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Relations between conjectural eigenvalues of Hecke
operators on submotives of Siegel varieties

There exist, conjectural formulas of relations between L-functions of submotives of Shimura
varieties and automorphic representations of the corresponding reductive groups, due to
Langlands — Arthur. In the present paper these formulas are used in order to get explicit
relations between eigenvalues of p-Hecke operators (generators of the p-Hecke algebra of X)
on cohomology spaces of some of these submotives, for the case where X is a Siegel variety.
Hence, this result is conjectural as well: the methods related to counting points on reductions
of X using the Selberg trace formula are not used.

It turns out that the above relations are linear and their coefficients are polynomials in p
which satisfy a simple recurrence formula. The same result can be easily obtained for any
Shimura variety.

This result is an intermediate step for the generalization of Kolyvagin’s theorem of the
finiteness of Tate — Shafarevich group of elliptic curves of analytic rank 0 and 1 over Q, to
the case of submotives of other Shimura varieties, particularly of Siegel varieties of genus 3,
see [9].

The idea of the proof: on the one hand, the above formulas of Langlands — Arthur give us
(conjectural) relations between Weil numbers of a submotive. On the other hand, the Satake
map permits us to transform these relations between Weil numbers into relations between
eigenvalues of p-Hecke operators on X.

The paper also contains a survey of some related questions, for example explicit finding of
the Hecke polynomial for X, and (Appendix) tables for the cases g = 2,3.
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Introduction

The purpose of the present paper is to show that starting from some standard conjectures
of Langlands — Arthur, a chain of elementary calculations leads to a simply-formulated and
non-expected result on relations between eigenvalues of p-Hecke operators on a Shimura variety
(which hence depends on these conjectures).

Namely, let II be a stable global packet of automorphic representations of a reductive group
G (G corresponds to a Shimura variety X). Attached to II is a parabolic subgroup P of G. Let
M be an irreducible constituent of a submotive conjecturally attached to II (see (0.1) below).
We denote the field of coefficients of M by E. H'(M) is a module over the p-Hecke algebra
H(G) = H,(G) of X, p is a fixed prime. Any ¢ € H(G) acts on H (M) by multiplication by an
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element ma,(t) of E. If {¢;} is a set of generators of H(G) then numbers ma4(t;) can satisfy some
relations.

The main result of the present paper is the Theorem 4.4. We fix the type of a Shimura
variety (the level is arbitrary) and a parabolic subgroup P. We find the set of relations between
maq(t;) (depending on P only) such that if the above conjectures are true then these relations
are satisfied for all submotives M corresponding to all stable II corresponding to P.

Really, the first steps of the calculations of the present paper are made only for Siegel varieties,
and the last step only for submotives corresponding to one type of P (the simplest non-trivial).
This restriction is not of principle: the reader can easily get analogous results for any Shimura
variety and any type of submotives, including the ones that correspond to non-stable packets.
The author is interested in the case g = 3, because the main result of the present paper can
be applied for a generalization of the Kolyvagin’s theorem to the case of submotives of Siegel
varieties of genus 3. See [9] for applications of the results of the present paper.

The paper also contains some calculations that are not logically necessary for the proof of
the main theorem, but can be used for references or for the further development of the subject
(Sections 2.2 - 2.4, 3.4 and small parts of other sections). Some tables for genii 2 and 3 are given
in the Appendix, which is written for the same reason.

0. Idea of the proof

As it was mentioned above, in order to define a Shimura variety X of a fixed level, we must
fix a reductive group G over Q, a map h : Res ¢/r(Gm) — G over R, and a level subgroup
K C G(A¢(Q)); these data must satisfy some conditions (|6]). Throughout the paper we consider
only the case when p does not divide the level, i.e. K D G(Z,). We shall consider only the
case of Siegel varieties, i.e. from here we let G = GSpy, over Q. Further, we must choose a
compactification of X and a type of cohomology.

Really, all subsequent considerations depend only on G and h and, hence, do not depend on
level, compactification and the type of cohomology.

We fix a Borel subgroup B of G and consider all intermediate parabolic subgroups P of G,
B C P C G. There is a 1 - 1 correspondence between the set of archimedean cohomological
A-parameters of G and the set of such P ([3]; [2]; [4], Section 4.1). We denote by IIp the
packet of automorphic representations of G(R) corresponding to the archimedean cohomological
A-parameter corresponding to P ([4], Section 4.2).

Attached to P and X is a set (indexed by k) of stable global packets of automorphic
representations of G(Ag). This set clearly depends on the level of X. We denote the k-th packet
by H%Ob(lﬂ). Let m € H%Ob(k) be a representation, m = mo, @7y its decomposition on archimedean
and finite part, and 7y = ®;m (I = prime) the decomposition of 7. We consider only such 7 for
which 7, is non-ramified (see Step 3 below for a description of 7,). We have 7, € Ilp, and for
any other 7., € IIp the representation 7’ := 7., ® 7 also belongs to H%Ob(k).

Conjecturally, Vk there exists a submotive Mp(k) (reducible unless P = B) such that

Ly(m,r,s) = Ly(Mp(k),s) (0.1)

where 7 : YG — GL(W) is a finite-dimensional representation defined in [4], 5.1; Weil numbers
of Mp(k) and hence its L-function are considered with respect to E, and Ly(m,r,s) = L(mp, T, 3)
is the local L-function (particularly, it does not change if we change m by 7).

Now we fix some k and we denote M p(k) simply by Mp. It is the main object of the present
paper. Since it is conjectural, all subsequent theorems should be understand as follows:

Let Mp be a motive such that (0.1) is satisfied. Then ... (statement of the theorem).
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Some references for properties of Mp: [4], Sections 4.3, 5, 7; [2], Section 9, and the present
paper, section 3. Most of these properties are not necessary for the proof of the main theorem.
Here we mention only that (0.1) implies that Y, h*(Mp) = dim r; for G = GSpy, this number
is 29. See also Remark 0.1 below.

Now let M C Mp, mpq, E be as in the Introduction. Multiplication by elements of E gives
us an inclusion inq : E — C. Tt is clear that the composite map irg o mpyy : H(G) — C does not
depend on M but only on Mp. So, we denote the map iprq o mpaq by m = mp. The main result
of the present paper is the finding of relations between numbers m(t;), where tog = 7, t; = 7p,
and 7, 7,; are defined in Sect. 1.1.

Step 1. We use the following notation: if b1, ..., by is a set of numbers and I is a subset of the
set {1,...,g} then we denote by = [[,c; bi. In (2.7) we recall a (well-known; see, for example, [4],
Sect. 5.1, Example 3) proof of the fact that there exists a set of numbers ag, b1, b2,...,b, € C
such that eigenvalues of 7(6r,) (where 0, is a Langlands element of 7,) have the form agb; where
I runs over the set of all 29 subsets of (1,...,¢g). Hence, (0.1) means that the Weil numbers of
M p have the same form.

Step 2. We shall show in Sect. 4 (as a result of calculations of Sect. 3) that for a fixed P
numbers ag, b1, ba, . .., by satisfy some relations depending only on P (Prop. 4.3).

Step 3. Finally, using explicit formulas of the Satake map (Sect. 2), we shall show that
relations of Prop. 4.3 give us relations between numbers m(t;).

Now we describe steps 2 and 3 in more detail.

Step 2a. Firstly, we recall the description of the set of parabolic subgroups P under consi-
deration: there are 2 types of such subgroups, and subgroups of each type are parametrized by
the set of ordered partitions of g, i.e. the set of representations of g as a sum

g=Db14+bg+---+ by (0.2)
(b; > 1, the order is essential), or, the same, the set of sequences
O=mi<me<---<Mgy1=9g

where m; = by +---b;_1.

Step 2b. Using formulas of [4], Sect. 4, we describe explicitly in Sect. 3.3 the set of archimedean
cohomological representations belonging to IIp. Namely, let P be of type 1 given by (0.2). We
denote by € the set of sequences ¢ = (c1,...,¢x) such that Vj =1,...,k holds 0 < ¢; < b;. We
have: IIp is isomorphic to € factorized by the equivalence relation (c1,...,cx) ~ (by—c1,..., b —
ck). For P of type 2 the result is the same, but ¢; is omitted. The representation corresponding
to ¢ € € is denoted by .

Step 2c. Now we use formulas of [4], Sect. 4 for the dimensions of H" (g, K.; ), g = g5Pag.
We consider for all i = 1,..., k the set &(c;, b;) of all subsets of order ¢; of the set {1,...,b;},

and we denote
k k

&(c, P) = [[ &(ci, b:) or &(c, P) = (/22)" [ [ &(ci, bi) (0.3)
i=1 1=2
for P of type 1 and 2 respectively (this is the set of representatives of minimal length for the
cosets Q(T, M) /T, M NwKw~!) in notations of [4], Sect. 4.3). For p € &(c, P) an explicit
formula for the length I(p) is given in (3.5.1).
Further, (3.5.1) gives us relations between Weil numbers of M p. The exact formula for these
relations is given in (4.1). Really, (4.1) is a corollary of a stronger proposition 4.3.
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Remark 0.1. A sketch of the description of the structure of Mp (|2], [4]).

The space generated by &(c, P) is isomorphic to €p; ; H%(g, Kz ), so it is a slp-module
with a Hodge structure. We denote this sla-module by Lie(S(c, P)). There are 2 numbers pe, g
associated with each ¢ (see [4], Section 4.3 for a formula for them, and (3.4) for explicit values).
2 basis elements of minimal weight in &(c, P) have Hodge numbers hP<% = hiPc = 1 (case
G = GSp, p. # q.; formulas for other Hodge numbers are given for example in [2], Section 9).

There exists a partition of €:

c=Jg (0.1.1)
1€
(the union is disjoint) which gives rise to a decomposition of Mp as a direct sum of submotives.
For ¢, ¢o a necessary condition to belong to one €; is the following;:

(0.1.2) For j = 1,2 numbers p; + g, coincide and sl-modules Lie(&(cj, P)) (but not their
Hodge structures!) are isomorphic.

Attached to (0.1.1) is a motive decomposition

Mp = @Mm (0.1.3)
1€
having the following property: H*(Mp;) has a natural structure of slp-module, and we have an
isomorphism of sly-modules with Hodge structures:

H*(Mp,;) = P Lie(&(c, P)) (0.1.4)

and analogously for their components of any fixed weight. It is known that a decomposition of

Mp; in a direct sum indexed by ¢ € €; — like in (0.1.4) — does not exist. Clearly (0.1.3), (0.1.4)

give us a description of Hodge numbers of M p and primitive elements in the cohomology groups.
See also Appendix, 8 for some explicit properties of Mp, where P is of two simplest types.

Step 2d. To complete Step 2, we must use results of steps 1 and 2¢ in order to find relations
between numbers ag, by, b, . .., by. These relations are the following (Proposition 4.3):

(0.4) P of the first type: by, 41 are free variables, by, 1c = p° by, 41 (c=1,...,b;), and ag
is defined by the equality a3 []b; = plt1)/2,

P of the second type: b; = p* for i = 1,...,b1, by, 11 (2 < i < k) are free variables, by, ¢
and ag are like the above.

Step 3. The p-Hecke algebra H(G) is the ring of polynomials whose generators are denoted by
Tps, *=0,1,...,9: H(G) = Z[1p, Tp 1, -, Tpgl- Let x : T(Qp) — C* be a nonramified character
such that m, = m, where 7, is the p-part of 7 and 7y : G(Q,) — GL(V) is the parabolically
induced representation. x does not depend on 7w € ngplOb(k). 7y defines an action of H(G) on a
1-dimensional subspace of V%) and hence a homomorphism ag(x) : H(G) — C. Obviously
ag(x) = m, hence in order to find relations between numbers m(7,,) we need to represent
ag(X)(7p«) as polynomials in ag, by, ba, ..., by and to use (0.4).

To solve this problem we use

(a) the Satake map S : H(G) — H(T) where H(T) <y ZIUFL, VEY, (x = 1,...,¢9) is the
Hecke algebra of a maximal torus T of G;

(b) an explicit expression for a Langlands element () € T ¢ LG given in (2.7.1), and a
decomposition of |7 as a sum of characters of T' (Section 2.6).
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Explicit formulas for S(7,.) are given in Section 1 ((1.2.1), (1.3.1), (1.5.1)). Further, there
exists a map ap(x) : Z[UF, V] — C such that ag(x) = ar(x)oioS. (0.1), (2.5.1) and (2.7.1)

show us that ap(x)(V;) = a(l)/g, ar(x)(U;) = ao/ b;.

Using explicit formulas for ¢ o S (Section 1), we can represent ag(x)(7p«) as polynomials
in ar(x)(Us), ar(x)(Vi), i.e. as polynomials in ag, b1, ba, ..., by (2.7.4). The final result follows
immediately from (0.4) and (2.7.4).

Structure of the paper. In Section 1.1 we recall the definition of Satake maps Sg, St
and define generators of Hecke algebras H(G), H(M;). In 1.2, 1.3 we find explicitly S of these
generators. Remark 1.4 is used only for a proof that the 2 methods of finding of Hecke polynomial
give the same result. Remark 1.5 gives a slightly different method of description of the Satake
map; some notations of 1.5 will be used later.

Section 2.1 contains a definition of the induced representation and of the corresponding map
ag(x) : H(G) — C. Sections 2.2 - 2.4 are of survey nature: they contain explicit formulas for
ag(x) using the counting of cosets. A formula for ag(x) that will be really used in future is
given in 2.5. In 2.6 we recall properties of the map r which is used to define the L-function of
M, and in 2.7 we get an expression for Weil numbers of M.

In 3.1 we recall the definition of parabolic subgroups of G and related groups. Contents of
other subsections 3.2 — 3.5 correspond to their titles. Finally, Section 4 contains the end of the
proof.

1. Explicit description of Satake map

1.1. References: [1], [7]. We let: T C G is a torus of diagonal matrices;

w={(5 o )jee

Here we consider elements of p-Hecke algebras H(®) (& = G, M, T) as linear combinations

of double cosets of &(Z,). There are inclusions H(G) C H(M,) C H(T) defined by Satake maps
denoted by Sg, St respectively (see [10], [7]).
We need the following matrices:

1 0 . .
I, = ( p)’ entries are g X g-matrices;

0
1 0 0 O
Tyi = 8 ]S 1?2 8 , diagonal entries are g —% X g — 1, ¢ X 4, g — 1 X g — i, ¢ X t-matrices,
00 0 »p
1=0,...,9

We denote the double cosets G(Zy)T,G(Zy), G(Zy)TpiG(Zy) (— elements of H(G)) by 7,
Tp,i respectively. It is known that H(G) is the ring of polynomials: H(G) = Z[7p, Tp,1; - - - Tpgl-
Now we need matrices

1 0 00
- |0 p 0 O
Fpi=Fi = 00 p O
00 01
where diagonal entries are g —¢ X g — 4,1 X i, g — @ X g — 4, © X t-matrices, t =0,...,g.

We denote the corresponding elements M (Z,)F;Ms(Z,) of H(M;) by ®;.

Let us recall the definition of the Satake map Sg. Here we consider for * = GG or M, an element
f € H(x) as a *(Zp)-bi-invariant function on *(Q,); a function associated to a double coset is
its characteristic function. Sg¢(f) is defined completely by its values on elements X € M(Q,) of
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the form X = diag (p™,...,p%,p "%, ..., p*~%). By definition,
Sa(0) =600 [ fXuydu (1.11)
U(Qp)

where B(X) = p~ 91— (9-Daz—=ag 51 U = {(é i
B(X) differs slightly from the one of [7]).

1.2. Here we apply (1.1.1) to 7, = G(Z,)T,G(Zy). Let f be its the characteristic function,
and X = Fz

For u = Ey A where A = u; 1t , sizes of diagonal blocks here and below are g —1,
0 Eg u12 u22

> }, entries are g X g-matrices (the multiplier

1, we have Fu = <O D

B C>,whereB: diag (1,...,1,p,...,p), D = diag (p,...,p,1,...,1),

C = ( 11 12 ) Hence, f(Fyu) =1 <= entries of ui1,u12 € Zp, entries of ug € %Zp. This

puiQ pu22
| sadu=p
U(Qy)

implies that
and S¢(f)(®;) = 1. For other X it is easy to see that [ f(Xu) =0, i.e.

i(i41)
2

Sg(Tp) =Py + D1+ -+ D (1.2.1)

1.3. Here we apply (1.1.1) to 7, ; = G(Zy)1,,:G(Zy), i > 1. Let f be its characteristic function,
and X = F;Fj. We have

FiF, = diag (1,...,1,p,...,p, 0% ...,0% 0% .. .,05 D, ,p, 1,0, 1), k > j, sizes of diagonal
blocks here and below are g — k, k— 3, j,9—k, k—3j, j.

Ul U2 U1
E, A B C
For u = g where A = [uly w2 w3 | we have FjFyu = , where
0 B, R 0 D
Uiz Uz U33
B = diag (1,...,1,p,...,p,p% ...,p%), D= diag (p*,...,p%p,...,0,1,...,1),
U1l u12 Uu13
C = | puly puss pugs |. Hence, f(FjFru) =1 <= entries of ui1,u12,u13 € Zp, entries

p2ul:‘13 p2u§3 p2u33
of ugg, u93 € I%Zp, entries of usz € I%Zp, rank (puge) = k — j — i, where tilde means the residue

map Z, — . (This is because for a symmetric g X g-matrix A such that rank A = r we have

<€ ﬁ) € G(Zp)1pg—G(Zp)).

So, we denote by Ry(i) = Ry(4,p) the quantity of symmetric g X g-matrices with entries in
IF, of corank exactly i (see [1], Chapter 3, Lemma 6.19 for the formula for R,(i)) and we have

/ f(F;Fyu)du = Ry,_;(3) .pi(k—j)+j(j+1)
U(Qy)

and

k—j—+1
2

Sc(1pi) (FjFy) = B(F}Fy) /U(Q )f(FijU)du = Ry (i) 'p_(
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For other X it is easy to see that [ f(Xu) =0, i.e. we have (i > 1):

. - (k —j+ 1)
. 2
Sa(mpa) = > Ri_j(i)-p Dy (1.3.1)
Gk>0,j+i<k

Remark 1.4. The above formulas can be used for finding the Hecke polynomial of X. Any
element of H(G) defines a correspondence on X. We denote the algebra of these correspondences
by T,. It is the quotient ring of H(G) by the only relation 7,4, =1id .

Let us consider the (good) reduction of X at p, denoted by X. We denote by Corr (X) its

algebra of correspondences. Obviously there exists an inclusion v : T, — Corr (X). It is known
that it can be included in the commutative diagram:

Sa : H(G) — H(Ms)
bl P2l
v T, — Corr (X)

where 31 is the natural projection, (2 is an epimorphism with the same kernel 7, , —id .

There is the Frobenius map f : X — X, we can consider it as a correspondence, i.e. f €

Corr (X). We have: f = f82(®g) in Corr (X), and f2(®,) is the Verschiebung correspondence.

The minimal polynomial satisfied by f over T), is called the Hecke polynomial.

An explicit algorithm for finding the Hecke polynomial is a by-product of the calculations of
the present paper. There are 2 methods for finding this polynomial: the first one is to eliminate
formally ®q,...,®, from (1.2.1), (1.3.1) and to use the relation 7,4, = 1. The second one is to
use a description of Langlands parameters of unramified representations — this gives us formula
(2.7.2). See Appendix, Table 4 for the explicit formulas for the cases g = 2, 3.

Remark 1.5. There is a slightly different method of finding the Hecke polynomial. We denote
by Q(G) the Weyl group of G. It enters in the exact sequence

0= (Z/2Z)9 — Q(G) — S(g) — 0

and there exists a section 7 : S(g) — Q(G). Let U;, V; (i = 1,...,9) be independent variables.
We have: (see [7], Ch. 7 for example) H(T') is a subring of Q[UF!, V:*!] generated by (U;V;1)*!
and [[7_, U;. Q(G) acts on H(T') in the obvious manner (S(g) permutes indices in U;, V;, and
(Z/27Z)9 interchanges U, V). Then H(G), H(M,) are subrings of H(T') stable with respect to
Q(G), i(S(g)) respectively, and Satake maps Sg, St are identical inclusions.

For a subset I of 1,...,g we denote Ur = [[,c; U; HiQI V; € H(T). Then we have:

Sr(@)= > Ur (1.5.1)

#(I)=i

(particularly, [T9_; V; is the Frobenius element and []{_; U; is the Verschiebung). Using (1.2.1),
(1.3.1) and (1.5.1) it is easy to find images of 7, 7,; in Q[U;™", V=] (for example, 7, = 3, Ur =
[T, (U; + V).

Roots of Hecke polynomial are (Z/2Z)%-conjugates of [[{_; V;, i.e. elements U;. We denote
the i-th coefficient of the Hecke polynomial by b; € H(G). Hence, b; = (—1)%0;(U;), i = 0,...,29,
where o; is the i-th symmetric polynomial. h; can be found explicitly using (1.2.1), (1.3.1).
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2. Description of Weil numbers of Mp

2.1. Let T'C B C G be the standard Borel pair, i.e. T' is as above and

B = { <<D;)_1 ;) ceG

Let x : T(Qp) — C* be a nonramified character. x is defined uniquely by the numbers

020 3)) (5 0)

where p; = diag (1,...,p,...,1), p being at the i-th place, i = 1,...,g. It is convenient to
denote b; = p'a;.

From here and until (2.7) we shall assume that x is arbitrary, i.e. b; are arbitrary numbers.
From (2.7) we shall treat only one yx defined in Introduction, Step 3.

We can expand x on B(Q)) using the projection B — T, and let 7, : G(Q,) — GL(V) be the
parabolically induced representation. Recall its definition: V is a space of functions f : G(Q,) — C
which satisfy

D is an upper-triangular g X g-matrix }

Vb e B(Qp) f(bg) = x(b)- f(9)

and the action is right translation:

[ (O)(H)](g) = flgt)

There exist a 1-dimensional subspace V¢(%») C V of G(Z,)-invariant functions, an action of H(G)
on V9 Zr) and hence a homomorphism ag(x) : H(G) — C.

There are 2 methods of description of ag(x): the first one is based on consideration of
decomposition of a double coset G(Z,)T'G(Zy), T € G, as a union of ordinary cosets. Really, if
G(Zy)TG(Zyp) = UiviG(Zyp) then ag(x)(G(Zy)TG(Zyp)) = >; X(7:). We treat this decomposition
in Sections 2.2 - 2.4.

The second method (which is much more convenient) is treated in 2.5. So, Sections 2.2 -2.4
are entirely of survey nature.

2.2. Here we consider for simplicity the case of G = GL,, and a double coset G(Zy)T},iG(Zy)

for T),; = diag (1,...,1,p,...,p), p occurs ¢ times. This coset decomposition is the following:
G(Zp)T,iG(Zp) = | | 1413 G(Zo
I {Cjk}
where I runs through the set of all subsets of {1,...,n} containing i elements, c;, belongs to a

fixed set of representatives of ), in Z, ¢jp, =0 unless j € I, k€ I, j <k, and
VIfcin} = ZP €jj + Zeﬂ + chk Ckj
Jel Jel
(j¢1, kel,j<k), where e, are elementary matrices.

We can transform the above decomposition as follows:

G(Z,) T, G(Zy) = | G2t = | M 6(Z,);

*

G(Zp)pr_,ilG(Zp) = G(Zp)Tp,n—iG<Zp) = Up’)’*_ltG(Zp)

*
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So, we have:

7;{1cy-k} - Zp_l “ejj Z €55 + Z —p gk - e

Jjel J¢1 Jik
(j¢1,kel,j<k)and hence

Z €jj + Zpe]] + Z —Gjk " Cjk

jel Jé€rI

(j €1, kel,j<k). These elements are in B. Further, for a fixed I we have

and hence

_ t . . .
() Tpn-i) = D X017,y )= D [[ai- pHOPEENEELI<E
L{ci} I #1=i igl

which gives us
_ i(i+1)

ac(X)(Tpn—i) =p~ 2 0i(bs)

2.3. Here we consider the case G = GSpag(Q), T' = T),. We have the following decomposition:
G(Z,)T,G(Zy) = UiG(Zy)~; where the set {v;} is described as follows:
1. We consider all subsets I C {1,...,¢g} (there are 29 of them);

A B
2. If such I is fixed then we consider the set of v = ( ) such that

0 D
D=3 p- eya+Zew+Z% ejk;
Jel JEl
1
A=pD" Zen +p- Z%ﬁ"Z —Cjk * Ckj>
jel s
gl kel j<k)
B = Z bjkej,
kel

bjk, cji belong to a fixed set of representatives of ), in Z, and b, = by;.
Now we use the same transformations as above. We have: x(py; ') = ag [[;c; @i and it is easy

to see that g

ac()(Tp) = ao [ [(1+ b:) (2.3.1)

i=1

2.4. Here we consider the case G = GSpay(Q), T' = T,;. Firstly we describe a set J such
that

U G Tp ZG ) - UjGJG(Zp)’Yj

and then for each j € J we find the corresponding 7 € 0,...,g.

We have: v; = <1(4)1 g) € GSpay with A(v;) = p*. D is an upper-triangilar matrix whose

diagonal entries D;; are pdi, d; = 0,1,2, i.e. we have 39 possibilities for the choice of d;. To
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choose a set d; is the same as to choose a partition {1,...,9} =lyU1 Ul i € [}, < d; =k.
Non-diagonal entries of D are described as follows:

(1) If i € Ip,j € I1,i < j then D;; runs through a system of representatives in Z of Z/p;

(2) If i € Iy, j € Iz, < j then D;; runs through a system of representatives in Z of 7)p%;

(3)Ifi € I,j € I, < j then D;; runs through a system of representatives in Z of Z/p, and
the Jordan normal form of this part of D has blocks of size 1 or 2 (i.e. its square is 0);

(4)Ifi € I1,j € Iz,i < j then D;; = pD), where D’ runs through a system of representatives
in Z of Z/p;

Other D;; are 0. We denote submatrices of D described in (1) - (4) above by 2, B, €, p®
respectively. Further, we have A = p?D~!* and the description of B = {B;;} is the following.

@5

Firstly, B;; = 0 if i € Iy or j € Iy. Further, we denote submatrices of B formed by elements
Bi; with i € I, j € I, (r,s =1,2) by B,,. Entries of B11, Bor (resp. B2, Boo) run through a
system of representatives in Z of Z/p, (resp. of Z/p?).

Finally, the above matrices satisfy the following relations (which are equivalent to a condition

Y € GSpQQ):

(1) BL (pI +€) = (pI +€")B
(2) (pI +€")B1y = pBLD + p*BY,
(3) @t%IQ +p%22 - %iQ@ +p%§2

For a given «; it is possible to find ¢ such that v; € G(Z,)T,:G(Zy). It is obvious that
i < #1).

For each set 9 = {d;} we denote by C(9,k) the quantity of matrices y; described above such
that v; € G(Zy)1,1G(Zp). In these notations we have the following formula:

Really, it is more convenient to denote C(d,k) = C(2, k)p~ 2i=1%i | 50

=> C(@,k) ﬁ b (2.4.1)
0 =1

Formulas for C’(D, k) and ag(x)(Tpx) for g = 2,3 are given in the appendix, tables 5, 6.
2.5. It is well-known that there exists a map ar(x) : H(T) — C given by the formula

ar(x\)(Vi) = ag/?, ar(x)(Ui) = ag/?b; (2.5.1)

such that
ag(x) = ar(x) e St o Sq (2.5.2)

Combining (2.5.1), (2.5.2) with (1.2.1), (1.3.1), (1.5.1), we get
k—j+1

O‘G(X)(Tp,i):ag Z Rk—j(i)‘p_< 2 ) Z by Z b (2.5.3)

J,k20,5+i<k #(N)=j  #(K)=
Comparing (2.4.1) and (2.5.3) we get immediately that fori=1,...,¢

) @-1)/2
0. Z Ryya; (i)p- (-2 (01~ 2])/2<]> (2.5.4)
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where g1 = #1 is the quantity of ones in 0 and [z] is the integer part of x.

2.6. Here we recall a description of the finite-dimensional representation r : YG — GL(W)
([4], 5.1), and its restriction to T C LG for our case G = G'Spag(Q) (this is well-known, see for
example [4], 5.1, Example C). So, firstly we describe the spin representation and its restriction
to Cartan subalgebra. The following facts can be found in many sources; we use [8].

The dual of GSpyq is the spinor group GSpinggy1. Since G = GSpyy is over Q, we have:
LG = Wg x GSpinggi1, and v : LG — GL(W) (see, for example, [4], (5.1)) is trivial on Wy.
It is known that 7 : GSpinggy1 — GL(W) is the spin representation. There exists a 2-fold
covering 1 : GSpinggy+1 — GOz441. Recall the definition of the corresponding representation of
Lie algebras v : $O9411 — GL(W).

Let V' be a vector space of dimension 2g + 1, u1, ..., ugg41 its basis and B a quadratic form
1 00

whose matrix in this basis is | 0 0 1], the size of diagonal entries is 1,g,g9. We consider
010

the corresponding orthogonal Lie algebras &O(B), O(B). Their Cartan subalgebras of diagonal
matrices THO(B), resp. TO(B) have bases 0y, 01,...,0,, resp. 01,...,0,, where Oy is the 2g +
1 x 2g + 1 unit matrix and 0; = €j41,i+1 — €i4g+1,i+g+1 for i > 0, e;; is an elementary matrix ([8],
p. 139, (63)).

The Clifford algebra C' = C(V, B) is the quotient of Y>> ; V" (the tensor algebra of V') by
relations v ® vy + vy ® v1 = 2B(v1,v2). Let L(C) be the corresponding Lie algebra, M; C C
the natural projection of V. = V® ¢ Y>> V& to0 C, and My = [My, M;]. It is known ([8],
p. 231, Th. 7) that My is a Lie subalgebra of L(C'), and it is isomorphic to O(B). Further, M;
is isomorphic to V as a vector space, and the Lie action of Ms on M; defined by the formula
z(y) = vy — yx (here € My, y € Mj, multiplication is in C), coincides with the action (of a
matrix on a vector) of O(B) on V.

This formula permits us to get an explicit identification of O(B) and My. Namely, we denote
Vi = ULUj41, Wi = U1Ui414¢, Multiplication is in C', v;, w; € M. We have:

1 1
fori >0 6; € O(B) corresponds to B + S Viwi € M, (2.6.1)

(calculations are similar to [8], p. 233, (34) or can be deduced easily from these formulas; it is
necessary to take into consideration that h; of page 139 are 6; and h; of page 233 are 6; — 0;11).

For I = (a1,...,a5) C(1,...,9) weset £ = V1 ... Vg Wqa, - ...  Wa,. The space of spin
representation W is a subspace of C spanned on all vectors ;. The action of O(B) is the right
multiplication by the corresponding elements of Ms. This is exactly t restricted on O(B). (2.6.1)
shows that

(91(.%'[) = €XJ (2.6.2)

Wheree:%ifielande:—% ifigl.

Finally, it is known that 6y acts on W by multiplication by %

Let T C G'Spingg+1 be the dual torus of T C GSpayg, T its Lie algebra and 1z : T TBO(B)
the restriction of 7. For t € T' we set t = diag (z1,..., 2, )\xfl, cees )\wg_l), so we can consider

~

A 21, .., 2y as a basis of X*(T). We denote the dual basis of X*(T') by X, x},...,z; and we

consider X', x,..., 2y as coordinates of an element ¢ € T'. Further, we denote by vo,v1,...,v,

the basis of T dual to V, zy,. .. ,:L"g. Formulas for 7. in bases vy, 0, are the following:

Nrie(0) = 260,  MLie(vi) = 0; + 6o (2.6.3)
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(2.6.2), (2.6.3) imply formulas for the action of v; on zj: v(v;)(xy) = xzrif i = 0or i € I,
t(v;)(zr) = 01if i € I. In its turn, these formulas imply formulas for r|:

r(N, 2, x;)(x[) =\ Ha:;)a:[ (2.6.4)
el
(see also [4], end of (5.1)).

2.7. Here we apply r to a Langlands element 0, € LG of Ty in order to find Weil numbers
of Mp.

We can choose 6, in T'; namely, it is known that X, z}, ... , vg-coordinates of 0 are
(ag,b1,...,bg) (2.7.1)

(2.6.4) and (2.7.1) imply that
(2.7.2) VI C {1,...,g} the element x; is an eigenelement of (0, ) with eigenvalue agb; =

ar(x)(Ur).

From here we fix x such that m, = m, — the p-part of = of Introduction. (2.7.2) and (0.1)
give us immediately

(2.7.3) The 29 Weil numbers of M p have the form agb;.

Moreover, the existence of pairing in cohomology of X shows that numbers b; satisfy a relation
ag [Ty bi = p?9™02 (= af I, ai = 1).

Slnce ag(x) = m (m of the Introduction), (2.3.1), (2.5.3) and (2.7.3) give us expressions of
m(7;) in terms of Weil numbers of Mp:

m(7p) = Z aobr (2.7.4a)

1€29
, B </~c— j+1>
| 2
m(r) =ay Y, Rej(i)p S Y bk (2.7.4b)
jh20 ik W o

where b; should be interpreted as numbers entering in the formula (2.7.3) for Weil numbers of
Mp.

Remark. The above formulas give us a simple proof that ag(x)(> h;T?) is the characteristic
polynomial of r(0r,) (this is well-known; see, for example, [5] for less explicit proof in a more
general situation). Really, roots of the Hecke polynomial are Uy (I runs over 29), and ar(x)(Ur) =

T[(HWX).

3. Some explicit formulas for archimedean
cohomological representations of GG

3.1. Description of parabolic subgroups of G.
The set of simple positive roots that corresponds to a Borel pair (T, B) of G is:

2y-1 -1
wo =TIA T, w; = xipx; o, t=1,...,9—1,

A, x; of 2.6. We denote this set by A.
Parabolic subgroups that contain B are in one-to-one correspondence to the set of subsets of
A. We shall tell that such a subgroup is of the first type if the corresponding subset of A does
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not contain wp, and of the second type, if it contains wy. The set of subgroups of both types is
isomorphic to the set of ordered partitions of g, i.e. the set of representations of g as a sum

g="b1+ba+- - +by (3.1.1)

where b; > 1, the order is essential. We denote m; = by +---b,_1 (i = 1,...,k). The subset of A
that corresponds to (3.1.1) is A—{wo, Wy, Wiy, - - -, Wm, | for the first type, A—{wmy, Wmgs - - - s Wiy, }
for the second type. We denote the corresponding parabolic subgroup by P and its Levi decomposition
by P = M N. Their description is the following:

First type:
A 0
- (29) o)
where A, D are block diagonal matrices with sizes of blocks by, ba, ..., br. We denote block entries
by A;, D; respectively (i = 1,...,k);
A B
p-(42) ap)

where A (resp. D) is a lower (resp. upper) block triangular matrix (with the same size of blocks
clearly), and
(IN) N C P is its subset of matrices whose block entries are unit matrices.

For the second type we have
A B
M = ( c D) (2M)

where A, D are like in (1M), and B, C contain only the upper left corner of size b; of non-
zero elements. These matrices are denoted by Bp, Ci respectively; clearly the 2b; x 2bj-matrix

A By )
<Cl D1> S Gspgbl,
A B
b (2 D) on
where A, D are like in (1P), C is like in (2M);
A B
() o)

where A, D are like in (1N), and the upper left corner of size by of B is the 0-matrix.

To apply formulas of [4] we need to describe a Borel pair (T¢, B.) such that T.(R) is a compact
modulo Z(R), where Z is the center of G. Namely,

T, is the set of matrices <_)§/ ;/() where X, Y are diagonal g X g-matrices such that
X2 +Y?%=\E,.
A WD\ . . 1
Let a = il D (i = v/—1) where A, D are any scalar g X g-matrices such that AD = 3;
let A=D = %Eg. We have

T.=aTa™ ! (3.1.2)
We denote M, = aMa~! and analogically for other objects (N, K etc.).
3.2. Finding of Qg(G).

Here we recall an explicit description of Qg(G) which is necessary for finding IIp, see 3.3
below. It is possible to use the fact that it contains a subgroup Q(K,) of index 2, but we give a
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direct calculation. We denote the normalizer by 9. There is an isomorphism M(7¢)/T. = Q(G)
and a section of sets v : Q(G) — N(T.). (3.1.2) implies that N(T.) = aN(T)a" L. Let j =1,...,9,
ej=(1,...,1,-1,1,...,1) € (Z/2Z)? C Q(G) (—1is at the j-th place). A representative of e; in

N(T) is w; = Eg._ i ez . It commutes with «, i.e. we can set y(e;) = to;. Equality
iejj  Eg—ejj
i[I- v, = (—(])':79 _é%) € G(R) shows that a representative of (—1,...,—1) € (Z/2Z)9 C

Q(G) belongs to Qr(G).

Further, for to € S(g) C Q(G) we denote by My, the g x g-matrix whose (j, k)-th entry is 5;“
My, O

0 M,

(k)

(the matrix of permutation). Then we have v(w) = ( > It belongs to M(T"), N.(T") and

commutes with a.
This means that Qr(G) contains a subgroup X C Q(G) given by an exact sequence

0—>2Z/2Z - X — S(g) =0

where Z/27 C (Z/27Z)9 is the diagonal embedding. Really, it is possible to show that X = Qgr(G),
i.e. elements of (Z/27)9, except the diagonal element, cannot be lifted to G(R).

Finally, for a subset I of {1,...,g} — or, the same, an element I € (Z/27)9 C Q(G) — we
set y(I) = [];c;w;, and we denote this element by ;.

3.3. Finding of 1lp.

The members of Ilp are parametrized by the double coset space
QM)\Q(G) /R (G)

([4], 4.2). We have: Q(M,.) = S(by) x---x S(by) for P of the first type and Q(M.) = Q(GSpap, ) X
S(bg) x -+ x S(bg) for P of the second type. The set of representatives of Q(G)/Qr(G) can be
chosen as half of (Z/27)9 (we choose one element in each pair of elements (a,(—1,...,—1)a),
a € (Z/2Z)%). The above groups §2(M,.) act on this set of representatives from the left, hence
the invariant of their action is the quantity of 1, —1 in the segments of length by, bo, ..., by (first
type); ba, ..., bx (second type) in the whole segment of length g. This means that the set IIp
coincides with

First type: the set of sequences of numbers cq,...,c; where 0 < ¢; < b; factorized by the
equivalence relation ci,...,cx ~ by —c1,...,b — c; representatives w of the corresponding
double cosets are

w=(1,...,1,—-1,...,—-1,...,1,...,1,=1,...,=1) € (Z/2Z)9 C Q(G) (3.3.1)
—_—— ——— —_—— ——
¢ times b;—c; times ¢, times by —c;, times
Second type: the same, but the sequences are ca, ..., ¢, and
w=(1,...,1,1,...,1,—-1,...,=1,...,1,...,1,=1,...,=1) € (Z/2Z)9 C Q(G) (3.3.2)
—_—— —— — — —_—— ———
by times ¢y times by—cy times ¢, times by —c;, times
Notation: such a sequence ¢y, ..., ci or co, ..., c is denoted by ¢ and the set of all there sequences

by €. We denote the set of w € Q(G) of the form (3.3.1), (3.3.2) by 2, i.e. there is a 1 —
1 correspondence between € and 20: w = w(c), ¢ = ¢(w). The representation m € IIp that
corresponds to ¢ is denoted by . or (like in [4]) by .

3.4. Finding of py, qu.'

Numbers py,, ¢, are defined in [4], 4.3; here we use notations of this paper. Firstly we recall the
definition of P and find them explicitly. Let & : Res ¢ /RGm — G be a Deligne map for the Siegel

'This section is not logically necessary for the proof of the theorem.
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xT

variety. We use the following h: for z =z + iy h(z,z) = ( i) Let i1 : G — Res ¢/rGm

be the map z — (z,1) and g = h oiy. P are the subspaces of B&p,, on which ad u(t) acts
by ¢! and ¢ respectively (see for example [6] or [4], 4.3). An element of &Gp,, is a matrix

A B
< ) where B, C' are symmetric. A calculation gives us:

C A"+ (A-1)E,
c i c i
+_ - _
Pe = (zC’ c) Pe <—z’C —C’)

where C' is a symmetric g X g-matrix.

For w € 20 C Q(G) we have y(w) = oy for I = the set of —1’s in (3.3.1), (3.3.2); we denote
it simply by t. Further, we denote by N, My, N, N the Lie algebras of N, w~'Nw, N,
o~ ! Net respectively. Numbers py, = dim (New N PJF), g = dim (New NP,7) are defined in [4],
4.3. It is more convenient to conjugate with a: we set P* = a~1PFa. A calculation gives: P+ =
<8 €>’ P = <g 8) where C'is a symmetric g X g-matrix. So, p, = dim (N NP1,
qw = dim (M NP~ t).

Further, NV has the same description like in (1N), (2N), but the diagonal blocks are 0-matrices.

Let e; j be the elementary (i, j)-matrix. Matrices me@gﬂm_l are given by the following table
(here and below we indicate in the third column of the table whether me@gﬂ-m_l € N or not).

First type:
Subtype me@gﬂ-m_l
1.igl,j&1 €igtj always € N
2.1€l,j¢1 Cgti g+ eN < j>iand(x)
3.igl,jel € j eEN < i>jand(x)
4.7e€l,5¢el €g+i,j never € N

where (*) means: i, j do not belong to the same segment of partition g = by + - - - + by.

Since C'is a symmetric matrix, we can take always j > 4, and hence the quantity of pairs
(i,7) such that te; gﬂ e Nis:

Subtypel (g— Zl 1Cl)(9+1 Zl 1Cl)

Subtype 2. 61(52—62+53—63+ +bk—6k)+02(bg—03+ +br—cp)+- -+ ep—1(bg —ck),
hence

(G—>iia)g+1-30 a) + Z oa(cy)

Pw =

2 1§z<]§k
Analogously, in order to find g, we have:
Subtype e, i 0t
1.igl,je&l Cg+ij never € N/
2.iel,j &1 € j eN < i>jand(x)
.igl,jel Cgtigti eEN < j>iand(x)
4.iel,jel €ig+j always € N

with the same notations and assumptions, hence

(Zl 101)(1+El 1) n Z oa(cs)

qQuw = 5

1§]<z§k
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Type 2 is analogous to the type 1. We set ¢; = 0, the above tables are the same with the
following exception: for subtype 1 (i.e. i € I, j & I) we have: we; g+jt0" 1 = €; g+; € N always
except 4,7 € [1,b1]. This changes the value of py:

by(by+1

Pw of the second type = p,, of the first type — 1(12—’_)

k k
- ,cC +1-> 1 ,c bi(by +1

NS YRTIEEES ¥ St S TR AR UL
2<i<j<k
and for g, we have the same formula like in the first type:
c)(1+ c
G = (El 2 l)(2 El 2 1) + Z oa(cy)

1<]<z<k

Remarks. 1. Change of (cy,...,¢x) to (by —c1,..., b — ci) leads to interchange of py,, Guw-

2. We have: py, + qu = g(g+1) — S by — @) (type 1),
Pu + qu = 29 bl(b1+1) — Sk (b —a) (type 2).
3.5. Finding the length of representatives of Q(M,)/Q(M, NwK o~ 1).

We continue to work with the same w € 20, o € MN(T,) from 3.4. To prove proposition 4.3
below, we must find representatives of the minimal length of Q(M,)/Q(M.NwK o~ 1), and find
their length (see [4], 4.3 or [2], proof of (9.1)). Firstly we find K. — the centralizer of ;1 in G(R).
It is clear that K is the centralizer of h(Res C/RGm) as well. Replacing h by a~'ha we see that
im o tha = { <§ )\Z0_1> } where Z is a scalar matrix.

We define K to be the centralizer of im a~'ha in G; we have:

1) K = {(13 AA2_1>} where A € GLg;

2) K. =aKa™}
3) AT, K.) = UT,K) = S(g).

Now we see that conjugating with a we get Q(M.)/Q(M, NwK o~ t) = Q(M)/Q(M N
rKw ). Like in (3.4), we have a table of tw-conjugates of elementary matrix e; ; (1 < i,j < g)
Subtype mei,jm_l
lLigl,jel €ij EM — (%)
2.iel,j &1 Cgtij & M (Typel); e M < i,5€(1,...,b1) (Type 2)
.igl,jel €i g+j ¢ M (Typel); e M < i,j€(1,...,b1) (Type 2)
diel,jel €gti,g+j EM — (%)

where (*) here means: i, j belong to the same segment of the partition g = by + - - + bg.
This means that

g
M NwKro H (¢;) x GL(b; — ¢;) (Type 1);

= GL(by) x [[ GL(c1) x GL(b; — ¢1) (Type 2)
=2

is the set of block diagonal simplectic matrices with block sizes

C1, bl —Cly---,Ck, bk‘ - Ck;,Cl,bl —C1y...,Ck, bk‘ - Ck(Type 1)?
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bi,ca, b2 —ca, ..., cp, b — ck, b1, 02,02 —ca,. .., ¢k, by — ¢ (Type 2),
and

QM) /M N Ko~ ') =T S(6:)/(S(c) x S(by — c1))(Type 1);
=1

g
= (2/22)" x [ S(61)/(S(c1) x S(by — 1)) (Type 2).
=2
The set S(b)/(S(c) x S(b— c¢)) is isomorphic to S(c, b) — the set of all subsets of order ¢ of the
set (1,...,b) (see Introduction, Step 2c). Let D € S(c,b), D = (dy,...,d.), where 1 < d; <
.-+ < d. < b. The equivalence class that corresponds to this D is the set of permutations of
(1,...,b) that send (1,...,¢) to (di,...,d.). Since the length of a permutation (considered as
an element of S(b) = Q(GL(b+ 1)) ) is the quantity of inversions of elements, it is easy to see
that the permutation with the minimal length in the equivalence class corresponding to D is
the permutation that sends j to d; for j = 1,...,¢, and analogously (in increasing order) for
j=c+1,...,b. We denote this permutation by mp € S(b); we have l(mp) =3 75_, d; — C(C;rl).
Further, let a = (ay,...,ap,) € (Z/22)** C Q(G), where a; = 0,1. Tt is known that I(a) =
0Ly .
Finally, the set of representatives of Q(M.)/Q(M.NwKo~!) of minimal length is &(c, P)
of (0.3). Really, let p € &(¢,P), p = (D1,...,Dy) for P of the first type, p = (a,Da, ..., D)
for P of the second type, where D; is a subset of order ¢; of the i-th segment of the partition
g="b+---+bgof (1,...,9) and a is as above. We have mp, € S(b;). For P of type 1 the
representative of minimal length is m, = mp, x---xmp, € S(b1) x---xS(by) C S(g) C UG),
and we have

k
I(m,) =Y _I(mp,) (3.5.1)
i=1
For P of type 2 we let m), = mp, X ---xmp, € S(bz) x - xS(bg) C S(g) C QG) and m, = (a
multiplied semidirectly by m},) € Q(G). We have

k
I(m,) =1(a) + > I(mp,) (3.5.2)
i=2
Remark. It is convenient to treat numbers f; = d; — ¢ instead of d;, so f1 < fo < --- <

*
0
hPwtTawtT (g K. m,) = the quantity of Young diagrams of weight r in the rectangle with sides
¢, g — c¢. Analogous formulas exist for other P.

fe < b—c. For the case P = < :) (i.e. P of type 1, k = 1), ¢ = {c}, w = w(c) we have

4. Relations between Hecke eigenvalues

Formulas (3.5.1), (3.5.2) can be used in order to find dimensions of
H" (9, K3 )
(4], 4.3). They give us also relations between Weil numbers of Mp. The preliminary form of
these relations is the following:

Proposition 4.1. For any ¢ € € there is a number . such that the set of all Weil numbers

of Mp is the following:
pl(mﬂ)xc
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where ¢ runs over €, for a fixed ¢ p runs over &(c, P).
We shall not give a proof of (4.1), because we need a more general proposition 4.3, see below.
Comparing (4.1) with (2.7.2), we get the following problem:
(4.2). Find relations between b; = p‘a; such that both (2.7.2), (4.1) are satisfied.

The solution to (4.2) — and even a more exact result — is given by the following proposition.
Recall that mj = by +---b;_1 (j =1,...,k).

Proposition 4.3. First type: by,;+1 are free variables, by, i = piflbmﬁl (t=1,...,bj),
and ay is defined by the equality a2 []_, b; = p9(9+1)/2,

Second type: bj = p’ for j =1,...,by, bm,+1 (2 < j < k) are free variables, by, 4; and ag are
like in the first type.

Proof. It follows immediately from [2], proof of Proposition 9.1. Let us recall some definitions
of loc. cit., page 62 (here m € llp, g = GGp,y,):

Ve =@ H'(9,Keim), Vo=V, = P Va

7TEHP

(Vp is denoted in [2]| by V,; and is defined on the page 59, two lines below (9.2)). Spaces Vi, W
are sly(C)-modules (see loc. cit. for the definition of the action of sl3(C)), and all V;; and hence
Vp have the Hodge decomposition.

There exist bases B(W), B(V;), B(Vp) of W, V., Vp respectively and an isomorphism 0 :
B(Vp) — B(W) (see [2], line below (9.6)) which gives an isomorphism of sl3(C)-modules Vp —
wW.

Arthur uses a slightly different description of B(W') than the one used in (2.6). Namely,

7

the set of elements of B(W) is isomorphic to the set of cosets Q(G)/Q(K,), where Q(K.) —

—Q(G) is equal to S(g) = —=Q(G) of Remark 1.5. It is clear that Q(G)/QUK,) = (Z/27Z)9. Let
I C{1,...,g}; we can treat I as an element of (Z/2Z)9 as usually. The element of B(W) that
correspond to I according loc.cit. is exactly z of (2.6).

Now let m = my, w = w(c). The set B(Vy) is isomorphic to Q(M.)/Q(M. NwK o~ 1) =
S(c, P). For any finite group A and its subgroups B, C' we have

A/B= |J cC/(CnaBa™) (4.3.1)
acC\A/B

here and below all unions are disjoint.
Now we apply (4.3.1) to the case A = Q(G), B = K., C = Q(M,) in order to get an inclusion:

B(Vy) = Q(M.) /M, NwEK. ") = &(c, P) &% Q@) /QK.) = (Z/22)? = B(W)

It follows from loc. cit. that for p € &(¢, P) as in the end of (3.5) we have: 9,,(p) = z1 where for
Type 1:
I=DyU---UDy (4.3.2)

for Type 2:
I=1,UDyU---UDy (4.3.3)

where I; C {1,...,b1} is the set of ones (additive writing of (Z/2Z)7) in a, the union is in
{1,...,g}. The Hodge type of 0,(p) is

Dw + l(mp)a Quw + l(mp) (4.3.4)
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Finally, we have
B(ve)= |J B(Vx)
mellp
and 0 : B(Vp) — B(W) is the union of 9, in the obvious sense.
Let X, Y, H be the standard basis of slo(C). We have the following properties of the action
of ad X on V; and W:

(4.3.5) If v € V; is of the pure Hodge type (p,q) then ad X (v) is of the pure Hodge type
(p+1,q+1).

(4.3.6) If w € W is a 7(0r,)-eigenelement of eigenvalue A, then ad X(w) is a r(0r, )-
eigenelement of eigenvalue pA.

Type 1. We use notations ¢; = (0,...,0,1,0,...,0) € € (1 is at the j-th place), I(n) is a
subset of {1,...,g} consisting of the single element n, and we denote x;(,) simply by x,. We fix
some j and we set ¢ = ¢;. (4.3.2) shows that 9(Vz,) is generated by Zpm 11, .- ., Zm,+p,. According
(4.34),Vi=1,...,b; the Hodge type of &, 4 is pc + 4, gc + 4. (4.3.5) implies that

ad X(-ijJri) == Cj,ixijriJrl (437)
where c¢;; is some non-0 coefficient. Now, (2.7.2), (4.3.6) and (4.3.7) imply immediately that
bin;+i+1 = Pbm,+; which is 4.3 for Type 1.

Type 2. The idea of the proof is the same. Firstly we consider ¢ = (0,...,0). B(V;,) is the
set of subsets of {1,...,b1}. (4.3.3) shows that d(Vy,) is generated by =, where I C {1,...,b1}.
(4.3.5) implies that for Vi =1,...,b;

(ad X)!(zp) = > crry (4.3.8)
Ic{1,..,b1} such that 1(1)=i

where coefficients ¢y can be easily found using methods of [11]. For us it is sufficient to use the
fact that c;(;) # 0. (2.7.2), (4.3.6) and (4.3.8) imply by induction by i that b; = p'.

Finally, we consider ¢ = ¢; like in Type 1, but with the first zero omitted. B(Vy,) = (Z/27Z)" x
{1,...,b;}. (4.3.3) shows that d(Vy,) is generated by zjur(m,+s), Where J C {1,...,b1} and
i € {1,...,b;}. The Hodge type of T ur(m,+4) is pc +1(J) +i,qc +1(J) + 4. (4.3.5) implies that
forVi:L...,bj

(ad X)" M (@gurm;+1) = D CIjnTI0T(m; +n) (4.3.9)

the sum is over the pairs (J,n), J C {1,...,b1}, n € {1,...,b;} such that I(J) +n = i.
Again it is sufficient to use the fact that ¢y j; # 0. As earlier (2.7.2), (4.3.6) and (4.3.9) imply
by induction by i that by, 1+; = piilbmﬁl. O

Remark 1. There are g—k (first type); g—k+1 (second type) relations between eigenvalues
of 7, 7p; on Mp.

Remark 2. (4.1) is obviously a corollary of (4.3); numbers r. are products of some b; and
powers of p.

Remark 3. Formulas of (4.3) are not direct corollaries of (4.1), (2.7.2): it is easy to construct
an example of numbers a; having another form as in (4.3) but such that both (4.1), (2.7.2) are
satisfied.

We denote m(7y), m(7p,;) by m,, m,; respectively.
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Theorem 4.4. Relations between m?), m,,; are linear. Particularly, for the parabolic subgroup
P of the second type such that k = g, all b; are 1 (see Appendix, 8b) the only relation between
mg, m,,; is the following:
2

FESY: *ZY‘“’” - o

where m,, , = 1 and Y; are polynomials in p (particularly, they do not depend on g) defined as
follows: Y7 = —1 and Y, is defined by the recurrence relation

ZYR -

ZYRn 1@ +p)p

HY ViR (i) T 220 (46)

Proof. Follows immediately from (2.7.4) and (4.3). O
Y5, Y3 are given in the Appendix, Table 7.

Appendix

1. Some relations satisfied by 7, ;.

We set W, (p) = [Tiw;(p* +1). Let deg : T, — Z be a map of the degree of a double coset (=
the quantity of ordinary cosets in it). We have equalities:

g
= Z 7p,iWi(p); deg 7y = Wy(p)

deg i = Z C(0, k)

0€39
_ plo—k)(g=k+1)/2 Wy(p) (p9 — 1)(p9=L — 1) ... (p9=F+1 — 1)
Wi(p) @F -1t -1)-...-(p—1)

Particularly, deg 7,0 = p@+D/2W, (p), for g = 2: deg 70 = p° + p° + p* + p°,
deg 7p1 = p* +p° +p? +p,
for g = 3: deg 0 = p"* +p'" +p'* +2p° +p® +p7 + 95,
deg 7,1 = p'* +p” +2p° + 207 + 20 + 20° +p* + p* = PP (0P + p+ D + 1 + 1),
degTpo = p° +p° +p* +p° +p* +p
Table 2. Numbers R, (k).
Source: [1], Chapter 3, Lemma 6.19. We have: Ry(g9) =1, Rg(g — 1) =p9 — 1.

g 2 3
k
0 P —p? pb—pf — P p?
Numbers Ry (k) : 1 02— 1 0 p?
2 1 p—1
3 1
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Table 3. Explicit formulas for Satake map S¢.

g=2:
7~'p:<1>0—|—<1>1+(1)2
_ 1 21
Tp1 = *(@0(1)1 + (I)lq)z) + P 3 (I)O(I)Q
p b
T 1<I>(I)
Tp2 = = PoP2
p p3
g=3:

7~'p:<I>0—|—<I>1+(I)2—{—(I)3

B 1 p2 — p3 -1
Tp1 = ;)((I)O(I)l + &Py + @2(133) + p3 (<I>0(I)2 + (I)lq)g) + p4 q)oq)g
N 1 31
Tp2 = —5 (PP + P1®3) + P 7 PoPs3
p b
T 1 dyd
Tp,3 = =PoP3
p 0

Table 4. Coefficients h; of the Hecke polynomial.

g=2:
bo = p° = p°ha
b1 = —p°7, = p°bs
bo = p(rp1 + 0>+ 1)
by =—7p
ha=1
g=3:

ho = p** = p*'bs
by = —p"*7p, = p'b7
b2 = pP[rp1 + (0° + Drp2 + (—p° — p° + 20% + 1)] = p'*hs
b3 = —p°[Tpmp2 + 1) = p°hs
by =[] + 7o+ (=20 + 2)7p2 — 2p7p1 + P04+ 2" — 2p* — 2p + 1]
b5 = —p3 [To7p,2 + Tp)
be = plrp1 + (0° + 1)7p2 + (—p° — p* + 2p* + 1))
br = -7
hs =1
Table 5. Numbers C(2, k).

C(0,k) depend only on ¢ — the quantity of ones in 0 — and k; particularly, they don’t
depend on g.
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qn

0 1

1 1— pfl pfl

2) 9 _ 2p—1 p—l _ p—3 p—3

3 3 — 4p71 +p74 3p71 _ p72 _ p73 _ p74 p73 _ pfﬁ p76

Table 6. Explicit values of ag(x)(7p).

We denote o; = 0;(by).

9=2 ag(x)(mp,1) =p o102+ (p7' = p oz +p~loy

g =3 ac(x)(1p1) =p o1+ 0102 + 0203) + (p~L —p~3) (o103 + 72) + (p7L —p )03
ag(X)(1p2) = p (0103 +02) + (p7° — p~O)o3

Table 7. Polynomials Y;.

Y1=-1

Yo=p° —p*+p-1

Y= —p'+p° —p° +p'+p* = 20" +p—1

8. Some properties of Mp, P of two simplest types.?
(a) P = B, i.e. P of the first type, all b; = 1.

In this case Mp is (generally) irreducible, of weight w, the packet IIp consists of 2971
representations 7, where ¢ runs over the set of all subsets of 1, ..., g factorized by the equivalence

relation: a subset is equivalent to the complementary subset. The partition (0.1.1) is trivial
(i.e. consists of one set). For any ¢ € IIp &S(c, P) is trivial, and the Hodge number h"/(Mp)

(i4+j= W) is equal to the quantity of subsets of 1,...,g such that the sum of elements of
this subset is i, i.e.
g(g+1)
2 .. . g .
> W Me)t =] +1)
i=0 i=1

(b) P of the second type, all b; = 1.

In this case Mp is the sum of 2 (generally) irreducible submotives M~, M* of weights
g(g+1)
2

-1, g(g;— Do respectively, the packet IIp consists of 2972 representations 7, where ¢
runs over the set of all subsets of 2, ..., g factorized like in (a). (0.1.1) is also trivial. For any

¢ €llp &(c, P) is the irreducible slo-module of dimension 2, and the Hodge number h*J (M)

(i+7= @ — 1) is equal to the quantity of subsets of 2,..., ¢ such that the sum of elements

of this subset is 1, i.e.

g9(g+1)
2 -1 g

Soor M =T +1)
i=0 i=2
8a. Hecke polynomial for the case M—, g = 3.

We consider numbers b1, by, bs for M~. We have by = p, we denote s; = by + b3, so = babs.
Roots of Hecke polynomial for M~ are ag, agbz, agbs, agbabs, i.e. this polynomial is

frt— ap(l+ s1 + so)fr 34 a%(sl + 5189 + 289)fr 2 —ap(1 + 51 + 82)p5fr + p'?

Written by a request of a referee. This is an elementary corollary of results of Section 4.
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(recall that a3sy = p°).
In terms of 7,, 7,1 this polynomial is

2 5
fr 4 — %ﬁ" S+ MWH%)? +Tp1 +pb — 2p° + 2p* — 2p° + 2p?)fr 2 — %fr + pt0.
It can be also obtained by taking the Hecke polynomial for g = 3, substituting 7,9 from (4.5)

and factorizing the obtained expression.
9. Another way to find relations between m;,, m, ;.

Here we give this method only for the case P of Appendix, 8(b). Let aq, ..., a1 be the Weil
numbers of M ™, so paq, ..., pags—1 are the Weil numbers of M*. We denote the Weil numbers
of Mp by 71,...,72¢ (the union of sets aq,...,ay-1 and pay,...,pags-1), so we have

oi(v) = 3 Poij(an)os(as) (A1)

Jj=0

Further, o;(7«) = h;. From now we consider only the case g = 3.
Taking values of h; from Table 4 and taking into consideration that o3(a.) = p°oy(ay),
o4(as) = pl® we get from (A1), =1,2:
o1(on) = 51
p(mp,1+(p?+1)mp 2—p° —p3+2p +1—
0'2(05*> = p2+1
Further, the equality for b3 is equivalent to m,A = 0 and the equality for b, is equivalent to
AB = 0, where the common multiple A is the left hand side of (4.5):

m2

P
Gru?)

2
A= i + 20 Yy = (0 = p? +p = Dmpa + (=" + 5 = p° +p* +p° = 20> +p— 1) +
m2
G e
and 5
m.
B = -y + S Yim = (0 + 07+ p+ Dmpa + (07 +9° +p° +p* +p* + 207 +p +
2
1) — (pzizi)i’ +m, 1, where ;" are polynomials in p whose coefficients are the absolute values of
the ones of Y;.

(4.5) shows that m, , satisfy the condition A =0 (but not m, = B = 0).
Substituting the condition A = 0 to the formula for o2(ax), we can slightly simplify it:

o) = p*(mpa — p* +p° —p* +1).

Notation Index

a; 2.1 « After 3.1.2
ag(x) 2.1 ar(x) 2.1
3.5 a; 3.5
b; 2.1 br 0, Step 1
B Borel subgroup, 2.1 B(%) Proof of 4.3
b; 0.2,3.1.1 Ci 3.3
Cx coefficients, after 4.3.6 c 3.3
¢ 3.3 d; 3.5
D 3.5 D; 3.5
0 Line between (4.3.1) and (4.3.2) E, the unit matrix
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the elementary matrix
field of coeflicients, Introduction
1.1

genus

3.2

1.1

Langlands element 2.7
3.5

length of an element of
3.5

3.5

Levi subgroup 3.1

3.4

after 0.1

above 4.4

3.1

3.3

Weyl group

3.4

2.1

Section 0; 3.3

2.6

3.5

Satake map, 1.1

0, Step 2c; 3.5

diagonal in G, 1.1
generators of Hecke algebra, 1.1
1.5

after 4.3

3.3.1,3.3.2

end of 3.2

3.3

Between 4.3.6 and 4.3.7
4.1

4.6
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after 4.3.6

Remark of 3.5

1.1

G5p2g

0; 3.4

1.5

0.2,3.1.1

Centralizer of p 3.5

3.5

after 0.2; after 3.1.1

1.1

Levi subgroup after 3.1.2
Introduction

after 0.1

Introduction

after 3.1.2

normalizer

prime, Introduction

3.3

parabolic subgroup 3.1
3.4

1.3

permutations group

i-th symmetric polynomial
0.3; 3.5
1.1

1.5

1.5
after 4.3
3.4

2.6

2.6
Shimura variety, Section 0.
2.1



References

1
2]
3]
[4]

[5]
[6]

[7]
18]
19]
[10]

[11]

A.N. Andrianov, V. G. Zhuravlev, Modular forms and Hecke operators, (In Russian; English version:
Andrianov A.N., Quadratic forms and Hecke operators. Springer, 1987), Moscow, 1990.

J. Arthur, “Unipotent automorphic representations: conjectures”, Asterisque, 171-172, (1989), 13—
71.

J. Adams, J.F. Johnson, “Endoscopic groups and packets of non-tempered representations”,
Compositio Math., 64, (1987), 271-309.

D. Blasius, J.D. Rogawski, “Zeta functions of Shimura varieties”, Motives. Proc. of Symp. in Pure
Math., 55:2, (1994), 525-571.

O. Bultel, On the mod B-reduction of ordinary CM-points, Ph. D. thesis, Oxford, 1997.

P. Deligne, “Travaux de Shimura”, Lect. Notes in Math., Seminaire Bourbaki 1970/71, Exposé 389,
v.244, 1971, 123-165.

G. Faltings, Chai Ching-Li, Degeneration of abelian varieties, Springer, 1990.
Jacobson, Lie algebras, Interscience tracts in pure and applied mathematics, v. 10, 1962.

D. Logachev, “Reduction of a problem of finiteness of Tate — Shafarevich group to
a result of Zagier type”, Far Fastern Math. Journal, 9:1-2, (2009), 105-130, arXiv:
http://arxiv.org/PS_cache/math/pdf/0411/0411346v2.pdf.

Satake Ichiro, “Theory of spherical functions on reductive algebraic groups over p-adic fields”, Publ.
IHES, 1963, 229-293.

D. Vogan, G. Zuckerman, “Unitary representations with non-zero cohomology”, Compositio Math.,
53, (1984), 51-90.

Submitted September 6, 2011 The author is grateful to A. Andrianov

and M. Borovoi for important advice on
the subject of this paper.




Jozaues J[.FO. CooTHOIIIEHNST MEXK/Ty TUIIOTETUIECKUMU COOCTBEHHBIMU 3HAYEHUSIMI
omepaTopoB I'ekKe Ha MDOAMOTHBAX MHOroobpasmii 3uress. JlaabHeBOCTOUHBINI
maremarnaecknii Kypuaa. 2012. T. 12. Ne 1. C. 60-85.

AHHOTAINS

Cy1iecTBy0OT TUNIOTETUYECKUE COOTHOIEHUS MeXAY L-QyHKIuIMu MToIMOTUBOB
muaorooopaswmit [Ilumypsl 1 aBTOMOPGHBIMU MPEICTABICHUSIMA COOTBETCTBYIOIINX
PeIYKTUBHBIX TPYII, NpuHagIexamme Jlenrmeracy — Aprtypy. B macrosmeit
paboTe 3T COOTHOINEHWS WCIOJIb3YIOTCS [IJIsl TOJY9YEeHUs] SBHBIX COOTHOIIEHUT
MKy COOCTBEHHBIMU YUCIAMU p-orepaTropos [ekke (o6pasyronmx p-aare6ps! [ekke
MHOT000pa3us X ) Ha MPOCTPAHCTBAX KOTOMOJIOTUII HEKOTOPHIX TAKMX MOJMOTHBOB
B ciydae, Korja X — MHOrooOpaszme 3urejisd. DTOT PE3YAbTAT TAKXKE SBJISIETCS
PUIOTETUYIECKUM: METOJBI MOJCYETa TOYEK Ha PejayKnusx X, OCHOBaHHbIE Ha
dopmyiie ciena Cenbbepra, He UCIOJIB3YIOTCS.

[Mosydennbie COOTHOIIEHUST OKA3BIBAIOTCS JIMHEHHBbIMU, KOI(DQDUIUEHTHI B HUX
SIBJISTFOTCST MHOTOUJIEHAMU OT P W YIOBIETBOPSIOT MPOCTO PEKYPPEHTHOI (bopmy.Ie.
AHamOrnYHBI  pe3ysbTaT MOXKET OBITH JIETKO TMOJIYYeH JJId  MPOU3BOJIBHOTO
muaorooopaszus [Mlumypsr.

[IpencraBienublii pe3ybTaT €CTh MPOMEXKYTOUYHBIH Iar B 0OOOIIEHUU TEOpPEMBbI
KospiBarunaa o koneanoctu rpymnmsr Taiita — [Tadapesnyda s/munTuaecKux KPUBBIX
anasnTrdeckoro panra 0 win 1 max Q Ha caydail moIMOTHBOB APYTUX MHOTOOOpaA3Mit
Mumypsl, B yacrHOCTH, MHOrOOOpa3uii 3ures poga 3, M. [9].

Wnes mokasare/ibcTBa: C OJHON CTOPOHBI, yrnoMmsiHyTbhle (opwmyssl Jlenrienmca —
Aprypa gator (runorerunueckue) COOTHOIIEHUs Ha Yucaa Beiiist nojgMorusa; ¢ apyroii
cTopoHbl, oTobpaxkenue (Carake 03BOJIAET TPEOOPA30BBIBATH STU COOTHOIIEHUS B
COOTHOIIIEHUsI HA COOCTBEHHBIE YnCIa p-oneparopos ['ekke na X.

Crarhst Tak)e COIEP>KUT 0030pP HEKOTOPHIX OJIM3KWX BOMPOCOB, HAPUMED, STBHOTO
HAXOXKIEHUs MONMMHOMOB l'ekke MmHOTOOOpazms X. B mpuioxenun comeprkaTcs
Tab/IUIBI 171 CJIydaeB g = 2, 3.

Kntouersie cioBa: mnozoobpasus 3uzess, nodmomusen, coomeemcemeusa Iexke, wucia
Betins, omobpasicenue Camarxe.
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