

(b) U(p)|g,, is an isomorphism of Ej;
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(c) U(p)|g,, is a diagonal operator (in the base B restricted on En).

Then s = 0.

Remark 2.16. Really, the theorem can be proved for the more realistic analogs of conditions
(2.3) - (2.5) and (2.15¢). Namely, Tr g /g(y1) can be of torsion, y; can be a multiple of an element
of E(K) (in this case k, € Q), [ can be 2, etc. These are obstacles of type 2a.

P r o o f Some steps of the proof coincide with the corresponding steps of 1-dimensional
case. We fix an element g € Gal (W/V) (later in (2.28) we specify g) and we consider p satisfying
(2.2), (2.14), (2.15) for this g.

Lemma 2.17. Conditions (2.2), (2.14) are compatible.

Proof of 2.17. It is sufficient to prove that Vs, and W are linearly disjoint over V, because
restrictions of (2.2), (2.14) on Gal (V/Q) coincide.

There exists a subgroup Cp of Hom (Gal (V), Eas) such that Va, = W(Cp). Really, for each
x € Ep let ¢, € Hom (Gal (V), Epr) be defined by the following cocycle formula: ¢,(6) =
§(4x) — 72, where § € Gal (V) and £z is fixed. The map 2 — ¢, is a GSpa(Z/M)-
homomorphism ¢ from Ej; to Hom (Gal (Va,/V), Eyr). 1t is clear that Cy = ¢(Eny).

It is sufficient to show that < sy, (y1)(1) > NCo = 0 in Hom (Gal (V)M Eyp). If there exists
x € E)y such that ¢, €< 5(1), (y1)1) > then we can assume that Iz = 0. Hom (Gal WM Ey)
is a GSpap(Z/M)-module. Since both s(1), (y1)(1) are GSp(Z/M)-stable, the dimension of the
linear envelope of GSpao(Z/M)(¢z) is < 2. Since ¢ is a GSpay(Z/M )-homomorphism, the same
dimension is 20 - a contradiction. UJ

Let ¢(p) be as in Section 1 (see lines between (1.18) and (1.19)). Formula (1.19) holds in the
present case. Since (1.22), (1.23) also hold, we get

floc (s (fr ), B] =1

(2.15a) implies
[loc (s)(fr ), U(p)(§1)] = 1 (2.20)
(2.15b, ¢) and (2.20) imply
[loc ,(s)(fr 2), (§1)i] = 1 (2.21)

Applying lemma 2.10 to (1) we get
[loc ,(s)(fr 2),1oc p(y1)(fr )] =1 (2.22)

— the analog of (1.24) for the present case.

Remark. Since the main property of Euler systems (1.21) is not satisfied in the present
case, we call elements ¢(p) elements of pseudo-Euler system.

In the end of the proof s and y; enter symmetrically in all formulas, so we change notations
(as in [1]) and denote s = 1, y1 = to; the index ¢ will be 1 and 2. Both ¢; satisfy (1.28) with
g1 =1,e0=—1. Let W(¢;), g+, be as in (1.26), (1.31a) respectively. (2.22) implies

[(t1)2)((094,)°), (t2)(2) ((0g2,)*)] = 0 (2.23)

(like (1.24) implies (1.32)).

Lemma 2.24. Jk; such that im (¢;)(9) = 1% By

Proof. Since (t;)) : Gal (W(t;)/V) — En are GSpap(Z/M)-homomorphisms, im (%;)2)
are GSpao(Z/M)-stable subgroups of Eys. But [¥Eys are the only GSpay(Z/M)-stable subgroups
in By O

Lemma 2.25. ky = 0.

Proof. (y1)@) = (t2)) is of order M /1*2. Since the composite map Z-to/M — E(K)/M —
Hom (Gal (W (t2)/V), Ear) is well-defined and is an inclusion, we get that the image of y; in
E(K)/M is also of order M/i*2. (2.4) implies ky = 0. O
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Lemma 2.26. W (t;)/V, W (t2)/V are linearly disjoint extensions.

Proof Ifnot then W(t;) N W(ta) # V. Let h be a non-trivial element of Gal (W (¢1) N
W (t2)/V). We have o(h) = h = —h: a contradiction, because [ # 2. [J

Let us denote elements of B restricted to Ejs by eq,...,ezn. Since the matrix of the Weil
pairing on ey, ..., e is Joy, we have [e1, ep1] = (ar a primitive M-th root of 1.

Corollary 2.27. 3h € Gal (W/V) such that t1(h) = I¥1eq, ta(h) = epy1. O

2.28. End of the proof of 2.13. We take g of the statement of 2.13 equal exactly to this
h. This g satisfy (1.36) for both ¢;. Taking into consideration (1.35) and formulas o(e;) = ey,
o(ear1) = —€ot1, (2.23) becomes [I*ey,epq1] = 1 and hence ky = 0, ie. (1)) = 0. Since
E(K)/M — Hom (Gal (W (t2)/V), Exr) is an inclusion, we get s = ¢; = 0. O

The end of the present paper is devoted to an attempt of a construction of U(p).

3. A universal construction of cycles on Shimura varieties
which are homologically equivalent to 0

Let k be a number field, X a Shimura variety over k, C H%(X ®k) the group of codimension d
cycles on X modulo rational equivalence defined over k and CHY(X ® k) its subgroup of cycles
homologically equivalent to 0. Let E be an irreducible quotient motive of Hgfg_l(X ® Q,Zi(d)).
For any cycle By € CHY(X ® k)o the Abel-Jacobi image cly(Bp) of By in F is defined.

Let now U € CHY(X ® k) be a cycle. We can associate to 9 its Abel-Jacobi image in E
canonically up to a multiplier using the following construction.

We denote r = rank(CHY(X ® k)/CH%(X @ k)o). Let m be a fixed (sufficiently large)
prime, T), the simplest m-Hecke operator on X (see (4.0) below), a,, the eigenvalue of T, on
Eand Qn(Z) = > i, bm.;jZ7 the characteristic polynomial of the action of T}, on CHY(X &
k)/CHY(X @ k), where Z is an independent variable. We denote

o (D) © S, T ()
=0

Then ¢,,(V) € CHYX ® k), and its Abel-Jacobi image in E is defined.
Proposition 3.1. For different m cl’z (¢, (U)) are proportional.
P roof We calculate the double sum in 2 different orders:

Cl/E( Z bmlujlbm27j2T£L11T7g'122(m)) = (me1,ja%1>CIIE(¢m2(m));
j=0

J1,52=0

T T
Cl/E < Z bmy j1 Oms o Tgmll Tg"fg (’B)) = ( Z bm%j“inz) CIIE(¢m1 (V) O
J1,52=0 J=0

Remark 3.2. The similar construction was used in [11], case of X is a quaternion Shimura
curve, z € X a Heegner point. For this case we have r = 1, Qn(Z) = Z — (m + 1) and ¢, (2)
is the image of T},(2) — (m + 1)z in an irreducible quotient of Alb (X). This example shows
that the construction above is reasonable. Moreover, since orders of growth of a,, and m + 1 are
different we see that a,, — (m + 1) — oo as m — oo. Conjecturally, this is true for all cases:

(8.3) The order of growth of b, j and ar, is such that > 7, bm,jagn tends to infinity.

If so then we have the following elementary

Lemma 3.4. Let Uy = > ,.;¢U; € CH?%(X)q be a linear combination of codimension d
Shimura subvarieties of X such that cl;(Up) # 0. Then Ji € I such that cl;(¢m(0;)) # 0.

Proof Yiercicln(dm(Bi) = (X—gbmjah) cl 5(Do). O
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This means that the ¢,,-construction of cycles that are homologically equivalent to 0 is not
worse than any other one.

We fix m and we apply this construction to the case U = V, where V, are from (1.6), * is
some index. We denote the elements cl’(¢m (Vi) by yx, and we call them the Abel-Jacobi images
of V,. The same construction will be applied for the reduced objects X, E (reduction at p).

4. Counterexample: case of Hecke correspondence 7T,

4.0. Definitions.

The algebra of p-Hecke correspondences on a Siegel variety X of any genus g is the ring of
polynomials with g generators denoted by T}, T}, 1,...,T}, 4—1. They are double cosets correspon-
ding to the diagonal matrices

diag (1,...,1,p,...,p)
—_—— ——
g times ¢ times
for T}, and
diag(]‘J"'J]‘7p7"’7p7p27"'7p27p7"'7p)
——— e —
g—i times i times g—i times : times
for T, ;.

I shall be interested mainly by the case g = 3, correspondences T, T}, 1. The corresponding
matrices are diag (1,1,1,p,p,p), diag (1,1, p,p?, p%,p) respectively.

Remark. For g = 3 and for the Hecke correspondence T}, 5 the set Lgooq is empty ([4]), so
we cannot get pseudo-Euler systems using methods of the present paper.

Let t € X and A; the corresponding abelian g-fold. The set T},(¢) is in 1 — 1 correspondence
with the set of maximal isotropic subspaces W C (A;), = (F,)?9, and the set T}, ;(t) is in 1 — 1
correspondence with the set of isotropic subspaces W C (Z/p?)?9 such that W is isomorphic to

(Z)p*)9~" @F?,i. We refer to these subgroups as W of type T, T}, ;, and we denote the set of such

W by Sy, Sy respectively. Finally, we denote b(n) = n("2+1), G(j,9)(F,) the Grassmann variety

of j-spaces in the g-space over F,, dimensions are affine, and G(j,k,g)(Z/p?) a generalized
Grassmann variety of submodules of (Z/p?)? which are isomorphic to (Z/p)*~7 @ (Z/p?)7 as
abstract modules.

Recall that we consider mainly the case g = 3, X is a Siegel sixfold and V' C X a Picard
modular surface. Some results of Section 3 hold for a more general case g is any number, V C X
is a subvariety of dimension g — 1 whose points parametrize abelian g-folds having multiplication
by the ring of integers of an imaginary quadratic field K.

4.1. Case of ordinary points.

4.1.1. Case of one point. There are correspondences ®; on X (see (4.1.3) for a definition)
such that

g9
T,=> 9 (4.1.2)
§=0

®g is the Verschibung correspondence and @, is the Frobenius map. Let us fix notations related
to the definition of ®;. Let ¢ € X(Q) be an element such that A, is ordinary. Then there exists a
fixed isotropic g-dimensional subspace D, C (A;), enjoying the following property: & : A, — A}
is the Frobenius map of A; iff Ker oy = D,. Let ¢’ be an element of T),(t) and W C (4;), the
corresponding isotropic subspace. We have:

'€ ®;(t) < dimg, WNDy=j (j=0,...,9) (4.1.3)
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Moreover, for ¢}, € T,(t) and corresponding subspaces Wy, Wa we have:
Ell = 5/2 — WinN Dg =WsynN Dg (4.1.4)

Projection. We denote by S,(j) the set of W such that dimg, W N Dy = j. Sets Sy(j) form a
partition of S,;. There is the natural projection 7; : Sy(j) — G(j,g) (m;(W) = W N Dy). The
quantity of poins in the fiber of 7; is

) (4.1.5)

4.1.6. Case of subvarieties. Let U be a subvariety of X such that for a generic point
t € Y(K) the reduction at p of the corresponding abelian variety A; is ordinary. There are

schemes ®;(0); we denote their closed subschemes by ®;(0). The Abel-Jacobi images of U, 9,

®;(0) will be denoted by v, 9, y; respectively (recall that we fix m and we use ¢y,-construction
of Section 3). Clearly reduction commutes with Abel-Jacobi map. ®; act on E. (4.1.5) implies

() = p"9 Iy, (4.1.7)
and hence ;
T,(5) = aph = Y _p"9 7y, (4.1.8)
j=0

where a,, is the eigenvalue of T), on E.
Remark. Considering only the Abel-Jacobi image we loose many information on schemes

—_——

Tp(V) and their irreducible components; we take into consideration only the closed support and
the depth of these schemes.

4.2. Case of non-ordinary points.

We return to our V' C X. The Abel-Jacobi image of V is denoted by y;. For an odd g a
generic point t € V has the property: the reduction of the abelian g-fold A; has the degree of
supersingularity 1, i.e. # Supp (At)p = p9~1. Particularly, for g = 3 the p-rank of A; is 2.

Recall that all considerations below are conjectural. They are only a first approach to the
subject. The rigorous description claims use of another technique.

®;(V) are reducible: there are subvarieties ¥;(V) C X (j =0,...,g — 1) such that

;(V) =0, 1 (V)UT;(V) (4.2.1)

jzoa"'aga ‘11—1:\1&7: :
We denote the Abel-Jacobi image of ¥;(V') by z;. (4.2.1) implies

O;(1) = pPO I gy 4 phlo=I) (4.2.2)

(13=0,...,9, 221,24 = 0).

Clearly that a correct method to find coefficients p?(9=9)+9-7 pb(g=i) of (4.2.2) is to calculate
dimensions of the corresponding schemes. I did not do it, and the evidence that these coefficients
are correct, comes from (4.2.7) below.

The geometric description of the partition (4.2.1) is the following. We denote by D;-_l a

g+ 1-dimensional subspace of (A¢), which is the kernel of the reduction map (A¢), — (A¢),,, and
by Dy its dual space. We have D,_1 C D;-_l.

Remark. (A;), is an [F2-space, because A; has multiplication by K (recall that p is inert in
K). It is clear that Dy_1, Dj_l are also sz—spaces.

I think that the following analogs of (4.1.3), (4.1.4) hold (¢',¢},t,, W, W1, Wy are the same,
the meaning of W;(t) is clear; ¥;(V') = Uiey V() ):
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' eVj(t) < dimg, WNDy_1 =5 (j=0,...,9—1) (4.2.3)
th=t, & WinNDy;1=WaNDy_ (4.2.4)

Particularly, both Wq(t), ¥,_1(t) consist of one point.

4.2.5. Partition (*). Since sets ¥;(¢) and formula (4.2.3) are conjectural, we change notations
and define S;(j) as the set of W such that dimp, W N Dy_1 = j, so conjecturally W;(t) = S;(j).
Sets S;(7) form a partition of S,. There is the natural projection 7 : S7(j) — G(j,g — 1)

(77 (W) =W N Dy_1). The quantity of poins in the fiber of 77 is

ptlo=7) 4 phlo—i)-1 (4.2.6)
This gives us a formula
—_— g
el (dm(Tp(V))) = apii = = (pPI) 4 pPleDT) (4.2.7)
7=0

Together with (4.1.7), (4.1.8) this gives us coefficients of (4.2.2).

4.3. Application to irreducible components of 7),(V).

Firstly we develop some “general theory”. We can unify irreducible good (resp. bad) components
Vp,i (resp. V, ;) from (1.6) if they have equal multiplicities oy, (resp. oy ;). For example, if
Qpiy = Oy = -+ = Oy, then we can set Voi = Vpin UVpia U UV, and analogously for
Vo ) _

So, we get sets Lgood, Lpaa Which are quotient sets of Lgooq, Liaa respectively, and (1.6)
becomes

(V) = U @,; Ug U U apJ(V;?J) UaV (4.3.0)

ZeLgood ;Efbad

where Vi V, 5 are not necessarily irreducible, but a,; and o, are different.

Remark It is possible a more “strong” unification (practically, we can unify all good (resp.
bad) components of T,(V'). In this case the formula (4.3.7) will be weaken. See Remark 5.6 for
a possible application.

Further, we can consider the double union in (4.3.0) as a simple union:

V)=JaV (4.3.1)

leL

where L = Lgooq X Gal (K?/K) U LpgqU { the only element corresponding to V in (4.3.0)}, V; is
one of the sets gf (V,7), or V5, or V itself. (4.3.1) comes from the corresponding decomposition
of Sy:
Sy = S,(1) (4.3.2)
leL

namely: for t € V. W € S{(I) <= the corresponding point of T},(t) € V;. The union is disjoint,
i.e. sets S (1) form a partition of Sy.

We denote the Abel-Jacobi image of V; by 3;. Since reduction commutes with Abel-Jacobi
map, the Abel-Jacobi image of V] is ;.

Problem. What is a formula for 3;?

Conjecture 4.3.3. In some cases there exist coefficients c;; € Q such that

9
=3 e () (13.4)
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In order to find ¢;; we must intersect partitions (') and (x) defined in (4.2.5) and (4.3.2)
respectively.

We fix [ € L, and for any j = 0,...,g—1 we consider the set S} (j)N.Sy(1) and the restriction
of 71 S5(j) — G(j, g — 1) on it. We denote this restriction by w7 S () NSy(l) — G(j,g—1).
Let us restrict ourselves by the case when the following condition holds:

Condition 4.3.5. For any ¢ € G(j,g — 1) the quantity of points in the fiber (7'7;)~!(t) is
the same (does not depend on t).

We denote this quantity by nj;.

Conjecture 4.3.6. We have a formula

~ n;
m:z}ﬁq (4.3.7)

Using (4.2.2) we get easily c;;.

Now let us apply the above theory to our case g = 3. We have ([4]) Lgooq consists of 2
elements iy, (k = 1,2), ap;, = 1, Lpgq consists of 1 element* ji, a5, = p+ 1, and a = 0. So,
Lgooq consists of 1 element 71, and Lpgqg = Lpaq. Identifying Gal (K?/K) with {0,...,p} we get

L={0,...,p} U{i1}

For 0 € L we denote Vy = Viia simply by V,, = V), gooa and its Abel-Jacobi image 30 by yp, =
Yp,good; analogously 3;, is denoted by yp pad-
[4] contains the description of Sy (I) used in the proof of the following proposition.
Proposition 4.3.8. Condition (4.3.5) holds for this case, and numbers n;; are given in the

following table:

nj;, 1 €{0,...,p} nji,
j=0 p°—p° pt+p°
j=1 P’ 0
j=2 0 p+1

Corollary 4.3.9. According (4.3.7) we get formulas:
= 0" =20 + 1’2 (4.3.10)

pbad = D°20 + 22 (4.3.11)
Proof of 4.3.8. Recall ([4]) that the partition (4.3.2) for g = 3 is the following: for j; € L

W e Sé(]l) <~ dim]Fp2 FP2W =2

and
we |J  S6) < dimg,FpW =3
i€{0,...,p}CL

Since g = 3, the space Dy of (4.2) is Da. We need a lemma:

Lemma 4.3.12. We have: Supp (Viag) = S4(0)(V) U S5(2)(V); Supp (V,) = S5(0)(V) U
S;(1)(V).

Proof. IfW D Dythen W C Dy, so FpaW = Dy, dimﬁrp2 F2W = 2 and hence W € S5(j1),
i.e. W corresponds to Vj,q. Inversely, let us consider W corresponding to Vj,q. This means that

*We use here the gothic j in order to avoid confusion with the index of ;.

120



dim]Fp2 FeW = 2. DoNF 2 W is an F2-space, it can have dimension 0 or 1. If dim Do NF: W = 0
then DoNW =0 and t € S3(0). If dim Dy NF2W =1, i.e. Dy C F2W, then it is easy to see
that Do C W. Really, F,2W is an F2-space of dimension 2 which contains its orthogonal. Such
spaces contain only one isotropic F2-space of dimension 1, namely their orthogonal. This means
that Dy = (F2W)*, i.e. F oW = Dy, W C Dy and hence Dy C W. [

Now we calculate the quantities of spaces W of each type. There are p + 1 elements in S5(2)
(all W such that Dy C W C Dy, they form a P'(F,)). There are p* + 2p® + p? elements in
S%(1). Really, there are p+ 1 possible lines W N Dy. We fix such a line. There are (p? +1)(p+ 1)
isotropic planes in (W N Dg)* /(W N Dy), each of them gives us a W. It is necessary to subtract
p+1 planes that contain Dy /(W N Dy), we get p® +p? planes and multiply this number by p+1.

Since the total number of points in the bad part (i.e. in S5(j1) ) is pt4p? +p+1, the quantity
of points in the bad part of S3(0) is p* + p* and in the good part of S5(0) is p® +p° —p* —p?. O

4.4. Finding of U(p).

Now we apply Theorem 2.13 to this situation. (4.3.0) becomes

T,V = U 9Vigood) | JP+ DVpbad
geGal (Kr/K)

Taking Abel-Jacobi image we get
apyr = Tt g /i (Yp) + (0 + DYp bad (4.4.1)

where a,, is the eigenvalue of of T}, on E. We take D, = >Y_ ig'(yp), Bp = % from
Section 2. Since

9(Dp) = Dp = (p+ L)yp — Tt kv /x(yp) (4.4.2)
we have
9(Dp) — Dy = (p+1)yp — apy1 + (P + 1)Yp bad (4.4.3)
We shall see in (4.4.7) that (2.2) implies M|a,, M|(p + 1), hence (according (2.5))
~ p+1_ ap_ p+1_ p+1_ a,. p+1 _
Bp = Typ - Mpyl + Typ,bad = Typ - Mpm + Tlﬁp?ﬂ (4.4.4)

Formulas (4.2.2), (4.3.10), (4.3.11) permit us to represent g, Jppad as linear combinations of
®;(g1). We can easily find the action of ®; on F using formulas of [3].

Let us recall the notations (some letter are made gothic in order to avoid confusion with
notations of the present paper). Let T be the subgroup of diagonal matrices in & = GSpy, and
M C & be the subgroup whose g x g-block structure is <1(4)1 (A?)_1> , 80 T C I C &. There are
Satake inclusions of Hecke algebras (see, for example, [13]|, Chapter 7 for general formulas or [3]
for explicit formulas):

H(®) % —H() % <H(S) < ZUF, V)
where U;, V; (i = 1,...,g9) are independent variables. H(®)(Z,) is the algebra of p-Hecke
correspondences on X and H(91)(Z,) is the algebra of p-Hecke correspondences on X . Particularly,
P, € H(gﬁ)

Let M be a “generic” irreducible submotive of X of middle weight (i.e. the weight of M is
b(g) — the dimension of X) and € its field of coefficients. We can identify a basis over € x Q; of
the cohomology space H"9) (M) with the set of subsets of 1,...,g. For I € {1,..., g} we denote
by fr the corresponding element of this basis and we denote Uy = [[;c; Ui [[;¢; Vi € H(T). We
have:

Sr(@)= > Ur (4.4.5)

#(D)=i
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and St o Sy(Ty) = 2270 @i = > 1y, Ur = [I]21 (Ui + Vi), where T), € H(®).
The action of H(90) on H*9) (M) comes from the following action of Z[U=!, V:E!] on HY9)(M):

Ui(f) = a5 if i€l
Ui(fr) = al/"bif; if i1
Vi(fr) = a)bif; it i€l

V(i) =al it igl

(4.4.6)

where ag, b; (i =1,...,g) are Weil numbers. They satisfy a2 [[%_, b; = pblo),

We are interested in the case of a “generic” irreducible submotive M~ of X of weight b(g) — 1.
A basis of H*9)~1(M™) can be identified with the set of f; such that I C {2,...,g}, formulas
of the action of Z[Uiﬂ, Viﬂ] on HY9~=1(M™) are as above, and b; = p (see, for example, [3],
Theorem 4.3).

For our case g = 3, a basis of Hb(g)_l(/\/l_) is fg, fa2, fs, fo3 where 0, 2, 3, 23 are subsets
of (2, 3). These vectors are the eigenvectors of Frobenius with eigenvalues ag, agbe, agbs, agbabs
respectively. T}, acts by multiplication by a, = ao(p + 1)(b2 + 1)(bg + 1). Comparing these
eigenvalues with the ones from (2.2) we get

ap=1+aM, bp=1, by=—1+4(a+b)M mod M? by =p=-1 mod M  (4.4.7)

(really, we need these congruences only modulo M). This means that a, = 0 mod M 2 hence
the term 41 of (4.4.4) is 0.

To find p, Up,pad We use (4.3.10), (4.3.11) and (4.2.2), (4.4.5) — (4.4.7). Unfortunately we get
Bp = 0. Pseudo-Euler system does not exist in this case. Calculations are given in Appendix 1.

4.5. Case of even g > 4.

Let us consider the case when the inclusion V' C X corresponds to the inclusion of reductive
groups GU(1,g — 1) — GSpag, g > 4 even. We have:

1. The cohomology group H(X), i = 2r — 1, r = codimx (V) = g(g + 1)/2 — (g — 1), where
the Abel-Jacobi image of V' lives, is non-trivial (|14]).

2. We can expect that multiplicities of all bad components are multiples of p + 1.

3. Analogs of formulas of Sections 4.1 — 4.4 can be easily found using results of [15].

So, if the phenomenon of Section 4.3 does not occur, then probably The Program can be
realised for this case.

5. Correspondence 7),; — a possible example

This section is an analog of Subsection 4.4. For the case T, = T,1  Lgood, Lbads Qpi, Qpj

and the partition
S3.1 = U S51(0)
leL

(analog of (4.3.2)) are not known completely. We have ([4]):

Lgooq 1s not empty, it consists of elements 4y ..., i, . kg, and the numbers oy, . . ., Upjiy,
are unknown (their finding is reduced to a large but easy calculation).

Conjecture 5.0. All ), ;, are equal.

This conjecture is suggested by [4], (5.3.1). We shall assume it; see Remark 5.6 if it is wrong.
So, (5.0) implies that fgood consists of one element. We denote it by i and the common value of
Qpiy, DY Q7.

Lpaa consists of at least 2 elements jo, ji1, ..., Jjk,, (kp,p is unknown; conjecturally, for large p
kbp =1). apj, = 1, other a,;, are unknown. a = p® + p? (maybe p* + p).
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Sets Sj 1 (1) are known for [ = jo, for /={ the only element corresponding to V in (1.6)}, and
for I € Lgooq x Gal (KP/K) sets S5 (1) are known up to a choice of one of two possibilities (see
[4], Conjecture 4.2.20).

Let ¥p = Yp.good = Zggz‘% Ypiirs Yppad = Z:b:% Qp.j. Yp.j,- Assuming Conjecture 1.7 we can
write Yp vad = Lpy1. Let Dy, By, be as in (4.4). Analog of (4.4.1) for the present case is (a1 is the
eigenvalue of T}, 1 on E)

ap1y1 = a3 T gy (yp) + 8t + (0° + 0Py (5.1)

ie.
o, Tr Kp/K(yp) = F»';?h (5.2)
where £, = ap1 —1p — (p® + p?).

We can expect that a, ; = R(p) where R(X) is an unknown polynomial. (2.2) implies p = —1
mod M; using this congruence we can find a number 7 (depending only on PR(X)) such that
a,;=M"-v, (v, M) = 1. The same arguments as in the proof of (2.8) show us that M|x),, so if
n > 0 then we can divide (5.2) by M and repeat the process n times getting

7 Tr KP/K(yp) = kpl1 (5.3)

where ), = #,/M". Since (v, M) = 1, this is practically (2.5).

We can conjecture that in this situation we can use Theorem 2.13: there is no “trivial”
obstacles like in the case of T}, because at least one of c j, — namely, o, j, = 1 — is coprime to
M. Formula (2.2) gives us the residue of a,; mod M? (this can be done easily using formulas
of [3]; particularly, a1 =1 mod M). So we get that r, =1 mod M.

Remark. There is an independent method to find r, mod M using (6.2.4), (6.3.3), (6.3.5)
fori=1,1=jo,...,Jk,, Comparing this method with the result r, =1 mod M we can check
formulas of Section 6.

The analog of (4.4.4) is
By = i, - i (5.4)

In order to find g, we need to find coefficients c;, ;, in representation g, = Zj,k ik 10PPr (Y1)
(formula 6.3.3 for good components ly). This is a problem of type 2b for ¢ = 3 and of types 2c,
2d for g > 3. Section 6 contains ideas of solution of this problem.

5.5. Now we can summarize our results. Let us assume that in future we shall be able

(a) To find for any p the number r, modulo M"*2 — a problem of type 2c.

In this case (5.4) and other formulas of this section imply the existence of U(p) satisfying
2.15a,¢ (i.c. B, = U(p)(i1)). So, we must only

(b) To prove that for any g of Theorem 2.13 there exists p such that U(p) satisfies 2.15b, i.e.
rp/M"T! does not satisfy a certain congruence modulo . After finding of R(p) and cjj 4, this
congruence can be easily written down explicitly.

Remark 5.6. If numbers «, ;, are different then we can take the maximal value of 7 such

.- k Qp i . . .-
that M" divides all oy, , and define yp gooa as 3 -7 7 Yp,i, - In this case also there is no trivial

reasons for U(p) to be a non-isomorphism on Ejy.

6. Idea of finding of ¢,

Remark 6.0. We consider here the case of the Hecke correspondence T, = T}, ;. The level of
naivité of all considerations of this section is higher than the one of section 4. Moreover, (6.2.9)
shows that some affirmations are definitely false. I do not know how to correct them, and I shall
be grateful to anybody who will help me.
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6.1. Case of ordinary points.
Case of one point.
Analog of (4.1.2) for T}, ; (i > 0) is the following:

g
Tpi= Y. Re (i) -p " ;0 (6.1.1)
J20,k—j>i

where Ry(i) = R4(i,p) is the quantity of symmetric g X g-matrices with entries in F,, of corank
exactly i.
Particularly, for g = 3

2 3

Pyd + PPy + @2@3) + b p3 (CI’O(I)Q + @1‘1)3) + b p4 DyP5 (612)

~ 1
Tyt = =
p’ p(
Question 6.1.3. What is an analog of (4.1.3) for the present case?
Attempt of answer. Like above let ¢’ be an element of T, ;(t), W C (Ay),2 the corresponding
isotropic subspace (see (4.0), Dy C (A¢),2 the kernel of Frobenius, Dy is isomorphic to (Z/p*)?
as an abstract module. Roughly speaking,

W corresponds to ®;®;, <= W N D, = (Z/p)*7 & (Z/p*)’ (6.1.4)

equality of abstract modules. (The author has a more detailed description of this situation).

Projection. We denote by S, ;(j, k) the set of W of type T},; such that WN D, = (Z/p)*~7 @
(Z/p®)7 as abstract modules. Sets Sy ;(j, k) form a partition of S, ;. There is the natural projection
Tijk : Sgi(ds k) — G, k. g)(Z/p?) (735 k(W) = W N Dy).

Case of subvarieties.

Let U, n, § be as in (4.1.6), i.e. Y a subvariety of X such that for a generic point ¢t € L(K)
the reduction at p of the corresponding abelian variety A; is ordinary, and v, §) the Abel-Jacobi

images of U, U respectively. We denote the Abel-Jacobi image of ;o @k(f/) by 9; k-
Conjecture 6.1.5. The analog of (4.1.7) is the following:

2, 0 0y (5) = pH0IHI Py
Substituting (6.1.5) to (6.1.1) we get
g . .
Tp,i(ﬁ) = ap,iﬁ = Z Rk—j (Z) . p_b(k_])+b(g_])+b(g_k)Uj,k (616)
J,k>0,5+i<k

Conjecture 6.1.7. For all g,i, j, k the coefficient Ry_;(i) - p~ (=) +bla=)+bl9=F) of (6.1.6) is
the quantity of poins in the fiber of m;; .

Remark. This conjecture is checked by explicit calculation for the case i = 1, g = 3. The
explicit formula for this case is

Tp1(8) = P01 + P01z + 923 + (° — p*)no2 + (P* — Dnis + (p* — 1)nos (6.1.8)

6.2. Case of non-ordinary points.
Here V' C X is from (4.0). I can only guess what is the analog of formulas (4.2.1), (4.2.2).
Most likely there are subvarieties ¥; (V) C X, j,k=0,...,g — 1 such that

®;o0 O(V) = \I/j’k(V) U \I’j—l,k(v) U \I/j7k_1(V) @) ‘11]'_17;9_1(‘/) (6.2.1)

Question 6.2.2. Is W (V) = ¥, ;(V)?
I think that yes.
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Like above we denote the Abel-Jacobi image of W, (V') by z; .
Question 6.2.3. What are coefficients in the analog (4.2.2)7
We can expect (taking into consideration (6.1.5)) that

Do By(1) = pb(g—j)+b(g—k) (i + P9 JZ e+ p? kzj,k—l + p(g—j)+(9—k)zj_1’k_l] (6.2.4)

We denote by (6.2.5) the result of substitution of (6.2.4) to (6.1.6). Particularly, for the case
1 =1, g =3 we have

Tp1(i1) = p*20 + (0® + p" + p® — p°)z01 +p' 211+

+(p6 + 2p5 - 2p2)2’02 + (p3 + p2 +p—1)z12 + 290 (6.2.6)

We define DgL 1> Dg—1 like in (4.2). In our case D,_; = (Z/p*)9~! as an abstract module.

Conjecture 6.2.6a. The following analogs of (4.2.3), (4.2.4) hold (by analogy with (6.1.4);
t' ), th, W, Wi, Wy have the analogous meaning):

' €W, (t) <= WNDy_1=(Z/p)"7 & (Z/p*) (6.2.7)
(k>7;7,k=0,...,9 —1; equality of abstract modules);
ti =1y < WinDyg1=WyNDy (6.2.8)

Partition (*). We denote by S ;(j, k) the set of W of type Tp; such that W N Dg_y =
(Z/p)F—7 @ (Z/p*)? as abstract modules. Sets S5.i(J, k) form a partition of Sg;. There is the
natural projection 77, : S7;(j, k) — G(j, k, g — )(Z/p ) (5, (W) =W N Dyy).

6.2.9. It is natural to expect that the coefficient at z; in (6.2.5) for any g,1, j, k is equal to
the quantity of poins in the fiber of 77 ks but this is not true. Explicit calculation of the quantity
of poins in the fiber of 7rz . for the case i = 1, g = 3 is given in Appendix 2. This calculation
shows that this is true for all pairs (7, k) except the pair (0,2): the quantity of poins in the fiber
of ml, k18 (see theorem A2.4, (j,v) = (0,2), where v =k — j, and =0, 1,2)

p%+2p° —p® — 2p? (6.2.10)
while the coefficient at zgp2 is (see 6.2.6)
p® +2p° — 2p? (6.2.11)

I do not know how to explain this difference.

Remark. The “type” of W in (6.2.7) depends not only on numbers j, k, but on a number p
from the equality

pW N Dy_1 = (Z/p)" (6.2.12)

(see Appendix 2). I do not know what is the influence of y on the above formulas.

6.3. Application to irreducible components of 7}, ;(V').

Apparently, the situation is similar to the one of section 4.3. We use notations of this section.
Formulas 4.3.0, 4.3.1 hold for €, = T),;, (4.3.2) is rewritten as

g = | S5.4(0) (6.3.2)

leL

and the conjecture (4.3.4) is rewritten as

5= ik 19;®k (i) (6.3.3)
Gk
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An analog of 71";»’[ is the following. For any [ € L, for any j,k =0,...,9 — 1 we consider the set
Sy i(d:k) N Sy (1) and the restriction of 77, + Sy (4, k) — G(j,k,g — 1) on it. We denote this
restriction by 7’7 ¢ : Sy (4, k)N Sy (1) — G(j, k,g — 1). Analog of 4.3.5 is the following
Condition 6.3.4. For any ¢t € G(j, k, g — 1) the quantity of points in the fiber (7’7, ;)" (t)
is the same (does not depend on t).
We denote this quantity by 7z

Conjecture 6.3.5. We have a formula

g—1
~ Nijkl
3= Z o Zj.k
jk=0 1

Partition (6.3.2) for g = 3, T, = Tj,1 is not known completely. We know Sj (1) for I € Lypoq X
Gal (K?/K) and | = jo (notations of section 5). Since g = 3, we have Dy_; = Dy is 1-dimensional
over O(K,)/p*O(K,), hence the phenomenon of section 4.5 does not hold for this case and we
can expect that condition 6.3.4 is true for g = 3, T, =T}, 1.

Appendix 1. Calculation of B

(2.2) shows that we can identify the basis B = {e1, ea, e3, e4} of Eyy with the basis {fy, f2,
f3, fa3}. In our case ? = 2, i.e. ep4+1 = e3. According formulas of Section 2 ((2.10), (2.27), (2.28)
and others), we have:

(1)1 — the image of im (§;) in Ep; = E(sz)loo is ves = vf3

where v € (Z/M)*. Application of (4.4.6) to the case I = (3) gives us the following table
of eigenvalues of elements of H(T) acting on eigenvector ez in Eys (the second and fifth lines of
the table are obtained by application of (4.4.6), the third and the sixth lines are obtained by
application of (4.4.7):

Element of H(¥) U, UsUs U0,V U VaUs UiVaVs
Its eigenvalue apb1 b2 agb1b2bs apby agbibs
Its residue modulo M -1 1 -1 1
Element of H(%) V1UUs ViU Vs ViVaUs V1iVaVs
Its eigenvalue apbo apbobs ag apbs
Its residue modulo M 1 -1 1 -1

Using (4.4.5) we get that the eigenvalues of ®;, i =0,1,2,3, on g; are
1,01, 1, —1 (AL.1)

respectively (all formulas are in Ejpy).
(4.2.2) for g = 3 is the following:

®o(j1) = p°20

Oy (1) = p°a0+p°u
Do(f1) = p’z1 +p2e
P3(71) = 22

(A1.2)

(A1.1), (A1.2) and p = —1 mod M imply that zp = zo = —(g1)i~, 21 = 0. Substituting these
values in (4.3.10), (4.3.11) we get that £, =0 mod M and both ()i, (Up,pad)i are 0.
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Appendix 2. Calculation of the quantity of points in the fiber of
T icjk

We use notations: R = Z/p?, B = (At)p2 = RS. Let eq,...,es be an R-basis of B such that
the matrix of the skew form on B in ey, ..., e is Jg. Further, let D = Dy =< e1,e9 >, W is an
isotropic R-submodule of B which is isomorphic to R? & (F,,)? as an abstract module. We denote
Wy=WnpB, Wy = Wj = pW. Finally, we denote k — j by v.

We have: WND = R/ @ (F,)”, Won D =F},, j,v, u are invariants of a given W (u of 6.2.12).

Problem: for each possible triples j, v, i find the quantity of W with these invariants.

Lemma A2.1. For a fixed W, there are p? W such that its Wy is the fixed one.

Proof. I think that this quantity does not depend on a choice of Wy. If we take Wy =
e1,...,e4 then it is possible always to choose W =< es + passes + pasgeg, es + passes +
pasgeg, pe1, peq > where (i) is a symmetric matrix, and this representation is unique. O

We consider in the following lemma the case of spaces over ). Let B = Fg, D C B a
fixed isotropic subspace of dimension 2, W5 a variable isotropic subspace of dimension 2, and
Wy = Wi+, We denote j4 = dim Wy N D, jo = dim Wo N D.

Lemma A2.2. The quantity of Wy with given jy4, j2 is given by the following table:

Ja
0 1 9
j2 1 0 pr+pd pP+2p?+p
2 0 0 1

P r o o f. Always we consider the quantity of Wy with a base z1, 3. A fixed W5 has
(p? — 1)(p* — p) such bases.

(a) j4 =0.W4ND =0 <= Wo®D* =B <= W,oND* = 0. There are p® —p* possibilities
for x1; we have: xo € xf— < z1,Dt >. Tt is easy to check that always xf #£< x1, DT >, ie.
there are always p® — p* possibilities for x.

(b) j2 = 0. There are pb — p? possibilities for x1; we have: z9 € 21— < x1, D >.

There are 2 possibilities:

(1) x1 D< 21, D >;

(2) 21 A< 21,D >
(1) <= 21 D D <= z1 € D*. There are p* — p? of such z1, so there are p% — p* of z1 of
type (2). The quantity of 2o for x1 of type (1) is p° — p® and the quantity of x5 for a1 of type
4 2 5__ 3 6__ .4 5__ 2
(i-p )(p(pzp_i;;g_pz)) )(°—p?) = pT 4 5 4 2p° + pt.
c) ja = 2. Wy D = 9 C . There are p* — ossibilities for z1; we have:
(c) j 2. W, D W D+. Th p* — 1 possibilities f : h

T2 € (zf N DY)~ < 21 >.

There are 2 possibilities:

(1) z1 D> D+

(2) o % D*

(1) <= 1 € D. There are p* — 1 of such w1, so there are p* — p? of a1 of type (2). The
quantity of zo for 1 of type (1) is p* — p and the quantity of x5 for a1 of type (2) is p® — p. The

2_ 4 42\ 3
(p 1)(1)(1;25)1?((52_5) )®P*-p) _ PP tptl.
(d) jo = 1. Firstly we consider only Wy such that Wo N D =< eg >, and we take x1 = e3. So,

Ty = aje; +agest+azes+ages+ages. Condition on wo: (a3, g, ag) # (0,0,0). There are p° —p? of

such xo. For any FWQ there are p% — p of z9-s that give us this Ws. So, the quantity of Wy such that

WonD = ey is Z){_}i and the quantity of W5 such that jo = 1is (p+ 1)% =pt42p3+2p% +p.
This gives us all entries of the table. [J

(2) is p° — p®. The desired quantity is

desired quantity is
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Now for each type of the table we calculate quantities of W of different types.

(a). Case jo = 2. There are p> W over it, they have form W =< ej + paises + pagses, e +

panseyq + passes, pes, peg > where () is a symmetric matrix of lemma A2.1. We have:

WND=(Z/p*) &Z/p* " where r is the corank of (a.).

(b) Case j2 = 1,44 = 2. I think that the quantities of W over a Wy with a given type of
intersections with D does not depend on a choose of W5. For the case Wy = p < eg,e3 > a W
over it has a form W =< ey + pagses + pagses, €3 + passes + pasees, pe1, peq > where () is a
symmetric matrix of lemma A2.1. We have:

o5 = g =0 <— WOD:Z/p2@Z/p

there are p such spaces W, and

(a25,a26) 7'é (0,0) — WnNnD= (Z/p)2

there are p? — p such spaces W.

(c) Case jo = 1,74 = 1. For the case Wy = p < ea,e4 > a W over it has a form W =<
es 4+ pasie] + passes, eq + pagie] + pagses, pes, peg > where (04**) is a symmetric matrix of
lemma A2.1. We have:

a5 =0 < WnND=27/p*

there are p? such spaces W, and

aps #0 <= WND=1Z/p

there are p3 — p? such spaces W. O
So, we have the following
Theorem A2.4. The quantities of W with invariants (i,v, u) are the following:

(J,vs 1)
0,0,0
0,1,0
0,1,1
1,0,1
0,2,0
0,2,1
0,2,2
1,1,1
1,1,2
2,0,2

WnD

0

Z[p

Z/p

zZ/p?
ZipeZ/p
Zip®Z/p
Z/p®Z/p
Z/p* ® L/p
Z/p* ®L/p
Z/p* ® L/ p*
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Hozaves J[.FO. Ceemenue mnpobsembl KoHeuHoctu rpyimnbl Illadapesnyaa-Taiira
K MHOIOMEPHOMY aHAJIOI'y OIHOO pesyibrara J3arupa. JlaJbHeBOCTOUYHLII
martemarnaecknit xypuas. 2009. T. 9. Ne 1-2. C. 105-130.

AHHOTALIN S

Kosparun mokazas, uro rpynma I[lladapeBuua-Taiita 34au0THYUECKON KPUBOH
aHasmTrdeckoro panra 0 wiam 1, ompenenéunoil man (), xomeuHa. B pabore
[peJyIaraeTcsi mporpaMma 0O600IEHIsT 9TOTO pe3y/ibraTa Ha CJIydail (paKTOPMOTHBOB
MOTHBOB KOT'OMOJIOTHIT MHOTOMepHBIX MHOTooOpasuit [llumypsr. B mepsoit wactu
paboThl JIOKa3aHbl PE3Y/ILTATHI, ABJISIOMINECS] IEPBLIMU INAraMU 9TOH IPOrPaMMBL.
B wacrHOCTH, mOKa3aHO, KaK MOXKHO ODONTH MPENATCTBUs, CBSI3aHHBIE C TeEM,
9TO XapaKTEePUCTUIECKUN MHOTOWIEH dHI0Mopdu3ma PpobeHnyca B MHOTOMEPHOM
caydae DoJiee CJIOXKEH, YeM B OJHOMEDHOM, U C T€M, UYTO PA3MEPHOCTH IPOCTPAHCTBA
KOTOMOJIOTMiI B MHOIOMEPHOM cJjydae O0Jibllle, YeM B OIHOMepHOM. Merox
3aKJIFOYAETCSI BO BBEJIEHUN MTOHSTHUSI IICEBJI0-3MJIEPOBBIX CUCTEM. DTO MOHSTHE cjiabee,
9eM 9MJIepoBhI cucTeMbl KosibIBarnua B OJHOMEPHOM CJIydae, OIHAKO JTOCTATOTHO JIJTsT
JIoKa3aTeibcTBa TeopeMbl. OCHOBHAsT TeopeMa Halleil paboThl yTBEPKIAET, ITO €CJIN
HETPUBHUAJIbHBIE TICEBIO-3MIEPOBLI CUCTEMBI CyInecTBYIOT, To rpyima [ladapesuua-
ThaitTa KoHEeTHA.

IIpoGiema, oOmHAKO, COCTOMT B KOHCTPYKIINM HETPUBHAJIBLHBIX IICEBI0-3MJIEPOBBIX
cucreM. 371eCh OCTAIOTCA MHOIMOYHUC/IEHHBIE IIPEIISATCTBUSI, KOTOPbIE ABTOP OCTABJISIET
KakK Temy Oymymux uccjaegoBanuii. Haubosiee ciokHnoe npemnsTcrBre — HAXOXK/IEHUE
MHOTOMEPHOIO (TO €CTh I CJiydasi MHOIOMEpHBIX MHOroobpasmii I[Ilumypsbr)
aHaJora pe3yJbrara 3arupa O BBICOTE€ TOYEK XerHepa Ha MOJIYJSPHBIX KPHUBBIX.
Bropast gacts paboTBl COCTOUT U3 THIOTETHYECKUX BLIYHUCJIEHHUH, IMOKA3LIBAIOIINX,
YTO HET HHUKAKNUX OCHOBAHUII AyMaTb, 4YTO HETPpUBUAJIbHbIC HCQB,ZLO—SI?LHepOBbI
crucTeMbl He cymecTByioT. KpoMe Toro, B paboTe IpeIcTaB/IEHbl MIIOTETUIECKUE
BBIUNCJIEHNS, Jafoliue o000IeHne CooTHoIIeHnit peaykiun KosbiBarnaa Ha
MHOI'OMEPHBIN CJIydaii.

Krouessie ciioBa: mrozoobpasus [Lumypv, epynna lagapesua-Tatima, momueo,
Nncesdo-atuAEPOBHL CUCTNEMDL
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