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On transition functions of Topological Toric Manifolds

We show that any topological toric manifold can be covered by �nitely many open charts
so that all the transition functions between these charts are Laurent monomials of zj 's and
zj 's. In addition, we will describe toric manifolds and some special class of topological toric
manifolds in terms of transition functions of charts up to (weakly) equivariant
di�eomorphism.

The main results of the paper were reported on the section talk at the International conference
¾Toric Topology and Automorphic Functions¿ (September, 5-10th, 2011, Khabarovsk, Russia).
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1. Background

The topological toric manifold was introduced as an analogue of toric manifolds (i.e. compact
smooth toric varieties) in the category of closed smooth manifolds by H. Ishida, Y. Fukukawa
and M. Masuda, [1]. By de�nition, a topological toric manifold X is a closed smooth manifold
of dimension 2n with an e�ective smooth action of (C∗)n so that X has an open dense orbit,
and X is covered by �nitely many (C∗)n-invariant open subsets each of which is equivariantly
di�eomorphic to a smooth representation space of (C∗)n. Since the (C∗)n-action is e�ective,
the smooth representation of (C∗)n in each invariant open subset must be faithful, hence it is
isomorphic to a direct sum of complex one-dimensional smooth (linear) representation spaces of
(C∗)n. Notice that there is a canonical (S1)n-action on X by restricting the (C∗)n-action to the
standard compact torus (S1)n ⊂ (C∗)n. In this paper, we will always assume that a topological
toric manifold X is equipped with this (S1)n-action too.

It is shown in section 7 of [1] that a topological toric manifold X is always simply connected.
The orbit space of the (S1)n-action on X is a nice manifold with corners whose faces (including
the whole orbit space) are all contractible and, any intersection of faces is either connected or
empty. So the orbit space looks like a simple polytope. In addition, similar to toric manifolds,
the integral cohomology ring H∗(X) is generated by the elements of H2(X).

In a 2n-dimensional topological toric manifold X, there exist �nitely many codimension-two
closed connected submanifolds X1, · · · , Xm in X each of which is �xed pointwise by some C∗-
subgroup of (C∗)n. In fact, the Poincar�e dual to X1, · · · , Xm forms an integral basis of H2(X).
Such X1, · · · , Xm are called the characteristic submanifolds of X. The choice of orientation on
each characteristic submanifoldXi together with an orientation onX is called an ominiorientation

on X. From X1, · · · , Xm, we can de�ne an abstract simplicial complex Σ(X) of dimension n− 1
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(with the empty set ∅ added) as following.

Σ(X) := {I ⊂ [m] |XI :=
∩
i∈I

Xi ̸= ∅} ∪ {∅} (1)

where [m] denote the set {1, · · · ,m}. Σ(X) is a pure simplicial complex in the sense that any
simplex in Σ(X) is contained in some simplex of maximal dimension (n− 1).

Let Σ(k)(X) be the set of (k−1)-simplices in Σ(X). Then Σ(1)(X) can be identi�ed with [m].
It is shown by Lemma 3.6 in [1] that X1, · · · , Xm intersect transversely with each other and any
XI (I ⊂ [m]) is a closed connected submanifold of dimension 2(n− |I|) in X. The characteristic
submanifolds of X play a similar role as invariant irreducible divisors of a toric variety.

The major di�erence between topological toric manifolds and toric manifolds is that the local
action of (C∗)n is equivariantly di�eomorphic to a smooth vs. algebraic linear representation
space of (C∗)n. For example when n = 1, any smooth complex one-dimensional representation
of C∗ = R>0×S1 corresponds to a smooth endomorphism of C∗, which can be written in the
following form:

g 7−→ |g|b+
√
−1c(

g

|g|
)v, where (b+

√
−1c, v) ∈ C× Z. (2)

A smooth endomorphism of C∗ in (2) is algebraic if and only if b = v and c = 0. So the
group Hom(C∗,C∗) of smooth endomorphisms of C∗ is isomorphic to C × Z, while the group
Homalg(C∗,C∗) of algebraic endomorphisms of C∗ is isomorphic to Z. Hence there are much more
smooth linear representations of (C∗)n than algebraic ones. And so the family of topological toric
manifolds is much larger than the family of toric manifolds.

There is another topological analogue of toric manifold introduced by Davis and Januszkie-
wicz [2] in the early 1990s, now called �quasitoric manifold� (see [3]). A quasitoric manifold is
a 2n-dimensional smooth manifold with a locally standard (S1)n-action whose orbit space is a
simple convex polytope. It is shown in section 10 of [1] that any quasitoric manifold has the
structure of a topological toric manifold. In fact, there are uncountably many topological toric
manifold structures for any given quasitoric manifoldM . But there is no canonical choice of such
a structure for M .

It is shown in section 10 of [1] that the family of 2n-dimensional topological toric manifolds
with the canonical (S1)n-actions is strictly larger than the family of 2n-dimensional quasitoric
manifolds up to equivariant homeomorphisms. The relations between toric manifolds, quasitoric
manifolds and topological toric manifolds can be explained by the diagram in Figure 1 (see
chapter 5 of [3]).

In this paper, we will study topological toric manifolds from the viewpoint of transition
functions of charts. The paper is organized as follows. In section 2, we will review the basic
construction in [1] of a topological toric manifold X(∆) from a complete non-singular topological
fan ∆, and de�ne a set of open charts called normal charts which cover the whole X(∆). A very
special property of these charts is that the transition functions between any two normal charts are
completely determined by the topological fan ∆. This allows us to give an equivalent description
of toric manifolds in terms of transition functions of some charts up to (weakly) equivariant
di�eomorphism (see Theorem 2.3). In section 3, we will show that any topological toric manifold
can be covered by �nitely many (C∗)n-invariant open charts so that all the transition functions are
Laurent monomials of zj 's and zj 's (see Corollary 3.6). There should be some special geometrical
properties on a topological toric manifold implied by the existence of such an atlas. It is interesting
to see what these geometric properties are. In section 4, we will de�ne the notion of a nice

topological toric manifold. Similar to toric manifolds, we can also describe nice topological toric
manifolds in terms of transition functions of charts up to (weakly) equivariant di�eomorphism
(see Theorem 4.3).
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Quasitoric manifolds Compact smooth  toric varieties(toric manifolds)Smooth projectivetoric varietiesTopological toric manifolds
Figure 1.

In this paper, we will quote many lemmas and theorems from [1]. But we will avoid repeating
the full statements of those lemmas and theorems. Instead, we will only indicate where they are
in [1]. So the reader should get familiar with the content of [1] before reading the arguments in
this paper.

2. Topological fan, transition functions and Normal charts

Suppose a 2n-dimensional topological toric manifold X is equipped with an ominiorientation.
Using the notations in the discussion in section 1, for each characteristic submanifold Xi in X,
i ∈ [m] = Σ(1)(X), the C∗-subgroup of (C∗)n which �xes Xi determines a unique element
λβi(X) ∈ Hom(C∗, (C∗)n) where βi(X) ∈ Cn × Zn (see Lemma 3.3 in [1]). So we have a map

β(X) : Σ(1)(X) = [m] → Cn × Zn, β(X)(i) = βi(X) for ∀ i ∈ [m].

It is shown by Lemma 3.8 in [1] that ∆(X) := (Σ(X), β(X)) is a complete non-singular
topological fan of dimension n. Roughly speaking, a topological fan consists of two simplicial
fans which encode the information of the Cn and Zn components of β(X), respectively (see
section 3 of [1] for the precise de�nition).

Conversely, Theorem 8.1 in [1] shows that any complete non-singular topological fan ∆ =
(Σ, β) of dimension n determines an ominioriented topological toric manifold X(∆) of dimension
2n up to ominiorientation-preserving equivariant di�eomorphism. Indeed, X(∆) is de�ned to be
the following quotient space

X(∆) := U(Σ)/Ker(λβ) (3)

where U(Σ) is an open subspace of Cm which depends only on Σ and m = |Σ(1)| is the number
of 0-simplices in Σ. More precisely,

U(Σ) :=
∪
I∈Σ

U(I) (4)

U(I) := {(z1, · · · , zm) ∈ Cm | zi ̸= 0 for ∀ i /∈ I}.

In (3), λβ : (C∗)m → (C∗)n is a surjective group homomorphism determined by β. The natural
action of (C∗)m on Cm leaves U(Σ) invariant, so it induces an e�ective action of (C∗)m/Ker(λβ)
on X(∆) which has an open dense orbit. Since λβ is surjective, (C∗)m/Ker(λβ) is isomorphic to
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(C∗)n. In this way, X(∆) get a (C∗)n-action with an open dense orbit. Moreover, if we restrict
λβ to the standard compact torus (S1)m ⊂ (C∗)m, we get a surjective group homomorphism

λ̂β : (S1)m → (S1)n ⊂ (C∗)n. (5)

If we write βi = (bi +
√
−1ci, vi) ∈ Cn × Zn, i ∈ [m] = Σ(1), then λ̂β is determined only by

the component {vi}i∈[m] (see section 4 of [1]). It is clear that

Ker(λ̂β) = Ker(λβ) ∩ (S1)m ⊂ (C∗)m. (6)

The correspondence between ominioriented topological toric manifolds and complete non-
singular topological fans generalizes the classical correspondence between toric manifolds and
complete non-singular fans (see [4] or [5]).

De�nition 2.1 (Weakly Equivariant Di�eomorphism). For a Lie group G, two smooth G-
manifoldsM and N are called weakly equivariantly di�eomorphic via a di�eomorphism F :M →
N if there exists an automorphism σ of G so that

F (g · x) = σ(g) · F (x) for any g ∈ G and any x ∈M.

And we call F a weakly equivariant di�eomorphism between M and N . If σ can be taken to be
the identity map of G, then M and N are called equivariantly di�eomorphic and F is called an
equivariant di�eomorphism.

Similarly, we can de�ne the notation of (weakly) equivariant homeomorphism by replacing
�di�eomorphism� by �homeomorphism� in the above de�nition.

It is shown in section 3 of [1] that there are three di�erent levels of equivalence relations among
complete non-singular topological fans which give isomorphism, equivariant di�eomorphism and
equivariant homeomorphism among the corresponding ominioriented topological toric manifolds,
respectively (see Lemma 3.9 in [1]).

From any complete non-singular topological fan ∆ = (Σ, β) of dimension n, we can de�ne an
atlas U on the ominioriented topological toric manifold X(∆) whose charts are indexed by all
the (n− 1)-simplices I ∈ Σ(n). Indeed, the open chart in U corresponding to an I ∈ Σ(n) is

φI : VI = U(I)/Ker(λβ) → Cn. (7)

It is easy to see that each VI ⊂ X(∆) is invariant under the (C∗)n-action onX(∆), i.e. g(VI) ⊂ VI
for any g ∈ (C∗)n (see section 4 of [1]). We call each φI : VI → Cn a normal chart of X(∆). It
is clear that X(∆) is covered by �nitely many normal charts {φI : VI → Cn, I ∈ Σ(n)}. When
we observe the (C∗)n-action on X(∆) through any normal chart φI : VI → Cn, the (C∗)n-action
is a faithful smooth linear representation. In other words, the (C∗)n-action in VI is equivariantly
homeomorphic to a faithful smooth linear representation of (C∗)n in Cn via the map φI .

Next, let us see what the characteristic submanifolds of X(∆) are. We de�ne

U(Σ)i := U(Σ) ∩ {(z1, · · · , zm) ∈ Cm | zi = 0}, i ∈ Σ(1). (8)

Let Φ∆ : U(Σ) → U(Σ)/Ker(λβ) = X(∆) denote the quotient map. Then all the characteristic
submanifolds of X(∆) are

X(∆)i = Φ∆(U(Σ)i), i ∈ Σ(1).

Observe that for any I ∈ Σ(n), we have

U(I) = U(Σ)−
∪
i/∈I

U(Σ)i, (9)
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and so VI = Φ∆(U(I)) = X(∆)−
∪
i/∈I

X(∆)i. (10)

So each open subset VI is the complement of a set of characteristic submanifolds {X(∆)i, i /∈ I}
in X(∆).

Remark 2.2. If we consider X(∆) as a (S1)n-manifold, we can similarly de�ne the notion
of characteristic submanifold of X(∆) with respect to the (S1)n-action, which are submanifolds
�xed pointwise by some S1-subgroup of (S1)n. Indeed, this notion has been used in the study of
quasitoric manifolds in [2] and [3]. It is easy to see that the characteristic submanifolds of X(∆)
with respect to the (C∗)n-action and the canonical (S1)n-action actually coincide.

The transition functions between any two normal charts φI : VI → Cn and φJ : VJ → Cn are
computed in Lemma 5.2 in [1] via the information of β. Let

βi = (bi +
√
−1ci, vi) ∈ Cn × Zn, i ∈ Σ(1). (11)

Here we consider bi, ci ∈ Rn and vi ∈ Zn as column vectors. The following are some easy
consequences of Lemma 5.2 in [1].

• If bi = vi and ci = 0 for all i ∈ Σ(1), then X(∆) is a toric manifold. In this case, the
transition functions between any two charts in U is of the form

ωj = fj(z1, . . . , zn), 1 ≤ j ≤ n

where each fj(z1, . . . , zn) is a Laurent monomial in complex variables z1, . . . , zn.

Conversely, Suppose M2n is a 2n-dimensional closed smooth manifold with an e�ective
smooth action of (C∗)n having an open dense orbit. And we assume

(i) M2n is covered by �nitely many (C∗)n-invariant open charts {ϕj : Vj → Cn}1≤j≤r with all
the transition functions being Laurent monomials of z1, · · · , zn,

(ii) In one chart ϕj : Vj → Cn, the (C∗)n-action in Vj is (weakly) equivariantly homeomorphic
to an algebraic linear representation of (C∗)n in Cn via the map ϕj .

Then since the transition functions of {ϕj : Vj → Cn}1≤j≤r are all Laurent monomials in
z1, . . . , zn, it is easy to see that for any other chart ϕj′ : Vj′ → Cn, the (C∗)n-action in Vj′ is
also (weakly) equivariantly homeomorphic to an algebraic linear representation of (C∗)n in Cn

via the map ϕj′ . Hence M
2n is (weakly) equivariantly di�eomorphic to a toric manifold. So we

can describe toric manifolds up to (weakly) equivariant di�eomorphism in terms of transition
functions of charts as follows.

Theorem 2.3. Suppose M2n is a 2n-dimensional closed smooth manifold with an e�ective

smooth action of (C∗)n having an open dense orbit. Then M2n is (weakly) equivariantly di�eo-

morphic to a toric manifold if and only if M2n can be covered by �nitely many (C∗)n-invariant
open charts {ϕj : Vj → Cn}1≤j≤r so that all the transition functions between these charts are

Laurent monomials of z1, . . . , zn and, for at least one chart ϕj : Vj → Cn, the (C∗)n-action in Vj
is (weakly) equivariantly homeomorphic to an algebraic linear representation of (C∗)n in Cn via

the map ϕj.

• If bi is an integral vector congruent to vi modulo 2 and ci = 0 for all i ∈ Σ(1), then the
transition functions between any two charts in U has the form

ωj = fj(z1, . . . , zn, z1, . . . , zn), 1 ≤ j ≤ n
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where each fj(z1, . . . , zn, z1, . . . , zn) is a Laurent monomial of z1, . . . , zn, z1, . . . , zn,

i.e. fj(z1, . . . , zn, z1, . . . , zn) =
n∏

i=1

z
pij
i z

qij
i , where pij , qij ∈ Z.

De�nition 2.4 (Nice Topological Fan). A complete non-singular topological fan ∆ = (Σ, β)
of dimension n is called nice if for each i ∈ Σ(1), we have

βi = (bi +
√
−1 · 0, vi) ∈ Cn × Zn where bi ∈ Zn and bi ≡ vi mod 2.

From the above discussions, for any nice topological fan ∆ = (Σ, β) of dimension n, the cor-
responding topological toric manifold X(∆) can be covered by �nitely many (C∗)n-invariant
open charts {φI : VI → Cn}I∈Σ(n) with all the transition functions being Laurent monomials of
z1, . . . , zn, z1, . . . , zn.

In section 5 of [1], an explicit ominioriented topological toric manifold structure on CP 2#CP 2

is constructed. The corresponding topological fan is nice. But CP 2#CP 2 is not a toric manifold.
So the family of topological toric manifolds is strictly bigger than the family of toric manifolds.
In addition, it is natural to ask the following question.

Question: Among all ominioriented topological toric manifolds, how many of them have nice
topological fans?

An answer to this question will be given by Theorem 3.4 and Theorem 3.5 in the next section.

3. Transition functions of Topological toric manifolds

According to the discussion in section 2, an ominioriented topological toric manifold with
a nice topological fan can be covered by �nitely many open charts with all the transition
functions being Laurent monomials of z1, . . . , zn, z1, . . . , zn. In this section, we will show that
the topological fan of any ominioriented topological toric manifold can be turned into a nice
topological fan via a regular deformation de�ned as following.

De�nition 3.1 (Regular Deformation). Suppose Σ is an (n − 1)-dimensional (abstract)
pure simplicial complex and ∆(t) = (Σ, β(t)), 0 ≤ t ≤ 1, is a family of complete non-singular
topological fans of dimension n which depend on the parameter t smoothly. Then we call ∆(t) a
regular deformation of ∆(0). Let

βi(t) = (bi(t) +
√
−1ci(t), vi(t)) ∈ Cn × Zn, i ∈ Σ(1). (12)

It is clear that vi(t) = vi(0) ∈ Zn for each i ∈ Σ(1) since Zn is a discrete set. So each vi(t) is
independent on the parameter t. Hence for any complete non-singular topological fan ∆ = (Σ, β),
there always exists some other complete non-singular topological fan ∆′ = (Σ, β′) so that ∆ can
not be turned into ∆′ via any regular deformation.

The following lemma is the key to the main results of this paper.

Lemma 3.2. Suppose ∆(t) = (Σ, β(t)), 0 ≤ t ≤ 1 is a regular deformation of complete

non-singular topological fans of dimension n. Then there exists a di�eomorphism ψ : X(∆(0)) →
X(∆(1)) with the following properties.

(i) ψ is equivariant with respect to the canonical (S1)n-action on X(∆(0)) and X(∆(1)).

(ii) ψ maps each open subset VI(0) = U(I)×{0}/Ker(λβ(0)) in X(∆(0)) to VI(1) = U(I)×{1}/
Ker(λβ(1)) in X(∆(1)) for any I ∈ Σ(n).
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P r o o f. By de�nition, X(∆(t)) = U(Σ)/Ker(λβ(t)), 0 ≤ t ≤ 1. Let m = |Σ(1)| be the number
of 0-simplices in Σ. Then we have a smooth map Λ de�ned by

Λ : (C∗)m × [0, 1] −→ (C∗)n

( g , t ) 7−→ λβ(t)(g)

Let Λ−1
t (e) := Λ−1(e) ∩ ((C∗)m × {t}), t ∈ [0, 1],

where e is the unit element of (C∗)n. Obviously, Λ−1
t (e) ∼= Ker(λβ(t)), t ∈ [0, 1].

Similarly, for (S1)m × [0, 1] ⊂ (C∗)m × [0, 1], we have a smooth map

Λ̂ : (S1)m × [0, 1] −→ (S1)n ⊂ (C∗)n

( g , t ) 7−→ λ̂β(t)(g) (see (5))

Let Λ̂−1
t (e) := Λ̂−1(e) ∩ ((S1)m × {t}) ∼= Ker(λ̂β(t)), t ∈ [0, 1].

Suppose βi(t) = (bi(t) +
√
−1ci(t), vi) ∈ Cn × Zn, i ∈ [m] = Σ(1), where vi ∈ Zn is a �xed

vector for each i ∈ [m]. Then since λ̂β(t) is determined only by {vi}i∈[m], so λ̂β(t) is independent
on t. Hence we have

Λ̂−1(e) = Λ̂−1
0 (e)× [0, 1] ⊂ (S1)m × [0, 1]. (13)

Next, we introduce an equivalence relation between any two points (x, t) and (x′, t′) in Cm×
[0, 1] by

(x, t) ∼ (x′, t′) ⇐⇒ t′ = t, x′ = g · x for some g ∈ Λ−1
t (e)

Let the quotient space of U(Σ)× [0, 1] with respect to ∼ be denoted by

U(Σ)× [0, 1]/Λ−1(e).

We use [(x, t)] to denote the equivalence class of (x, t) in U(Σ)× [0, 1]/Λ−1(e). We remark that
Λ−1(e) ⊂ (C∗)m × [0, 1] is not a group although each Λ−1

t (e) is.

Claim: U(Σ)× [0, 1]/Λ−1(e) is a smooth manifold (with boundary).

First, we need to show that U(Σ) × [0, 1]/Λ−1(e) with the quotient topology is Hausdor�.
Let [(x, t)] and [(x′, t′)] be two di�erent points in U(Σ)× [0, 1]/Λ−1(e).

(a) if t ̸= t′, then there exists a small real number ε > 0 so that (t− ε, t+ ε) and (t′ − ε, t′ + ε)
are disjoint subintervals of [0, 1]. Then [(x, t)] and [(x′, t′)] are contained in disjoint open
subsets U(Σ)× (t− ε, t+ ε)/Λ−1(e) and U(Σ)× (t′ − ε, t′ + ε)/Λ−1(e), respectively.

(b) if t = t′ and x ̸= x′, then [(x, t)] and [(x′, t′)] = [x′, t] are both contained in U(Σ) × {t}/
Λ−1(e) = U(Σ) × {t}/Λ−1

t (e) ∼= U(Σ)/Ker(λβ(t)) = X(∆(t)). Since X(∆(t)) is Hausdor�
(see Lemma 6.1 in [1]), so there exist two disjoint open subsets W and W ′ of U(Σ) with
[(x, t)] ∈ W × {t}/Λ−1

t (e) and [(x′, t)] ∈ W ′ × {t}/Λ−1
t (e). Then [(x, t)] and [(x′, t′)] are

contained in disjoint open subsets W × [0, 1]/Λ−1(e) and W ′ × [0, 1]/Λ−1(e), respectively.

So in any case, [(x, t)] and [(x′, t′)] can be separated by disjoint open subsets of U(Σ) × [0, 1]/
Λ−1(e). This means that U(Σ)× [0, 1]/Λ−1(e) is Hausdor�.

Second, we need to de�ne a smooth structure on U(Σ) × [0, 1]/Λ−1(e). Notice that we can
cover U(Σ)× [0, 1]/Λ−1(e) by �nitely many open subsets

{U(I)× [0, 1]/Λ−1(e) ; I ∈ Σ(n)}.
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For any I ∈ Σ(n), let CI be the a�ne space Cn with coordinates indexed by the elements of I.
For any t ∈ [0, 1], let {αI

i (t)}i∈I be the dual set of {βi(t)}i∈I . Then similar to (5.1) in [1], we
de�ne

φI : U(I)× [0, 1]/Λ−1(e) → CI × [0, 1] (14)

by φI ([(z1, . . . , zm, t)]) =

(
(

m∏
k=1

z
⟨αI

i (t),βk(t)⟩
k )i∈I , t

)
=

(
(zi
∏
k/∈I

z
⟨αI

i (t),βk(t)⟩
k )i∈I , t

)
where (z1, . . . , zm) ∈ U(I) ⊂ Cm and t ∈ [0, 1]. The de�nitions of a dual set and pairing ⟨ , ⟩ are
given in section 2 of [1].

Here since βi(t) varies smoothly with respect to the parameter t for any i ∈ [m], so does αI
i (t)

for any i ∈ I. Therefore, the map φI is continuous. And by the same argument in section 5 of [1],
we can show that φI is a homeomorphism. So we have a �nite set of charts {φI : U(I)× [0, 1]/
Λ−1(e) → CI × [0, 1]}I∈Σ(n) which cover U(I)× [0, 1]/Λ−1(e). Moreover, we can see from Lemma
5.2 in [1] that the transition function from such a chart indexed by I ∈ Σ(n) to another one
indexed by J ∈ Σ(n) is φJ ◦ (φI)

−1 : CI × [0, 1] → CJ × [0, 1] where

φJ ◦ (φI)
−1 ((zi)i∈I , t) =

(
(
∏
i∈I

z
⟨αJ

j (t),βi(t)⟩
i )j∈J , t

)
, ((zi)i∈I , t) ∈ CI × [0, 1]. (15)

This function is smooth since zi ̸= 0 for i ∈ I \ J and ⟨αJ
j (t), βi(t)⟩ = δji1 for i ∈ J . Therefore,

{φI : U(I)× [0, 1]/Λ−1(e) → CI × [0, 1]}I∈Σ(n) determines a smooth structure on U(Σ)× [0, 1]/
Λ−1(e). So the claim is proved.

Next, we de�ne a map

p : U(Σ)× [0, 1]/Λ−1(e) −→ [0, 1] where p([(x, t)]) = t. (16)

It is clear that p is a smooth map. And for any t ∈ [0, 1], we have

p−1(t) = U(Σ)× {t}/Λ−1
t (e) ∼= U(Σ)/Ker(λβ(t)) = X(∆(t)).

Notice that the set of charts {φI : U(I) × [0, 1]/Λ−1(e) → CI × [0, 1]}I∈Σ(n) de�ned by (14)
restricted to each p−1(t) ∼= X(∆(t)) gives us exactly the set of all normal charts of X(∆(t)). So
p−1(t) is an embedding submanifold of U(Σ)× [0, 1]/Λ−1(e).

Let (S1)m ⊂ (C∗)m act on U(Σ)× [0, 1] ⊂ Cm × [0, 1] by the natural action

g · (x, t) = (g · x, t), ∀ g ∈ (S1)m,∀ (x, t) ∈ Cm × [0, 1].

Then by (13), we have a smooth action of (S1)m/Λ̂−1
0 (e) ∼= (S1)n on the whole U(Σ) × [0, 1]/

Λ−1(e), whose restriction to each �ber p−1(t) ∼= X(∆(t)) is exactly the canonical (S1)n-action
on X(∆(t)).

Obviously, p is a smooth proper submersion. So Ehresmann's �bration theorem (see [6] or [7])
implies that p : U(Σ) × [0, 1]/Λ−1(e) → [0, 1] is a locally trivial �ber bundle. Therefore, there
exists a di�eomorphism from p−1(0) = X(∆(0)) to p−1(1) = X(∆(1)). But if we want to require
the di�eomorphism to be equivariant with respect to the canonical (S1)n-action on X(∆(0)) and
X(∆(1)), we need to re�ne the proof of Ehresmann's �bration theorem as follows.

By our previous discussion, {U(I)× [0, 1]/Λ−1(e) ; I ∈ Σ(n)} is a �nite open cover of U(Σ)×
[0, 1]/Λ−1(e) where each U(I) × [0, 1]/Λ−1(e) is an invariant open set under the (S1)n-action.
Then we can take a (S1)n-invariant partition of unity

{fI : U(I)× [0, 1]/Λ−1(e) → R ; I ∈ Σ}
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subordinate to this open cover, where each fI is a (S1)n-invariant function.

Next, we take a local vector �eld YI on U(I)× [0, 1]/Λ−1(e) so that

p∗(YI) =
∂

∂t
.

And we set

ỸI :=

∫
(S1)n

YI dµ

where dµ is a Haar measure on (S1)n. It is clear that

p∗(ỸI) =
∂

∂t
.

And so we obtain a (S1)n-invariant vector �eld Ỹ :=
∑

I∈Σ fI ỸI on the whole space U(Σ)×[0, 1]/
Λ−1(e).

Let ψt be the �ow of Ỹ on U(Σ)× [0, 1]/Λ−1(e). Since Ỹ is (S1)n-invariant, ψt is also (S1)n-
invariant. So

ψ = ψ1 : X(∆(0)) ∼= p−1(0) −→ p−1(1) ∼= X(∆(1)).

is a (S1)n-equivariant di�eomorphism. This proves the property (i) for ψ.

Furthermore, since ψ is equivariant with respect to the (S1)n-action, Remark 2.2. implies
that ψ will map each characteristic submanifold X(∆(0))i in X(∆(0)) to the characteristic
submanifold X(∆(1))i in X(∆(1)) for any i ∈ Σ(1). Then by (10), ψ will map the open subset
VI(0) in X(∆(0)) to VI(1) in X(∆(1)) for any I ∈ Σ(n). This �nishes our proof. �

Remark 3.3. For a simplicial complex Σ and two complete non-singular toric fans∆ = (Σ, β)
and ∆′ = (Σ, β′), it is possible that X(∆) is homeomorphic to X(∆′) while ∆ and ∆′ can not
be connected by any regular deformation. In this situation, it is not so clear whether we can �nd
a di�eomorphism from X(∆) to X(∆′).

Theorem 3.4. For any ominioriented topological toric manifold X, there always exists a

regular deformation of the topological fan of X into a nice topological fan.

P r o o f. Suppose X is a 2n-dimensional ominioriented topological toric manifold whose topo-
logical fan is ∆(X) = (Σ(X), β(X)), where Σ(X) and β(X) are de�ned by (1) and (11),
respectively. We will de�ne a sequence of regular deformations of ∆(X) below. But for the
sake of conciseness, we will de�ne each deformation in terms of the deformation on the bi(X)
and ci(X) components.

Step 1: we deform all ci(X) to 0 simultaneously by (1−t)ci(X), 0 ≤ t ≤ 1, i ∈ [m] := Σ(1)(X).
Obviously, the deformation is regular. We denote the new topological fan obtained from this
deformation by ∆̃(1) = (Σ(X), β̃(1)) where

β̃
(1)
i = (bi(X) +

√
−1 · 0, vi(X)) ∈ Rn×Zn ⊂ Cn × Zn, i ∈ [m].

Step 2: we deform each bi(X) in ∆̃(1) slightly into a vector b′i(X) with rational coordinates.
Notice that the condition on {bi(X), i ∈ [m]} in the de�nition of a complete non-singular
topological fan is stable under small deformations. So we can choose our deformation of ∆̃(1)

here to be regular. We denote the new topological fan obtained from this deformation by
∆̃(2) = (Σ(X), β̃(2)) where

β̃
(2)
i = (b′i(X) +

√
−1 · 0, vi(X)) ∈ Qn × Zn ⊂ Cn × Zn, i ∈ [m].
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Step 3: we can choose a very large positive even integer N so that

b̂i(X) := N · b′i(X) ∈ 2Zn for any i ∈ [m].

Obviously {(1− t)b′i(X) + t̂bi(X), i ∈ [m]} determines a regular deformation of ∆̃(2). We denote

the new topological fan obtained from this deformation by ∆̃(3) = (Σ(X), β̃(3)) where

β̃
(3)
i = (̂bi(X) +

√
−1 · 0, vi(X)) ∈ 2Zn × Zn ⊂ Cn × Zn, i ∈ [m].

Step 4: Let ui := b̂i(X)− vi(X) ∈ Zn for each i ∈ [m]. Notice in step 3, if we choose a large
enough integer N , we can assume ∥vi(X)∥ is by far smaller than ∥b̂i(X)∥. Then the distance
between the unit vectors ui/∥ui∥ and b̂i(X)/∥b̂i(X)∥ can be made arbitrarily small. It is easy to
see that if ui/∥ui∥ and b̂i(X)/∥b̂i(X)∥ are very close, {(1− t)̂bi(X)+ tui, i ∈ [m]} will determine
a regular deformation of ∆̃(3). We denote the new topological fan obtained from this deformation
by ∆̃(4) = (Σ(X), β̃(4)) where

β̃
(4)
i = (ui +

√
−1 · 0, vi(X)) ∈ Zn × Zn ⊂ Cn × Zn, i ∈ [m].

For any i ∈ [m], we have ui − vi(X) = b̂i(X)− 2vi(X) ∈ 2Zn, so

ui ≡ vi(X) mod 2.

This means that the topological fan ∆̃(4) is nice. Note that the integral vector ui is not necessarily
primitive. By combining the above four steps, we then obtain a regular deformation from ∆(X)
to a nice topological fan ∆̃(4). �

From Lemma 3.2 and Theorem 3.4, we immediately get the following.
Theorem 3.5. For any ominioriented topological toric manifold X of dimension 2n, there

exists a (S1)n-equivariant di�eomorphism from X to an ominioriented topological toric manifold

X̃ whose topological fan is nice.

Moreover, we have the following corollary on the transition functions of a topological toric
manifold.

Corollary 3.6. Any topological toric manifold X of dimension 2n can be covered by �nitely

many open charts {ϕj : Vj → Cn}1≤j≤r so that each Vj is a (C∗)n-invariant open subset of X and,

all the transition functions between these charts are Laurent monomials of z1, . . . , zn, z1, . . . , zn.
P r o o f. By choosing an ominiorientation on X, we can assume X = X(∆) where ∆ = (Σ, β)

is a complete non-singular topological fan. Then by Theorem 3.4, there exists a di�eomorphism
ψ : X → X̃ = X(∆̃) where ∆̃ = (Σ, β̃) is a nice topological fan. Moreover, for any I ∈ Σ(n),
let φI : VI → Cn and φ̃I : ṼI → Cn be the normal charts of X and X̃, respectively. Then by
Lemma 3.2, we have

ψ(VI) = ṼI .

Since (Σ, β̃) is a nice topological fan, the transition functions between the charts {φ̃I :
ṼI → Cn, I ∈ Σ(n)} are all Laurent monomials of z1, . . . , zn, z1, . . . , zn. Then {φ̃I ◦ ψ : VI =
ψ−1(ṼI) → Cn, I ∈ Σ(n)} are �nitely many open charts which cover X and clearly satisfy all our
requirements. �

Remark 3.7. For an open chart φ̃I ◦ ψ : VI = ψ−1(ṼI) → Cn on X in the proof of
Corollary 3.6, the (C∗)n-action in VI may not be equivariantly homeomorphic to a smooth linear
representation of (C∗)n on Cn via the map φ̃I ◦ ψ, but it does via the map φI : VI → Cn. The
reason is that the di�eomorphism ψ we obtain in Lemma 3.2 is not necessarily (C∗)n-equivariant.

There should be some special geometrical properties on a topological toric manifold implied
by the existence of the kind of atlas as described in Corollary 3.6. It is interesting to see what
these geometric properties are.
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In addition, by Theorem 10.2 in [1] and our preceding discussion, we can easily prove the
following theorem for quasitoric manifolds.

Theorem 3.8. Any 2n-dimensional quasitoric manifold over a simple convex polytope Pn

can be covered by �nitely many (S1)n-invariant open charts

ϕj : Vj → Cn, 1 ≤ j ≤ r where r = the number of vertices of Pn,

whose transition functions are all Laurent monomials of z1, . . . , zn, z1, . . . , zn.
P r o o f. For any 2n-dimensional quasitoric manifold M2n over a simple convex polytope

Pn, there exists a topological toric manifold X(∆) so that M2n is equivariantly homeomorphic
to X(∆) as (S1)n-manifold. In the topological fan ∆ = (Σ, β), the simplical complex Σ is the
boundary of the dual simplicial polytope of Pn. So the number of (n−1)-simplices in Σ equals the
number of vertices of Pn. Moreover, we can require the topological fan ∆ is nice by Theorem 3.5.
Let ψ be an (S1)n-equivariant homeomorphism from M2n to X(∆). Then we can use ψ to pull
back the atlas on X(∆) described in Corollary 3.6 to an atlas on M2n, which will satisfy all our
requirements. �

Remark 3.9. For a 2n-dimensional quasitoric manifoldM2n, the set of (S1)n-invariant open
charts described in Theorem 3.8 will determine a smooth structure on M2n. But it is not clear
whether this smooth structure should agree with the original smooth structure of M2n (see the
remark after the Theorem 10.2 in [1]).

4. Nice topological toric manifolds and real algebraic

representation of (C∗)n

De�nition 4.1 (Nice Topological Toric Manifold). A topological toric manifold X is called
nice if there exists an ominiorientation on X so that the associated topological fan is nice.

De�nition 4.2 (Real Algebraic Linear Representation). A faithful smooth linear representation
ρ of (C∗)n on Cn is called real algebraic if

ρ(z1, · · · , zn) = (h1(z1, . . . , zn, z1, . . . , zn), · · · , hn(z1, . . . , zn, z1, . . . , zn)) ∈ (C∗)n

where hj(z1, . . . , zn, z1, . . . , zn) is a Laurent monomial of z1, . . . , zn, z1, . . . , zn for each 1 ≤ j ≤ n.
By the discussion in section 2 of [1], any faithful smooth complex n-dimensional representation

V of (C∗)n can be written as

V = V (

n⊕
i=1

χαi), where χαi ∈ Hom((C∗)n,C∗).

We can identify Hom((C∗)n,C∗) with the row vector space of Cn × Zn and write

αi = (xi +
√
−1yi, ui) ∈ Cn × Zn

where xi, yi ∈ Rn and ui ∈ Zn are row vectors. By Lemma 2.1 in [1], it is easy to see the following.

V (

n⊕
i=1

χαi) is real algebraic ⇐⇒ yi = 0 and xi ∈ Zn with xi ≡ ui mod 2 for all 1 ≤ i ≤ n

Suppose {βi}1≤i≤n is a dual set of {αi}1≤i≤n, i.e. λβi
∈ Hom(C∗, (C∗))n so that

λβj
◦ χαi = δijid(C∗)n , χ

αi ◦ λβj
= δijidC∗ for all 1 ≤ i, j ≤ n.
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If we write βi = (bi +
√
−1ci, vi) ∈ Cn × Zn, it is easy to see the following.

V (

n⊕
i=1

χαi) is real algebraic ⇐⇒ ci = 0 and bi ∈ Zn with bi ≡ vi mod 2 for all 1 ≤ i ≤ n

Then by our discussion at the end of section 2, for any nice topological fan ∆ = (Σ, β) of
dimension n, the corresponding nice topological toric manifold X(∆) can be covered by �nitely
many (C∗)n-invariant open charts {φI : VI → Cn}I∈Σ(n) so that for each φI : VI → Cn, the
(C∗)n-action in VI is equivariant homeomorphic to a real algebraic linear representation of (C∗)n

in Cn via the map φI .

Similar to the description of toric manifolds in Theorem 2.3, we have the following description
of nice topological toric manifolds in terms of transition functions of charts up to (weakly)
equivariant di�eomorphism.

Theorem 4.3. Suppose M2n is a 2n-dimensional closed smooth manifold with an e�ective

smooth action of (C∗)n having an open dense orbit. Then M2n is (weakly) equivariantly

di�eomorphic to a nice topological toric manifold if and only if M2n can be covered by �nitely

many (C∗)n-invariant open charts {ϕj : Vj → Cn}1≤j≤r so that all the transition functions

between these charts are Laurent monomials of z1, . . . , zn, z1, . . . , zn and, for at least one chart

ϕj : Vj → Cn, the (C∗)n-action in Vj is equivariant homeomorphic to a real algebraic linear

representation of (C∗)n on Cn via the map ϕj.
P r o o f. Suppose there exists a (weakly) equivariant di�eomorphism ψ from M2n to a nice

topological toric manifold X = X(∆) where ∆ = (Σ, β) is a nice topological fan. By our previous
discussion, X(∆) can be covered by �nitely many (C∗)n-invariant open charts {φI : VI →
Cn}I∈Σ(n) so that the (C∗)n-action in each VI is equivariant homeomorphic to a real algebraic
linear representation of (C∗)n in Cn via the map φI . It is clear that each ψ

−1(VI) is a (C∗)n-
invariant open subset ofM2n. So we can coverM2n by �nitely many (C∗)n-invariant open charts

{ϕI ◦ ψ : ψ−1(VI) → Cn}I∈Σ(n)

whose transition functions are all Laurent monomials of z1, . . . , zn, z1, . . . , zn. Moreover, since ψ
is a (weakly) equivariant di�eomorphism, so the (C∗)n-action in each ψ−1(VI) ⊂M2n is (weakly)
equivariantly di�eromorphic to a real algebraic linear representation of (C∗)n in Cn via ϕI ◦ ψ.
This proves the �only if� part of the theorem.

The �if� part of the theorem is very similar to the proof of Theorem 2.3, so we leave it as an
exercise to the reader. �
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ÀÍÍÎÒÀÖÈß

Ìû ïîêàçûâàåì, ÷òî ëþáîå òîïîëîãè÷åñêîå òîðè÷åñêîå ìíîãîîáðàçèå ìîæåò
áûòü ïîêðûòî êîíå÷íûì ÷èñëîì îòêðûòûõ êàðò òàê, ÷òî ôóíêöèè ïåðåõîäà
ìåæäó ýòèìè êàðòàìè ÿâëÿþòñÿ ìîíîìàìè Ëîðàíà îò zj è zj . Ìû
òàêæå îïèñûâàåì òîðè÷åñêèå ìíîãîîáðàçèÿ è íåêîòîðûé ñïåöèàëüíûé
êëàññ òîïîëîãè÷åñêèõ òîðè÷åñêèõ ìíîãîîáðàçèé ñ òî÷íîñòüþ äî (ñëàáîãî)
ýêâèâàðèàíòíîãî äèôôåîìîðôèçìà â òåðìèíàõ ôóíêöèé ïåðåõîäà ìåæäó
êàðòàìè.
Îñíîâíûå ðåçóëüòàòû ñòàòüè äîëîæåíû íà ñåêöèîííîì äîêëàäå Ìåæäóíàðîäíîé
êîíôåðåíöèè ¾Òîðè÷åñêàÿ òîïîëîãèÿ è àâòîìîðôíûå ôóíêöèè¿ (5-10 ñåíòÿáðÿ
2011 ã., ã. Õàáàðîâñê, Ðîññèÿ).
Êëþ÷åâûå ñëîâà: òîðè÷åñêîå ìíîãîîáðàçèå, êâàçèòîðè÷åñêîå ìíîãîîáðàçèå,

ìîíîì Ëîðàíà.


