
FAR EASTERN MATHEMATICAL JOURNAL. 2012. Vol. 12. � 1. P. 60�85

MSC2010 14G35, 11G18

c⃝ D.Yu. Logachev1

Relations between conjectural eigenvalues of Hecke

operators on submotives of Siegel varieties

There exist conjectural formulas of relations between L-functions of submotives of Shimura
varieties and automorphic representations of the corresponding reductive groups, due to
Langlands � Arthur. In the present paper these formulas are used in order to get explicit
relations between eigenvalues of p-Hecke operators (generators of the p-Hecke algebra of X)
on cohomology spaces of some of these submotives, for the case where X is a Siegel variety.
Hence, this result is conjectural as well: the methods related to counting points on reductions
of X using the Selberg trace formula are not used.

It turns out that the above relations are linear and their coe�cients are polynomials in p
which satisfy a simple recurrence formula. The same result can be easily obtained for any
Shimura variety.

This result is an intermediate step for the generalization of Kolyvagin's theorem of the
�niteness of Tate � Shafarevich group of elliptic curves of analytic rank 0 and 1 over Q, to
the case of submotives of other Shimura varieties, particularly of Siegel varieties of genus 3,
see [9].

The idea of the proof: on the one hand, the above formulas of Langlands � Arthur give us
(conjectural) relations between Weil numbers of a submotive. On the other hand, the Satake
map permits us to transform these relations between Weil numbers into relations between
eigenvalues of p-Hecke operators on X.

The paper also contains a survey of some related questions, for example explicit �nding of
the Hecke polynomial for X, and (Appendix) tables for the cases g = 2, 3.
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Introduction

The purpose of the present paper is to show that starting from some standard conjectures
of Langlands � Arthur, a chain of elementary calculations leads to a simply-formulated and
non-expected result on relations between eigenvalues of p-Hecke operators on a Shimura variety
(which hence depends on these conjectures).

Namely, let Π be a stable global packet of automorphic representations of a reductive group
G (G corresponds to a Shimura variety X). Attached to Π is a parabolic subgroup P of G. Let
M be an irreducible constituent of a submotive conjecturally attached to Π (see (0.1) below).
We denote the �eld of coe�cients of M by E. H i(M) is a module over the p-Hecke algebra
H(G) = Hp(G) of X, p is a �xed prime. Any t ∈ H(G) acts on H i(M) by multiplication by an
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element mM(t) of E. If {ti} is a set of generators of H(G) then numbers mM(ti) can satisfy some
relations.

The main result of the present paper is the Theorem 4.4. We �x the type of a Shimura
variety (the level is arbitrary) and a parabolic subgroup P . We �nd the set of relations between
mM(ti) (depending on P only) such that if the above conjectures are true then these relations
are satis�ed for all submotives M corresponding to all stable Π corresponding to P .

Really, the �rst steps of the calculations of the present paper are made only for Siegel varieties,
and the last step only for submotives corresponding to one type of P (the simplest non-trivial).
This restriction is not of principle: the reader can easily get analogous results for any Shimura
variety and any type of submotives, including the ones that correspond to non-stable packets.
The author is interested in the case g = 3, because the main result of the present paper can
be applied for a generalization of the Kolyvagin's theorem to the case of submotives of Siegel
varieties of genus 3. See [9] for applications of the results of the present paper.

The paper also contains some calculations that are not logically necessary for the proof of
the main theorem, but can be used for references or for the further development of the subject
(Sections 2.2 - 2.4, 3.4 and small parts of other sections). Some tables for genii 2 and 3 are given
in the Appendix, which is written for the same reason.

0. Idea of the proof

As it was mentioned above, in order to de�ne a Shimura variety X of a �xed level, we must
�x a reductive group G over Q, a map h : Res C/R(Gm) → G over R, and a level subgroup
K ⊂ G(Af (Q)); these data must satisfy some conditions ([6]). Throughout the paper we consider
only the case when p does not divide the level, i.e. K ⊃ G(Zp). We shall consider only the
case of Siegel varieties, i.e. from here we let G = GSp2g over Q. Further, we must choose a
compacti�cation of X and a type of cohomology.

Really, all subsequent considerations depend only on G and h and, hence, do not depend on
level, compacti�cation and the type of cohomology.

We �x a Borel subgroup B of G and consider all intermediate parabolic subgroups P of G,
B ⊂ P ⊂ G. There is a 1 - 1 correspondence between the set of archimedean cohomological
A-parameters of G and the set of such P ([3]; [2]; [4], Section 4.1). We denote by ΠP the
packet of automorphic representations of G(R) corresponding to the archimedean cohomological
A-parameter corresponding to P ([4], Section 4.2).

Attached to P and X is a set (indexed by k) of stable global packets of automorphic
representations of G(AQ). This set clearly depends on the level of X. We denote the k-th packet

by ΠglobP (k). Let π ∈ ΠglobP (k) be a representation, π = π∞⊗πf its decomposition on archimedean
and �nite part, and πf = ⊗lπl (l = prime) the decomposition of πf . We consider only such π for
which πp is non-rami�ed (see Step 3 below for a description of πp). We have π∞ ∈ ΠP , and for

any other π′
∞ ∈ ΠP the representation π′ := π′

∞ ⊗ πf also belongs to ΠglobP (k).
Conjecturally, ∀k there exists a submotive MP (k) (reducible unless P = B) such that

Lp(π, r, s) = Lp(MP (k), s) (0.1)

where r : LG → GL(W ) is a �nite-dimensional representation de�ned in [4], 5.1; Weil numbers
of MP (k) and hence its L-function are considered with respect to E, and Lp(π, r, s) = L(πp, r, s)
is the local L-function (particularly, it does not change if we change π by π′).

Now we �x some k and we denote MP (k) simply by MP . It is the main object of the present
paper. Since it is conjectural, all subsequent theorems should be understand as follows:

Let MP be a motive such that (0.1) is satis�ed. Then ... (statement of the theorem).
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Some references for properties of MP : [4], Sections 4.3, 5, 7; [2], Section 9, and the present
paper, section 3. Most of these properties are not necessary for the proof of the main theorem.
Here we mention only that (0.1) implies that

∑
i h

i(MP ) = dim r; for G = GSp2g this number
is 2g. See also Remark 0.1 below.

Now let M ⊂ MP , mM, E be as in the Introduction. Multiplication by elements of E gives
us an inclusion iM : E → C. It is clear that the composite map iM ◦mM : H(G) → C does not
depend on M but only on MP . So, we denote the map iM ◦ mM by m = mP . The main result
of the present paper is the �nding of relations between numbers m(ti), where t0 = τp, ti = τp,i,
and τp, τp,i are de�ned in Sect. 1.1.

Step 1. We use the following notation: if b1, . . . , bg is a set of numbers and I is a subset of the
set {1, . . . , g} then we denote bI =

∏
i∈I bi. In (2.7) we recall a (well-known; see, for example, [4],

Sect. 5.1, Example 3) proof of the fact that there exists a set of numbers a0, b1, b2, . . . , bg ∈ C
such that eigenvalues of r(θπp) (where θπp is a Langlands element of πp) have the form a0bI where
I runs over the set of all 2g subsets of (1, . . . , g). Hence, (0.1) means that the Weil numbers of
MP have the same form.

Step 2. We shall show in Sect. 4 (as a result of calculations of Sect. 3) that for a �xed P
numbers a0, b1, b2, . . . , bg satisfy some relations depending only on P (Prop. 4.3).

Step 3. Finally, using explicit formulas of the Satake map (Sect. 2), we shall show that
relations of Prop. 4.3 give us relations between numbers m(ti).

Now we describe steps 2 and 3 in more detail.

Step 2a. Firstly, we recall the description of the set of parabolic subgroups P under consi-
deration: there are 2 types of such subgroups, and subgroups of each type are parametrized by
the set of ordered partitions of g, i.e. the set of representations of g as a sum

g = b1 + b2 + · · ·+ bk (0.2)

(bi ≥ 1, the order is essential), or, the same, the set of sequences

0 = m1 < m2 < · · · < mk+1 = g

where mi = b1 + · · · bi−1.

Step 2b.Using formulas of [4], Sect. 4, we describe explicitly in Sect. 3.3 the set of archimedean
cohomological representations belonging to ΠP . Namely, let P be of type 1 given by (0.2). We
denote by C the set of sequences c = (c1, . . . , ck) such that ∀j = 1, . . . , k holds 0 ≤ cj ≤ bj . We
have: ΠP is isomorphic to C factorized by the equivalence relation (c1, . . . , ck) ∼ (b1−c1, . . . , bk−
ck). For P of type 2 the result is the same, but c1 is omitted. The representation corresponding
to c ∈ C is denoted by πc.

Step 2c. Now we use formulas of [4], Sect. 4 for the dimensions of H i,j(g,Kc;πc), g = gsp2g.
We consider for all i = 1, . . . , k the set S(ci, bi) of all subsets of order ci of the set {1, . . . , bi},
and we denote

S(c, P ) =

k∏
i=1

S(ci, bi) or S(c, P ) = (Z/2Z)b1
k∏
i=2

S(ci, bi) (0.3)

for P of type 1 and 2 respectively (this is the set of representatives of minimal length for the
cosets Ω(T,M)/Ω(T,M ∩ wKw−1) in notations of [4], Sect. 4.3). For ρ ∈ S(c, P ) an explicit
formula for the length l(ρ) is given in (3.5.1).

Further, (3.5.1) gives us relations between Weil numbers of MP . The exact formula for these
relations is given in (4.1). Really, (4.1) is a corollary of a stronger proposition 4.3.
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Remark 0.1. A sketch of the description of the structure of MP ([2], [4]).

The space generated by S(c, P ) is isomorphic to
⊕

i,j H
i,j(g,Kc;πc), so it is a sl2-module

with a Hodge structure. We denote this sl2-module by Lie(S(c, P )). There are 2 numbers pc, qc
associated with each c (see [4], Section 4.3 for a formula for them, and (3.4) for explicit values).
2 basis elements of minimal weight in S(c, P ) have Hodge numbers hpc,qc = hqc,pc = 1 (case
G = GSp, pc ̸= qc; formulas for other Hodge numbers are given for example in [2], Section 9).

There exists a partition of C:

C =
∪
i∈I

Ci (0.1.1)

(the union is disjoint) which gives rise to a decomposition of MP as a direct sum of submotives.
For c1, c2 a necessary condition to belong to one Ci is the following:

(0.1.2) For j = 1, 2 numbers pcj + qcj coincide and sl2-modules Lie(S(cj , P )) (but not their
Hodge structures!) are isomorphic.

Attached to (0.1.1) is a motive decomposition

MP =
⊕
i∈I

MP,i (0.1.3)

having the following property: H∗(MP,i) has a natural structure of sl2-module, and we have an
isomorphism of sl2-modules with Hodge structures:

H∗(MP,i) =
⊕
c∈Ci

Lie(S(c, P )) (0.1.4)

and analogously for their components of any �xed weight. It is known that a decomposition of
MP,i in a direct sum indexed by c ∈ Ci � like in (0.1.4) � does not exist. Clearly (0.1.3), (0.1.4)
give us a description of Hodge numbers ofMP and primitive elements in the cohomology groups.

See also Appendix, 8 for some explicit properties of MP , where P is of two simplest types.

Step 2d. To complete Step 2, we must use results of steps 1 and 2c in order to �nd relations
between numbers a0, b1, b2, . . . , bg. These relations are the following (Proposition 4.3):

(0.4) P of the �rst type: bmi+1 are free variables, bmi+c = pc−1bmi+1 (c = 1, . . . , bi), and a0
is de�ned by the equality a20

∏
bi = pg(g+1)/2.

P of the second type: bi = pi for i = 1, . . . , b1, bmi+1 (2 ≤ i ≤ k) are free variables, bmi+c

and a0 are like the above.

Step 3. The p-Hecke algebra H(G) is the ring of polynomials whose generators are denoted by
τp,∗, ∗ = ∅, 1, . . . , g: H(G) = Z[τp, τp,1, . . . , τp,g]. Let χ : T (Qp) → C∗ be a nonrami�ed character
such that πχ = πp where πp is the p-part of π and πχ : G(Qp) → GL(V) is the parabolically
induced representation. χ does not depend on π ∈ ΠglobP (k). πχ de�nes an action of H(G) on a
1-dimensional subspace of VG(Zp) and hence a homomorphism αG(χ) : H(G) → C. Obviously
αG(χ) = m, hence in order to �nd relations between numbers m(τp,∗) we need to represent
αG(χ)(τp,∗) as polynomials in a0, b1, b2, . . . , bg and to use (0.4).

To solve this problem we use

(a) the Satake map S : H(G) → H(T ) where H(T )
i
↪→ Z[U±1

∗ , V ±1
∗ ], (∗ = 1, . . . , g) is the

Hecke algebra of a maximal torus T of G;

(b) an explicit expression for a Langlands element θ(πχ) ∈ T̂ ⊂ LG given in (2.7.1), and a
decomposition of r|T̂ as a sum of characters of T̂ (Section 2.6).
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Explicit formulas for S(τp,∗) are given in Section 1 ((1.2.1), (1.3.1), (1.5.1)). Further, there
exists a map αT (χ) : Z[U±1

i , V ±1
i ] → C such that αG(χ) = αT (χ)◦ i◦S. (0.1), (2.5.1) and (2.7.1)

show us that αT (χ)(Vi) = a
1/g
0 , αT (χ)(Ui) = a

1/g
0 bi.

Using explicit formulas for i ◦ S (Section 1), we can represent αG(χ)(τp,∗) as polynomials
in αT (χ)(Ui), αT (χ)(Vi), i.e. as polynomials in a0, b1, b2, . . . , bg (2.7.4). The �nal result follows
immediately from (0.4) and (2.7.4).

Structure of the paper. In Section 1.1 we recall the de�nition of Satake maps SG, ST
and de�ne generators of Hecke algebras H(G), H(Ms). In 1.2, 1.3 we �nd explicitly SG of these
generators. Remark 1.4 is used only for a proof that the 2 methods of �nding of Hecke polynomial
give the same result. Remark 1.5 gives a slightly di�erent method of description of the Satake
map; some notations of 1.5 will be used later.

Section 2.1 contains a de�nition of the induced representation and of the corresponding map
αG(χ) : H(G) → C. Sections 2.2 - 2.4 are of survey nature: they contain explicit formulas for
αG(χ) using the counting of cosets. A formula for αG(χ) that will be really used in future is
given in 2.5. In 2.6 we recall properties of the map r which is used to de�ne the L-function of
M, and in 2.7 we get an expression for Weil numbers of M.

In 3.1 we recall the de�nition of parabolic subgroups of G and related groups. Contents of
other subsections 3.2 � 3.5 correspond to their titles. Finally, Section 4 contains the end of the
proof.

1. Explicit description of Satake map

1.1. References: [1], [7]. We let: T ⊂ G is a torus of diagonal matrices;

Ms =

{(
A 0
0 (At)−1

)}
⊂ G.

Here we consider elements of p-Hecke algebras H(G) (G = G,Ms, T ) as linear combinations
of double cosets of G(Zp). There are inclusions H(G) ⊂ H(Ms) ⊂ H(T ) de�ned by Satake maps
denoted by SG, ST respectively (see [10], [7]).

We need the following matrices:

Tp =

(
1 0
0 p

)
, entries are g × g-matrices;

Tp,i =


1 0 0 0
0 p 0 0
0 0 p2 0
0 0 0 p

, diagonal entries are g − i× g − i, i× i, g − i× g − i, i× i-matrices,

i = 0, . . . , g.
We denote the double cosets G(Zp)TpG(Zp), G(Zp)Tp,iG(Zp) (= elements of H(G)) by τp,

τp,i respectively. It is known that H(G) is the ring of polynomials: H(G) = Z[τp, τp,1, . . . , τp,g].
Now we need matrices

Fp,i = Fi =


1 0 0 0
0 p 0 0
0 0 p 0
0 0 0 1


where diagonal entries are g − i× g − i, i× i, g − i× g − i, i× i-matrices, i = 0, . . . , g.

We denote the corresponding elements Ms(Zp)FiMs(Zp) of H(Ms) by Φi.

Let us recall the de�nition of the Satake map SG. Here we consider for ∗ = G orMs an element
f ∈ H(∗) as a ∗(Zp)-bi-invariant function on ∗(Qp); a function associated to a double coset is
its characteristic function. SG(f) is de�ned completely by its values on elements X ∈ Ms(Qp) of
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the form X = diag (pa1 , . . . , pag , pλ−a1 , . . . , pλ−ag). By de�nition,

SG(f)(X) = β(X)

∫
U(Qp)

f(Xu)du (1.1.1)

where β(X) = p−ga1−(g−1)a2−···−ag and U =

{(
1 ∗
0 1

)}
, entries are g×g-matrices (the multiplier

β(X) di�ers slightly from the one of [7]).

1.2. Here we apply (1.1.1) to τp = G(Zp)TpG(Zp). Let f be its the characteristic function,
and X = Fi.

For u =

(
Eg A
0 Eg

)
where A =

(
u11 u12
ut12 u22

)
, sizes of diagonal blocks here and below are g− i,

i, we have Fiu =

(
B C
0 D

)
, where B = diag (1, . . . , 1, p, . . . , p), D = diag (p, . . . , p, 1, . . . , 1),

C =

(
u11 u12
put12 pu22

)
. Hence, f(Fiu) = 1 ⇐⇒ entries of u11, u12 ∈ Zp, entries of u22 ∈ 1

pZp. This

implies that ∫
U(Qp)

f(Fiu)du = p
i(i+1)

2

and SG(f)(Φi) = 1. For other X it is easy to see that
∫
f(Xu) = 0, i.e.

SG(τp) = Φ0 +Φ1 + · · ·+Φg (1.2.1)

1.3. Here we apply (1.1.1) to τp,i = G(Zp)Tp,iG(Zp), i ≥ 1. Let f be its characteristic function,
and X = FjFk. We have

FjFk = diag (1, . . . , 1, p, . . . , p, p2, . . . , p2, p2, . . . , p2, p, . . . , p, 1, . . . , 1), k > j, sizes of diagonal
blocks here and below are g − k, k − j, j, g − k, k − j, j.

For u =

(
Eg A
0 Eg

)
where A =

u11 u12 u13
ut12 u22 u23
ut13 ut23 u33

 we have FjFku =

(
B C
0 D

)
, where

B = diag (1, . . . , 1, p, . . . , p, p2, . . . , p2), D = diag (p2, . . . , p2, p, . . . , p, 1, . . . , 1),

C =

 u11 u12 u13
put12 pu22 pu23
p2ut13 p2ut23 p2u33

. Hence, f(FjFku) = 1 ⇐⇒ entries of u11, u12, u13 ∈ Zp, entries

of u22, u23 ∈ 1
pZp, entries of u33 ∈

1
p2
Zp, rank (p̃u22) = k − j − i, where tilde means the residue

map Zp → Fp. (This is because for a symmetric g × g-matrix A such that rank Ã = r we have(
p A
0 p

)
∈ G(Zp)Tp,g−rG(Zp)).

So, we denote by Rg(i) = Rg(i, p) the quantity of symmetric g × g-matrices with entries in
Fp of corank exactly i (see [1], Chapter 3, Lemma 6.19 for the formula for Rg(i)) and we have∫

U(Qp)
f(FjFku)du = Rk−j(i) · pj(k−j)+j(j+1)

and

SG(τp,i)(FjFk) = β(FjFk)

∫
U(Qp)

f(FjFku)du = Rk−j(i) · p
−

k − j + 1
2


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For other X it is easy to see that
∫
f(Xu) = 0, i.e. we have (i ≥ 1):

SG(τp,i) =

g∑
j,k≥0,j+i≤k

Rk−j(i) · p
−

k − j + 1
2


ΦjΦk (1.3.1)

Remark 1.4. The above formulas can be used for �nding the Hecke polynomial of X. Any
element of H(G) de�nes a correspondence on X. We denote the algebra of these correspondences
by Tp. It is the quotient ring of H(G) by the only relation τp,g = id .

Let us consider the (good) reduction of X at p, denoted by X̃. We denote by Corr (X̃) its
algebra of correspondences. Obviously there exists an inclusion γ : Tp → Corr (X̃). It is known
that it can be included in the commutative diagram:

SG : H(G) → H(Ms)
β1 ↓ β2 ↓

γ : Tp → Corr (X̃)

where β1 is the natural projection, β2 is an epimorphism with the same kernel τp,g − id .
There is the Frobenius map f : X̃ → X̃, we can consider it as a correspondence, i.e. f ∈

Corr (X̃). We have: f = β2(Φ0) in Corr (X̃), and β2(Φg) is the Verschiebung correspondence.
The minimal polynomial satis�ed by f over Tp is called the Hecke polynomial.

An explicit algorithm for �nding the Hecke polynomial is a by-product of the calculations of
the present paper. There are 2 methods for �nding this polynomial: the �rst one is to eliminate
formally Φ1, . . . ,Φg from (1.2.1), (1.3.1) and to use the relation τp,g = 1. The second one is to
use a description of Langlands parameters of unrami�ed representations � this gives us formula
(2.7.2). See Appendix, Table 4 for the explicit formulas for the cases g = 2, 3.

Remark 1.5. There is a slightly di�erent method of �nding the Hecke polynomial. We denote
by Ω(G) the Weyl group of G. It enters in the exact sequence

0 → (Z/2Z)g → Ω(G) → S(g) → 0

and there exists a section i : S(g) → Ω(G). Let Ui, Vi (i = 1, . . . , g) be independent variables.
We have: (see [7], Ch. 7 for example) H(T ) is a subring of Q[U±1

i , V ±1
i ] generated by (UiV

−1
i )±1

and
∏g
i=1 Ui. Ω(G) acts on H(T ) in the obvious manner (S(g) permutes indices in Ui, Vi, and

(Z/2Z)g interchanges U , V ). Then H(G), H(Ms) are subrings of H(T ) stable with respect to
Ω(G), i(S(g)) respectively, and Satake maps SG, ST are identical inclusions.

For a subset I of 1, . . . , g we denote UI =
∏
i∈I Ui

∏
i̸∈I Vi ∈ H(T ). Then we have:

ST (Φi) =
∑

#(I)=i

UI (1.5.1)

(particularly,
∏g
i=1 Vi is the Frobenius element and

∏g
i=1 Ui is the Verschiebung). Using (1.2.1),

(1.3.1) and (1.5.1) it is easy to �nd images of τp, τp,i in Q[U±1
i , V ±1

i ] (for example, τp =
∑

I UI =∏g
i=1(Ui + Vi)).
Roots of Hecke polynomial are (Z/2Z)g-conjugates of

∏g
i=1 Vi, i.e. elements UI . We denote

the i-th coe�cient of the Hecke polynomial by hi ∈ H(G). Hence, hi = (−1)iσi(UI), i = 0, . . . , 2g,
where σi is the i-th symmetric polynomial. hi can be found explicitly using (1.2.1), (1.3.1).
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2. Description of Weil numbers of MP

2.1. Let T ⊂ B ⊂ G be the standard Borel pair, i.e. T is as above and

B =
{(

(Dt)−1 ∗
0 D

)
∈ G

∣∣∣ D is an upper-triangular g × g-matrix
}
.

Let χ : T (Qp) → C∗ be a nonrami�ed character. χ is de�ned uniquely by the numbers

a0 = χ

((
1 0
0 p

))
, ai = χ

((
ρi 0

0 ρ−1
i

))
where ρi = diag (1, . . . , p, . . . , 1), p being at the i-th place, i = 1, . . . , g. It is convenient to
denote bi = piai.

From here and until (2.7) we shall assume that χ is arbitrary, i.e. bi are arbitrary numbers.
From (2.7) we shall treat only one χ de�ned in Introduction, Step 3.

We can expand χ on B(Qp) using the projection B → T , and let πχ : G(Qp) → GL(V) be the
parabolically induced representation. Recall its de�nition: V is a space of functions f : G(Qp) → C
which satisfy

∀b ∈ B(Qp) f(bg) = χ(b) · f(g)

and the action is right translation:

[πχ(t)(f)](g) = f(gt)

There exist a 1-dimensional subspace VG(Zp) ⊂ V of G(Zp)-invariant functions, an action of H(G)
on VG(Zp) and hence a homomorphism αG(χ) : H(G) → C.

There are 2 methods of description of αG(χ): the �rst one is based on consideration of
decomposition of a double coset G(Zp)TG(Zp), T ∈ G, as a union of ordinary cosets. Really, if
G(Zp)TG(Zp) = ∪iγiG(Zp) then αG(χ)(G(Zp)TG(Zp)) =

∑
i χ(γi). We treat this decomposition

in Sections 2.2 - 2.4.
The second method (which is much more convenient) is treated in 2.5. So, Sections 2.2 -2.4

are entirely of survey nature.

2.2. Here we consider for simplicity the case of G = GLn and a double coset G(Zp)Tp,iG(Zp)
for Tp,i = diag (1, . . . , 1, p, . . . , p), p occurs i times. This coset decomposition is the following:

G(Zp)Tp,iG(Zp) =
∪
I

∪
{cjk}

γI,{cjk}G(Zp)

where I runs through the set of all subsets of {1, . . . , n} containing i elements, cjk belongs to a
�xed set of representatives of Fp in Z, cjk = 0 unless j ̸∈ I, k ∈ I, j < k, and

γI,{cjk} =
∑
j∈I

p · ejj +
∑
j ̸∈I

ejj +
∑
j,k

cjk · ekj

(j ̸∈ I, k ∈ I, j < k), where elm are elementary matrices.

We can transform the above decomposition as follows:

G(Zp)T−1
p,i G(Zp) =

∪
∗
G(Zp)γ−1

∗ =
∪
∗
γ−1
∗

t
G(Zp);

G(Zp)pT−1
p,i G(Zp) = G(Zp)Tp,n−iG(Zp) =

∪
∗
pγ−1

∗
t
G(Zp)
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So, we have:

γ−1
I,{cjk} =

∑
j∈I

p−1 · ejj +
∑
j ̸∈I

ejj +
∑
j,k

−p−1cjk · ekj

(j ̸∈ I, k ∈ I, j < k) and hence

pγ−1
∗

t
=

∑
j∈I

ejj +
∑
j ̸∈I

pejj +
∑
j,k

−cjk · ejk

(j ̸∈ I, k ∈ I, j < k). These elements are in B. Further, for a �xed I we have

χ(pγ−1
I,{cjk}

t
) =

∏
i ̸∈I

ai

and hence

αG(χ)(Tp,n−i) =
∑
I,{cjk}

χ(pγ−1
I,{cjk}

t
) =

∑
I,#I=i

∏
i ̸∈I

ai · p#{(j,k)|j ̸∈I,k∈I,j<k}

which gives us

αG(χ)(Tp,n−i) = p−
i(i+1)

2 σi(b∗)

2.3. Here we consider the case G = GSp2g(Q), T = Tp. We have the following decomposition:
G(Zp)TpG(Zp) = ∪iG(Zp)γi where the set {γi} is described as follows:

1. We consider all subsets I ⊂ {1, . . . , g} (there are 2g of them);

2. If such I is �xed then we consider the set of γ =

(
A B
0 D

)
such that

D =
∑
j∈I

p · ejj +
∑
j ̸∈I

ejj +
∑
j,k

cjk · ejk,

A = pDt−1
=

∑
j∈I

ejj + p ·
∑
j ̸∈I

ejj +
∑
j,k

−cjk · ekj ,

(j ̸∈ I, k ∈ I, j < k)

B =
∑
j,k∈I

bjkejk,

bjk, cjk belong to a �xed set of representatives of Fp in Z, and bjk = bkj .
Now we use the same transformations as above. We have: χ(pγ−1

i ) = a0
∏
i∈I ai and it is easy

to see that

αG(χ)(Tp) = a0

g∏
i=1

(1 + bi) (2.3.1)

2.4. Here we consider the case G = GSp2g(Q), T = Tp,i. Firstly we describe a set J such
that

g∪
i=0

G(Zp)Tp,iG(Zp) = ∪j∈JG(Zp)γj

and then for each j ∈ J we �nd the corresponding i ∈ 0, . . . , g.

We have: γj =

(
A B
0 D

)
∈ GSp2g with λ(γj) = p2. D is an upper-triangilar matrix whose

diagonal entries Dii are pdi , di = 0, 1, 2, i.e. we have 3g possibilities for the choice of di. To

68



choose a set di is the same as to choose a partition {1, . . . , g} = I0 ∪ I1 ∪ I2, i ∈ Ik ⇐⇒ di = k.
Non-diagonal entries of D are described as follows:

(1) If i ∈ I0, j ∈ I1, i < j then Dij runs through a system of representatives in Z of Z/p;
(2) If i ∈ I0, j ∈ I2, i < j then Dij runs through a system of representatives in Z of Z/p2;
(3) If i ∈ I1, j ∈ I1, i < j then Dij runs through a system of representatives in Z of Z/p, and

the Jordan normal form of this part of D has blocks of size 1 or 2 (i.e. its square is 0);
(4) If i ∈ I1, j ∈ I2, i < j thenDij = pD′

ij , whereD
′
ij runs through a system of representatives

in Z of Z/p;
Other Dij are 0. We denote submatrices of D described in (1) - (4) above by A, B, C, pD

respectively. Further, we have A = p2D−1t, and the description of B = {Bij} is the following.

Firstly, Bij = 0 if i ∈ I0 or j ∈ I0. Further, we denote submatrices of B formed by elements
Bij with i ∈ Ir, j ∈ Is (r, s = 1, 2) by Brs. Entries of B11, B21 (resp. B12, B22) run through a
system of representatives in Z of Z/p, (resp. of Z/p2).

Finally, the above matrices satisfy the following relations (which are equivalent to a condition
γj ∈ GSp2g):

(1) Bt
11(pI + C) = (pI + Ct)B11

(2) (pI + Ct)B12 = pBt
11D+ p2Bt

21

(3) DtB12 + pB22 = Bt
12D+ pBt

22

For a given γj it is possible to �nd i such that γj ∈ G(Zp)Tp,iG(Zp). It is obvious that
i ≤ #I1.

For each set d = {di} we denote by C(d, k) the quantity of matrices γj described above such
that γj ∈ G(Zp)Tp,kG(Zp). In these notations we have the following formula:

αG(χ)(Tp,k) =
∑
d

C(d, k)

g∏
i=1

adii

Really, it is more convenient to denote C̃(d, k) = C(d, k)p−
∑g

i=1 idi , so

αG(χ)(Tp,k) =
∑
d

C̃(d, k)

g∏
i=1

bdii (2.4.1)

Formulas for C̃(d, k) and αG(χ)(Tp,k) for g = 2, 3 are given in the appendix, tables 5, 6.

2.5. It is well-known that there exists a map αT (χ) : H(T ) → C given by the formula

αT (χ)(Vi) = a
1/g
0 , αT (χ)(Ui) = a

1/g
0 bi (2.5.1)

such that
αG(χ) = αT (χ) ◦ ST ◦ SG (2.5.2)

Combining (2.5.1), (2.5.2) with (1.2.1), (1.3.1), (1.5.1), we get

αG(χ)(τp,i) = a20

g∑
j,k≥0,j+i≤k

Rk−j(i) · p
−

k − j + 1
2

 ∑
#(J)=j

bJ
∑

#(K)=k

bK (2.5.3)

Comparing (2.4.1) and (2.5.3) we get immediately that for i = 1, . . . , g

C̃(d, i) =

[(q1−1)/2]∑
j=0

Rq1−2j(i)p
−(q1−2j+1)(q1−2j)/2

(
q1
j

)
(2.5.4)
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where q1 = #I1 is the quantity of ones in d and [x] is the integer part of x.

2.6. Here we recall a description of the �nite-dimensional representation r : LG → GL(W )
([4], 5.1), and its restriction to T̂ ⊂ LG for our case G = GSp2g(Q) (this is well-known, see for
example [4], 5.1, Example C). So, �rstly we describe the spin representation and its restriction
to Cartan subalgebra. The following facts can be found in many sources; we use [8].

The dual of GSp2g is the spinor group GSpin2g+1. Since G = GSp2g is over Q, we have:
LG = WQ × GSpin2g+1, and r : LG → GL(W ) (see, for example, [4], (5.1)) is trivial on WQ.
It is known that r : GSpin2g+1 → GL(W ) is the spin representation. There exists a 2-fold
covering η : GSpin2g+1 → GO2g+1. Recall the de�nition of the corresponding representation of
Lie algebras r : GO2g+1 → GL(W ).

Let V be a vector space of dimension 2g + 1, u1, . . . , u2g+1 its basis and B a quadratic form

whose matrix in this basis is

1 0 0
0 0 1
0 1 0

, the size of diagonal entries is 1, g, g. We consider

the corresponding orthogonal Lie algebras GO(B), O(B). Their Cartan subalgebras of diagonal
matrices TGO(B), resp. TO(B) have bases θ0, θ1, . . . , θg, resp. θ1, . . . , θg, where θ0 is the 2g +
1× 2g+1 unit matrix and θi = ei+1,i+1− ei+g+1,i+g+1 for i > 0, eij is an elementary matrix ([8],
p. 139, (63)).

The Cli�ord algebra C = C(V,B) is the quotient of
∑∞

n=0 V
⊗n (the tensor algebra of V ) by

relations v1 ⊗ v2 + v2 ⊗ v1 = 2B(v1, v2). Let L(C) be the corresponding Lie algebra, M1 ⊂ C
the natural projection of V = V ⊗1 ⊂

∑∞
n=0 V

⊗n to C, and M2 = [M1,M1]. It is known ([8],
p. 231, Th. 7) that M2 is a Lie subalgebra of L(C), and it is isomorphic to O(B). Further, M1

is isomorphic to V as a vector space, and the Lie action of M2 on M1 de�ned by the formula
x(y) = xy − yx (here x ∈ M2, y ∈ M1, multiplication is in C), coincides with the action (of a
matrix on a vector) of O(B) on V .

This formula permits us to get an explicit identi�cation of O(B) and M2. Namely, we denote
vi = u1ui+1, wi = u1ui+1+g, multiplication is in C, vi, wi ∈ M2. We have:

for i > 0 θi ∈ O(B) corresponds to
1

2
+

1

2
viwi ∈ M2 (2.6.1)

(calculations are similar to [8], p. 233, (34) or can be deduced easily from these formulas; it is
necessary to take into consideration that hi of page 139 are θi and hi of page 233 are θi − θi+1).

For I = (α1, . . . , αk) ⊂ (1, . . . , g) we set xI = v1 · . . . · vg · wα1 · . . . · wαk
. The space of spin

representation W is a subspace of C spanned on all vectors xI . The action of O(B) is the right
multiplication by the corresponding elements of M2. This is exactly r restricted on O(B). (2.6.1)
shows that

θi(xI) = ϵxI (2.6.2)

where ϵ = 1
2 if i ∈ I and ϵ = −1

2 if i ̸∈ I.
Finally, it is known that θ0 acts on W by multiplication by 1

2 .

Let T̂ ⊂ GSpin2g+1 be the dual torus of T ⊂ GSp2g, T̂ its Lie algebra and ηLie : T̂ → TGO(B)
the restriction of η. For t ∈ T we set t = diag (x1, . . . , xg, λx

−1
1 , . . . , λx−1

g ), so we can consider

λ, x1, . . . , xg as a basis of X∗(T ). We denote the dual basis of X∗(T̂ ) by λ′, x′1, . . . , x
′
g and we

consider λ′, x′1, . . . , x
′
g as coordinates of an element t ∈ T̂ . Further, we denote by ν0, ν1, . . . , νg

the basis of T̂ dual to λ′, x′1, . . . , x
′
g. Formulas for ηLie in bases ν∗, θ∗ are the following:

ηLie(ν0) = 2θ0, ηLie(νi) = θi + θ0 (2.6.3)
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(2.6.2), (2.6.3) imply formulas for the action of νi on xI : r(νi)(xI) = xI if i = 0 or i ∈ I,
r(νi)(xI) = 0 if i ̸∈ I. In its turn, these formulas imply formulas for r|T̂ :

r(λ′, x′1, . . . , x
′
g)(xI) = (λ′

∏
i∈I

x′i)xI (2.6.4)

(see also [4], end of (5.1)).

2.7. Here we apply r to a Langlands element θπχ ∈ LG of πχ in order to �nd Weil numbers
of MP .

We can choose θπχ in T̂ ; namely, it is known that λ′, x′1, . . . , x
′
g-coordinates of θπχ are

(a0, b1, . . . , bg) (2.7.1)

(2.6.4) and (2.7.1) imply that

(2.7.2) ∀I ⊂ {1, . . . , g} the element xI is an eigenelement of r(θπχ) with eigenvalue a0bI =
αT (χ)(UI).

From here we �x χ such that πχ = πp � the p-part of π of Introduction. (2.7.2) and (0.1)
give us immediately

(2.7.3) The 2g Weil numbers of MP have the form a0bI .

Moreover, the existence of pairing in cohomology ofX shows that numbers bi satisfy a relation
a20

∏g
i=1 bi = pg(g+1)/2 ( ⇐⇒ a20

∏g
i=1 ai = 1).

Since αG(χ) = m (m of the Introduction), (2.3.1), (2.5.3) and (2.7.3) give us expressions of
m(τp,∗) in terms of Weil numbers of MP :

m(τp) =
∑
I∈2g

a0bI (2.7.4a)

m(τp,i) = a20

g∑
j,k≥0,j+i≤k

Rk−j(i) · p
−

k − j + 1
2

 ∑
#(J)=j

bJ
∑

#(K)=k

bK (2.7.4b)

where bi should be interpreted as numbers entering in the formula (2.7.3) for Weil numbers of
MP .

Remark. The above formulas give us a simple proof that αG(χ)(
∑

hiT
i) is the characteristic

polynomial of r(θπχ) (this is well-known; see, for example, [5] for less explicit proof in a more
general situation). Really, roots of the Hecke polynomial are UI (I runs over 2

g), and αT (χ)(UI) =
rI(θπχ).

3. Some explicit formulas for archimedean

cohomological representations of G

3.1. Description of parabolic subgroups of G.

The set of simple positive roots that corresponds to a Borel pair (T,B) of G is:

ω0 = x21λ
−1, ωi = xi+1x

−1
i , i = 1, . . . , g − 1,

λ, xi of 2.6. We denote this set by ∆.
Parabolic subgroups that contain B are in one-to-one correspondence to the set of subsets of

∆. We shall tell that such a subgroup is of the �rst type if the corresponding subset of ∆ does
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not contain ω0, and of the second type, if it contains ω0. The set of subgroups of both types is
isomorphic to the set of ordered partitions of g, i.e. the set of representations of g as a sum

g = b1 + b2 + · · ·+ bk (3.1.1)

where bi ≥ 1, the order is essential. We denote mi = b1+ · · · bi−1 (i = 1, . . . , k). The subset of ∆
that corresponds to (3.1.1) is∆−{ω0, ωm2 , ωm3 , . . . , ωmk

} for the �rst type,∆−{ωm2 , ωm3 , . . . , ωmk
}

for the second type. We denote the corresponding parabolic subgroup by P and its Levi decomposition
by P = MN . Their description is the following:

First type:

M =

(
A 0
0 D

)
(1M)

where A,D are block diagonal matrices with sizes of blocks b1, b2, . . . , bk. We denote block entries
by Ai, Di respectively (i = 1, . . . , k);

P =

(
A B
0 D

)
(1P )

where A (resp. D) is a lower (resp. upper) block triangular matrix (with the same size of blocks
clearly), and

(1N) N ⊂ P is its subset of matrices whose block entries are unit matrices.
For the second type we have

M =

(
A B
C D

)
(2M)

where A, D are like in (1M), and B, C contain only the upper left corner of size b1 of non-
zero elements. These matrices are denoted by B1, C1 respectively; clearly the 2b1 × 2b1-matrix(
A1 B1

C1 D1

)
∈ GSp2b1 ;

P =

(
A B
C D

)
(2P )

where A, D are like in (1P), C is like in (2M);

N =

(
A B
0 D

)
(2N)

where A, D are like in (1N), and the upper left corner of size b1 of B is the 0-matrix.

To apply formulas of [4] we need to describe a Borel pair (Tc, Bc) such that Tc(R) is a compact
modulo Z(R), where Z is the center of G. Namely,

Tc is the set of matrices

(
X Y
−Y X

)
where X, Y are diagonal g × g-matrices such that

X2 + Y 2 = λEg.

Let α =

(
A iD
iA D

)
(i =

√
−1) where A, D are any scalar g × g-matrices such that AD = 1

2 ;

let A = D = 1√
2
Eg. We have

Tc = αTα−1 (3.1.2)

We denote Mc = αMα−1 and analogically for other objects (N , K etc.).

3.2. Finding of ΩR(G).

Here we recall an explicit description of ΩR(G) which is necessary for �nding ΠP , see 3.3
below. It is possible to use the fact that it contains a subgroup Ω(Kc) of index 2, but we give a

72



direct calculation. We denote the normalizer by N. There is an isomorphism N(Tc)/Tc = Ω(G)
and a section of sets γ : Ω(G) → N(Tc). (3.1.2) implies thatN(Tc) = αN(T )α−1. Let j = 1, . . . , g,
ej = (1, . . . , 1,−1, 1, . . . , 1) ∈ (Z/2Z)g ⊂ Ω(G) (−1 is at the j-th place). A representative of ej in

N(T ) is wj =

(
Eg − ejj iejj

iejj Eg − ejj

)
. It commutes with α, i.e. we can set γ(ej) = wj . Equality

i
∏g
j=1wj =

(
0 −Eg

−Eg 0

)
∈ G(R) shows that a representative of (−1, . . . ,−1) ∈ (Z/2Z)g ⊂

Ω(G) belongs to ΩR(G).

Further, for w ∈ S(g) ⊂ Ω(G) we denote byMw the g×g-matrix whose (j, k)-th entry is δ
w(k)
j

(the matrix of permutation). Then we have γ(w) =

(
Mw 0
0 Mw

)
. It belongs to N(T ), Nc(T ) and

commutes with α.
This means that ΩR(G) contains a subgroup X ⊂ Ω(G) given by an exact sequence

0 → Z/2Z → X → S(g) → 0

where Z/2Z ⊂ (Z/2Z)g is the diagonal embedding. Really, it is possible to show that X = ΩR(G),
i.e. elements of (Z/2Z)g, except the diagonal element, cannot be lifted to G(R).

Finally, for a subset I of {1, . . . , g} � or, the same, an element I ∈ (Z/2Z)g ⊂ Ω(G) � we
set γ(I) =

∏
j∈I wj , and we denote this element by wI .

3.3. Finding of ΠP .

The members of ΠP are parametrized by the double coset space

Ω(Mc)\Ω(G)/ΩR(G)

([4], 4.2). We have: Ω(Mc) = S(b1)×· · ·×S(bk) for P of the �rst type and Ω(Mc) = Ω(GSp2b1)×
S(b2)× · · · × S(bk) for P of the second type. The set of representatives of Ω(G)/ΩR(G) can be
chosen as half of (Z/2Z)g (we choose one element in each pair of elements (a, (−1, . . . ,−1)a),
a ∈ (Z/2Z)g). The above groups Ω(Mc) act on this set of representatives from the left, hence
the invariant of their action is the quantity of 1,−1 in the segments of length b1, b2, . . . , bk (�rst
type); b2, . . . , bk (second type) in the whole segment of length g. This means that the set ΠP
coincides with

First type: the set of sequences of numbers c1, . . . , ck where 0 ≤ cj ≤ bj factorized by the
equivalence relation c1, . . . , ck ∼ b1 − c1, . . . , bk − ck; representatives w of the corresponding
double cosets are

w = (1, . . . , 1︸ ︷︷ ︸
c1 times

,−1, . . . ,−1︸ ︷︷ ︸
b1−c1 times

, . . . , 1, . . . , 1︸ ︷︷ ︸
ck times

,−1, . . . ,−1︸ ︷︷ ︸
bk−ck times

) ∈ (Z/2Z)g ⊂ Ω(G) (3.3.1)

Second type: the same, but the sequences are c2, . . . , ck, and

w = (1, . . . , 1︸ ︷︷ ︸
b1 times

, 1, . . . , 1︸ ︷︷ ︸
c2 times

,−1, . . . ,−1︸ ︷︷ ︸
b2−c2 times

, . . . , 1, . . . , 1︸ ︷︷ ︸
ck times

,−1, . . . ,−1︸ ︷︷ ︸
bk−ck times

) ∈ (Z/2Z)g ⊂ Ω(G) (3.3.2)

Notation: such a sequence c1, . . . , ck or c2, . . . , ck is denoted by c and the set of all there sequences
by C. We denote the set of w ∈ Ω(G) of the form (3.3.1), (3.3.2) by W, i.e. there is a 1 �
1 correspondence between C and W: w = w(c), c = c(w). The representation π ∈ ΠP that
corresponds to c is denoted by πc or (like in [4]) by πw.

3.4. Finding of pw, qw.
1

Numbers pw, qw are de�ned in [4], 4.3; here we use notations of this paper. Firstly we recall the
de�nition of P±

c and �nd them explicitly. Let h : Res C/RGm → G be a Deligne map for the Siegel

1This section is not logically necessary for the proof of the theorem.
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variety. We use the following h: for z = x+ iy h(z, z̄) =

(
x y
−y x

)
. Let i1 : Gm → Res C/RGm

be the map z → (z, 1) and µ = h ◦ i1. P±
c are the subspaces of GSp2g on which ad µ(t) acts

by t−1 and t respectively (see for example [6] or [4], 4.3). An element of GSp2g is a matrix(
A B
C −At + (λ− 1)Eg

)
where B, C are symmetric. A calculation gives us:

P+
c =

(
C iC
iC −C

)
,P−

c =

(
C −iC

−iC −C

)
where C is a symmetric g × g-matrix.

For w ∈ W ⊂ Ω(G) we have γ(w) = wI for I = the set of −1′s in (3.3.1), (3.3.2); we denote
it simply by w. Further, we denote by N , Nw, Nc, Ncw the Lie algebras of N , w−1Nw, Nc,
w−1Ncw respectively. Numbers pw = dim (Ncw ∩ P+

c ), qw = dim (Ncw ∩ P−
c ) are de�ned in [4],

4.3. It is more convenient to conjugate with α: we set P± = α−1P±
c α. A calculation gives: P+ =(

0 C
0 0

)
, P− =

(
0 0
C 0

)
where C is a symmetric g × g-matrix. So, pw = dim (N ∩ wP+w−1),

qw = dim (N ∩wP−w−1).
Further,N has the same description like in (1N), (2N), but the diagonal blocks are 0-matrices.
Let ei,j be the elementary (i, j)-matrix. Matrices wei,g+jw

−1 are given by the following table
(here and below we indicate in the third column of the table whether wei,g+jw

−1 ∈ N or not).

First type:

Subtype wei,g+jw
−1

1. i ̸∈ I, j ̸∈ I ei,g+j always ∈ N
2. i ∈ I, j ̸∈ I eg+i,g+j ∈ N ⇐⇒ j > i and(∗)
3. i ̸∈ I, j ∈ I ei,j ∈ N ⇐⇒ i > j and(∗)
4. i ∈ I, j ∈ I eg+i,j never ∈ N

where (*) means: i, j do not belong to the same segment of partition g = b1 + · · ·+ bk.
Since C is a symmetric matrix, we can take always j ≥ i, and hence the quantity of pairs

(i, j) such that wei,g+jw
−1 ∈ N is:

Subtype 1.
(g−

∑k
l=1 cl)(g+1−

∑k
l=1 cl)

2 ;
Subtype 2. c1(b2−c2+b3−c3+ · · ·+bk−ck)+c2(b3−c3+ · · ·+bk−ck)+ · · ·+ck−1(bk−ck),

hence

pw =
(g −

∑k
l=1 cl)(g + 1−

∑k
l=1 cl)

2
+

∑
1≤i<j≤k

cibj − σ2(c∗)

Analogously, in order to �nd qw, we have:

Subtype weg+i,jw
−1

1. i ̸∈ I, j ̸∈ I eg+i,j never ∈ N
2. i ∈ I, j ̸∈ I ei,j ∈ N ⇐⇒ i > j and(∗)
3. i ̸∈ I, j ∈ I eg+i,g+j ∈ N ⇐⇒ j > i and(∗)
4. i ∈ I, j ∈ I ei,g+j always ∈ N

with the same notations and assumptions, hence

qw =
(
∑k

l=1 cl)(1 +
∑k

l=1 cl)

2
+

∑
1≤j<i≤k

cibj − σ2(c∗)
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Type 2 is analogous to the type 1. We set c1 = 0, the above tables are the same with the
following exception: for subtype 1 (i.e. i ̸∈ I, j ̸∈ I) we have: wei,g+jw

−1 = ei,g+j ∈ N always
except i, j ∈ [1, b1]. This changes the value of pw:

pw of the second type = pw of the �rst type − b1(b1 + 1)

2

=
(g −

∑k
l=2 cl)(g + 1−

∑k
l=2 cl)

2
+

∑
2≤i<j≤k

cibj − σ2(c∗)−
b1(b1 + 1)

2

and for qw we have the same formula like in the �rst type:

qw =
(
∑k

l=2 cl)(1 +
∑k

l=2 cl)

2
+

∑
1≤j<i≤k

cibj − σ2(c∗)

Remarks. 1. Change of (c1, . . . , ck) to (b1 − c1, . . . , bk − ck) leads to interchange of pw, qw.

2. We have: pw + qw = g(g+1)
2 −

∑k
l=1 cl(bl − cl) (type 1),

pw + qw = g(g+1)
2 − b1(b1+1)

2 −
∑k

l=2 cl(bl − cl) (type 2).

3.5. Finding the length of representatives of Ω(Mc)/Ω(Mc ∩wKcw
−1).

We continue to work with the same w ∈ W, w ∈ N(Tc) from 3.4. To prove proposition 4.3
below, we must �nd representatives of the minimal length of Ω(Mc)/Ω(Mc ∩wKcw

−1), and �nd
their length (see [4], 4.3 or [2], proof of (9.1)). Firstly we �nd Kc � the centralizer of µ in G(R).
It is clear that Kc is the centralizer of h(Res C/RGm) as well. Replacing h by α−1hα we see that

im α−1hα =

{(
Z 0
0 λZ−1

)}
where Z is a scalar matrix.

We de�ne K to be the centralizer of im α−1hα in G; we have:

1) K =

{(
A 0
0 λAt−1

)}
where A ∈ GLg;

2) Kc = αKα−1;
3) Ω(Tc,Kc) = Ω(T,K) = S(g).
Now we see that conjugating with α we get Ω(Mc)/Ω(Mc ∩ wKcw

−1) = Ω(M)/Ω(M ∩
wKw−1). Like in (3.4), we have a table of w-conjugates of elementary matrix ei,j (1 ≤ i, j ≤ g):

Subtype wei,jw
−1

1. i ̸∈ I, j ̸∈ I ei,j ∈ M ⇐⇒ (∗)
2. i ∈ I, j ̸∈ I eg+i,j ̸∈ M (Type 1); ∈ M ⇐⇒ i, j ∈ (1, . . . , b1) (Type 2)

3. i ̸∈ I, j ∈ I ei,g+j ̸∈ M (Type 1); ∈ M ⇐⇒ i, j ∈ (1, . . . , b1) (Type 2)

4. i ∈ I, j ∈ I eg+i,g+j ∈ M ⇐⇒ (∗)

where (*) here means: i, j belong to the same segment of the partition g = b1 + · · ·+ bk.
This means that

M ∩wKw−1 =

g∏
l=1

GL(cl)×GL(bl − cl) (Type 1);

= GL(b1)×
g∏
l=2

GL(cl)×GL(bl − cl) (Type 2)

is the set of block diagonal simplectic matrices with block sizes

c1, b1 − c1, . . . , ck, bk − ck, c1, b1 − c1, . . . , ck, bk − ck(Type 1);
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b1, c2, b2 − c2, . . . , ck, bk − ck, b1, c2, b2 − c2, . . . , ck, bk − ck (Type 2),

and

Ω(Mc)/Ω(Mc ∩wKcw
−1) =

g∏
l=1

S(bl)/(S(cl)× S(bl − cl))(Type 1);

= (Z/2Z)b1 ×
g∏
l=2

S(bl)/(S(cl)× S(bl − cl))(Type 2).

The set S(b)/(S(c)× S(b− c)) is isomorphic to S(c, b) � the set of all subsets of order c of the
set (1, . . . , b) (see Introduction, Step 2c). Let D ∈ S(c, b), D = (d1, . . . , dc), where 1 ≤ d1 <
· · · < dc ≤ b. The equivalence class that corresponds to this D is the set of permutations of
(1, . . . , b) that send (1, . . . , c) to (d1, . . . , dc). Since the length of a permutation (considered as
an element of S(b) = Ω(GL(b + 1)) ) is the quantity of inversions of elements, it is easy to see
that the permutation with the minimal length in the equivalence class corresponding to D is
the permutation that sends j to dj for j = 1, . . . , c, and analogously (in increasing order) for

j = c+ 1, . . . , b. We denote this permutation by mD ∈ S(b); we have l(mD) =
∑c

j=1 dj −
c(c+1)

2 .

Further, let a = (a1, . . . , ab1) ∈ (Z/2Z)b1 ⊂ Ω(G), where ai = 0, 1. It is known that l(a) =∑b1
i=1 iai.
Finally, the set of representatives of Ω(Mc)/Ω(Mc ∩ wKcw

−1) of minimal length is S(c, P )
of (0.3). Really, let ρ ∈ S(c, P ), ρ = (D1, . . . , Dk) for P of the �rst type, ρ = (a, D2, . . . , Dk)
for P of the second type, where Di is a subset of order ci of the i-th segment of the partition
g = b1 + · · · + bk of (1, . . . , g) and a is as above. We have mDi ∈ S(bi). For P of type 1 the
representative of minimal length is mρ = mD1 ×· · ·×mDk

∈ S(b1)×· · ·×S(bk) ⊂ S(g) ⊂ Ω(G),
and we have

l(mρ) =

k∑
i=1

l(mDi) (3.5.1)

For P of type 2 we let m′
ρ = mD2 ×· · ·×mDk

∈ S(b2)×· · ·×S(bk) ⊂ S(g) ⊂ Ω(G) and mρ = (a
multiplied semidirectly by m′

ρ) ∈ Ω(G). We have

l(mρ) = l(a) +

k∑
i=2

l(mDi) (3.5.2)

Remark. It is convenient to treat numbers fi = di − i instead of di, so f1 ≤ f2 ≤ · · · ≤

fc ≤ b − c. For the case P =

(
∗ ∗
0 ∗

)
(i.e. P of type 1, k = 1), c = {c}, w = w(c) we have

hpw+r,qw+r(g,Kc;πw) = the quantity of Young diagrams of weight r in the rectangle with sides
c, g − c. Analogous formulas exist for other P .

4. Relations between Hecke eigenvalues

Formulas (3.5.1), (3.5.2) can be used in order to �nd dimensions of

H i,j(g,Kc;πw)

([4], 4.3). They give us also relations between Weil numbers of MP . The preliminary form of
these relations is the following:

Proposition 4.1. For any c ∈ C there is a number xc such that the set of all Weil numbers
of MP is the following:

pl(mρ)xc
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where c runs over C, for a �xed c ρ runs over S(c, P ).

We shall not give a proof of (4.1), because we need a more general proposition 4.3, see below.

Comparing (4.1) with (2.7.2), we get the following problem:

(4.2). Find relations between bi = piai such that both (2.7.2), (4.1) are satis�ed.

The solution to (4.2) � and even a more exact result � is given by the following proposition.
Recall that mj = b1 + · · · bj−1 (j = 1, . . . , k).

Proposition 4.3. First type: bmj+1 are free variables, bmj+i = pi−1bmj+1 (i = 1, . . . , bj),

and a0 is de�ned by the equality a20
∏g
i=1 bi = pg(g+1)/2.

Second type: bj = pj for j = 1, . . . , b1, bmj+1 (2 ≤ j ≤ k) are free variables, bmj+i and a0 are
like in the �rst type.

Proof. It follows immediately from [2], proof of Proposition 9.1. Let us recall some de�nitions
of loc. cit., page 62 (here π ∈ ΠP , g = GSp2g):

Vπ =
⊕
i

H i(g,Kc;π), VP = VΨP
=

⊕
π∈ΠP

Vπ

(VP is denoted in [2] by Vψ and is de�ned on the page 59, two lines below (9.2)). Spaces Vπ, W
are sl2(C)-modules (see loc. cit. for the de�nition of the action of sl2(C)), and all Vπ and hence
VP have the Hodge decomposition.

There exist bases B(W ), B(Vπ), B(VP ) of W , Vπ, VP respectively and an isomorphism d :
B(VP ) → B(W ) (see [2], line below (9.6)) which gives an isomorphism of sl2(C)-modules VP →
W .

Arthur uses a slightly di�erent description of B(W ) than the one used in (2.6). Namely,

the set of elements of B(W ) is isomorphic to the set of cosets Ω(G)/Ω(Kc), where Ω(Kc)
i→

↪→Ω(G) is equal to S(g)
i→ ↪→Ω(G) of Remark 1.5. It is clear that Ω(G)/Ω(Kc) = (Z/2Z)g. Let

I ⊂ {1, . . . , g}; we can treat I as an element of (Z/2Z)g as usually. The element of B(W ) that
correspond to I according loc.cit. is exactly xI of (2.6).

Now let π = πw, w = w(c). The set B(Vπ) is isomorphic to Ω(Mc)/Ω(Mc ∩ wKcw
−1) =

S(c, P ). For any �nite group A and its subgroups B, C we have

A/B =
∪

a∈C\A/B

C/(C ∩ aBa−1) (4.3.1)

here and below all unions are disjoint.
Now we apply (4.3.1) to the case A = Ω(G), B = Kc, C = Ω(Mc) in order to get an inclusion:

B(Vπ) = Ω(Mc)/Ω(Mc ∩wKcw
−1) = S(c, P )

dw
↪→ Ω(G)/Ω(Kc) = (Z/2Z)g = B(W )

It follows from loc. cit. that for ρ ∈ S(c, P ) as in the end of (3.5) we have: dw(ρ) = xI where for
Type 1:

I = D1 ∪ · · · ∪Dk (4.3.2)

for Type 2:
I = Ia ∪D2 ∪ · · · ∪Dk (4.3.3)

where Ia ⊂ {1, . . . , b1} is the set of ones (additive writing of (Z/2Z)g) in a, the union is in
{1, . . . , g}. The Hodge type of dw(ρ) is

pw + l(mρ), qw + l(mρ) (4.3.4)
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Finally, we have

B(VP ) =
∪

π∈ΠP

B(Vπ)

and d : B(VP ) → B(W ) is the union of dw in the obvious sense.
Let X, Y , H be the standard basis of sl2(C). We have the following properties of the action

of ad X on Vπ and W :

(4.3.5) If v ∈ Vπ is of the pure Hodge type (p, q) then ad X(v) is of the pure Hodge type
(p+ 1, q + 1).

(4.3.6) If w ∈ W is a r(θπχ)-eigenelement of eigenvalue λ, then ad X(w) is a r(θπχ)-
eigenelement of eigenvalue pλ.

Type 1. We use notations ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ C (1 is at the j-th place), I(n) is a
subset of {1, . . . , g} consisting of the single element n, and we denote xI(n) simply by xn. We �x
some j and we set c = ej . (4.3.2) shows that d(Vπc) is generated by xmj+1, . . . , xmj+bj . According
(4.3.4), ∀i = 1, . . . , bj the Hodge type of xmj+i is pc + i, qc + i. (4.3.5) implies that

ad X(xmj+i) = cj,ixmj+i+1 (4.3.7)

where cj,i is some non-0 coe�cient. Now, (2.7.2), (4.3.6) and (4.3.7) imply immediately that
bmj+i+1 = pbmj+i which is 4.3 for Type 1.

Type 2. The idea of the proof is the same. Firstly we consider c = (0, . . . , 0). B(Vπc) is the
set of subsets of {1, . . . , b1}. (4.3.3) shows that d(Vπc) is generated by xI , where I ⊂ {1, . . . , b1}.
(4.3.5) implies that for ∀i = 1, . . . , b1

(ad X)i(x∅) =
∑

I⊂{1,...,b1} such that l(I)=i

cIxI (4.3.8)

where coe�cients cI can be easily found using methods of [11]. For us it is su�cient to use the
fact that cI(i) ̸= 0. (2.7.2), (4.3.6) and (4.3.8) imply by induction by i that bi = pi.

Finally, we consider c = ej like in Type 1, but with the �rst zero omitted. B(Vπc) = (Z/2Z)b1×
{1, . . . , bj}. (4.3.3) shows that d(Vπc) is generated by xJ∪I(mj+i), where J ⊂ {1, . . . , b1} and
i ∈ {1, . . . , bj}. The Hodge type of xJ∪I(mj+i) is pc + l(J) + i, qc + l(J) + i. (4.3.5) implies that
for ∀i = 1, . . . , bj

(ad X)i−1(x∅∪I(mj+1)) =
∑

cJ,j,nxJ∪I(mj+n) (4.3.9)

the sum is over the pairs (J, n), J ⊂ {1, . . . , b1}, n ∈ {1, . . . , bj} such that l(J) + n = i.
Again it is su�cient to use the fact that c∅,j,i ̸= 0. As earlier (2.7.2), (4.3.6) and (4.3.9) imply

by induction by i that bmj+i = pi−1bmj+1. �
Remark 1. There are g−k (�rst type); g−k+1 (second type) relations between eigenvalues

of τp, τp,i on MP .

Remark 2. (4.1) is obviously a corollary of (4.3); numbers xc are products of some bi and
powers of p.

Remark 3. Formulas of (4.3) are not direct corollaries of (4.1), (2.7.2): it is easy to construct
an example of numbers ai having another form as in (4.3) but such that both (4.1), (2.7.2) are
satis�ed.

We denote m(τp), m(τp,i) by mp, mp,i respectively.
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Theorem 4.4. Relations between m2
p, mp,i are linear. Particularly, for the parabolic subgroup

P of the second type such that k = g, all bi are 1 (see Appendix, 8b) the only relation between
m2
p, mp,i is the following:

m2
p

(p+ 1)2
+

g∑
i=1

Yimp,i = 0 (4.5)

where mp,g = 1 and Yi are polynomials in p (particularly, they do not depend on g) de�ned as
follows: Y1 = −1 and Yn is de�ned by the recurrence relation

[
n−1∑
i=1

YiRn−1(i)](1 + p2)p−
(n−1)n

2 + [
n∑
i=1

YiRn(i)]p
−n(n+1)

2
+1

+[

n−2∑
i=1

YiRn−2(i)]p
− (n−2)(n−1)

2
+1 + 2 = 0 (4.6)

Proof. Follows immediately from (2.7.4) and (4.3). �
Y2, Y3 are given in the Appendix, Table 7.

Appendix

1. Some relations satis�ed by τp,i.

We set Wn(p) =
∏n
i=1(p

i+1). Let deg : Tp → Z be a map of the degree of a double coset (=
the quantity of ordinary cosets in it). We have equalities:

(τp)
2 =

g∑
i=0

τp,iWi(p); deg τp = Wg(p)

deg τp,k =
∑
d∈3g

C(d, k)

= p(g−k)(g−k+1)/2Wg(p)

Wk(p)

(pg − 1)(pg−1 − 1) · . . . · (pg−k+1 − 1)

(pk − 1)(pk−1 − 1) · . . . · (p− 1)
.

Particularly, deg τp,0 = p(g)(g+1)/2Wg(p), for g = 2: deg τp,0 = p6 + p5 + p4 + p3,

deg τp,1 = p4 + p3 + p2 + p,

for g = 3: deg τp,0 = p12 + p11 + p10 + 2p9 + p8 + p7 + p6,
deg τp,1 = p10 + p9 + 2p8 + 2p7 + 2p6 + 2p5 + p4 + p3 = p3(p2 + p+ 1)(p2 + 1)(p3 + 1),
deg τp,2 = p6 + p5 + p4 + p3 + p2 + p

Table 2. Numbers Rg(k).

Source: [1], Chapter 3, Lemma 6.19. We have: Rg(g) = 1, Rg(g − 1) = pg − 1.

Numbers Rg(k) :

g 2 3
k
0 p3 − p2 p6 − p5 − p3 + p2

1 p2 − 1 p5 − p2

2 1 p3 − 1
3 1
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Table 3. Explicit formulas for Satake map SG.

g = 2:
τ̃p = Φ0 +Φ1 +Φ2

τ̃p,1 =
1

p
(Φ0Φ1 +Φ1Φ2) +

p2 − 1

p3
Φ0Φ2

τ̃p,2 =
1

p3
Φ0Φ2

g = 3:
τ̃p = Φ0 +Φ1 +Φ2 +Φ3

τ̃p,1 =
1

p
(Φ0Φ1 +Φ1Φ2 +Φ2Φ3) +

p2 − 1

p3
(Φ0Φ2 +Φ1Φ3) +

p3 − 1

p4
Φ0Φ3

τ̃p,2 =
1

p3
(Φ0Φ2 +Φ1Φ3) +

p3 − 1

p6
Φ0Φ3

τ̃p,3 =
1

p6
Φ0Φ3

Table 4. Coe�cients hi of the Hecke polynomial.

g = 2:
h0 = p6 = p6h4

h1 = −p3τp = p3h3

h2 = p(τp,1 + p2 + 1)

h3 = −τp

h4 = 1

g = 3:
h0 = p24 = p24h8

h1 = −p18τp = p18h7

h2 = p13[τp,1 + (p2 + 1)τp,2 + (−p5 − p3 + 2p2 + 1)] = p12h6

h3 = −p9[τpτp,2 + τp] = p6h5

h4 = p6[τ2p + τ2p,2 + (−2p+ 2)τp,2 − 2pτp,1 + p6 + 2p4 − 2p3 − 2p+ 1]

h5 = −p3[τpτp,2 + τp]

h6 = p[τp,1 + (p2 + 1)τp,2 + (−p5 − p3 + 2p2 + 1)]

h7 = −τp

h8 = 1

Table 5. Numbers C̃(d, k).

C̃(d, k) depend only on q1 � the quantity of ones in d � and k; particularly, they don't
depend on g.
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k 0 1 2 3
q1
0 1
1 1− p−1 p−1

2 2− 2p−1 p−1 − p−3 p−3

3 3− 4p−1 + p−4 3p−1 − p−2 − p−3 − p−4 p−3 − p−6 p−6

Table 6. Explicit values of αG(χ)(τp,i).

We denote σi = σi(b∗).

g = 2: αG(χ)(τp,1) = p−1σ1σ2 + (p−1 − p−3)σ2 + p−1σ1

g = 3: αG(χ)(τp,1) = p−1(σ1 + σ1σ2 + σ2σ3) + (p−1 − p−3)(σ1σ3 + σ2) + (p−1 − p−4)σ3

αG(χ)(τp,2) = p−3(σ1σ3 + σ2) + (p−3 − p−6)σ3

Table 7. Polynomials Yi.

Y1 = −1
Y2 = p3 − p2 + p− 1
Y3 = −p7 + p6 − p5 + p4 + p3 − 2p2 + p− 1

8. Some properties of MP , P of two simplest types.2

(a) P = B, i.e. P of the �rst type, all bi = 1.

In this case MP is (generally) irreducible, of weight g(g+1)
2 , the packet ΠP consists of 2g−1

representations πc where c runs over the set of all subsets of 1, . . . , g factorized by the equivalence
relation: a subset is equivalent to the complementary subset. The partition (0.1.1) is trivial
(i.e. consists of one set). For any c ∈ ΠP S(c, P ) is trivial, and the Hodge number hi,j(MP )

(i + j = g(g+1)
2 ) is equal to the quantity of subsets of 1, . . . , g such that the sum of elements of

this subset is i, i.e.
g(g+1)

2∑
i=0

hi,j(MP )t
i =

g∏
i=1

(ti + 1)

(b) P of the second type, all bi = 1.

In this case MP is the sum of 2 (generally) irreducible submotives M−, M+ of weights
g(g+1)

2 − 1, g(g+1)
2 + 1 respectively, the packet ΠP consists of 2g−2 representations πc where c

runs over the set of all subsets of 2, . . . , g factorized like in (a). (0.1.1) is also trivial. For any
c ∈ ΠP S(c, P ) is the irreducible sl2-module of dimension 2, and the Hodge number hi,j(M−)

(i+ j = g(g+1)
2 − 1) is equal to the quantity of subsets of 2, . . . , g such that the sum of elements

of this subset is i, i.e.
g(g+1)

2
−1∑

i=0

hi,j(M−)ti =

g∏
i=2

(ti + 1)

8a. Hecke polynomial for the case M−, g = 3.

We consider numbers b1, b2, b3 for M
−. We have b1 = p, we denote s1 = b2 + b3, s2 = b2b3.

Roots of Hecke polynomial for M− are a0, a0b2, a0b3, a0b2b3, i.e. this polynomial is

fr 4 − a0(1 + s1 + s2)fr
3 + a20(s1 + s1s2 + 2s2)fr

2 − a0(1 + s1 + s2)p
5fr + p10

2Written by a request of a referee. This is an elementary corollary of results of Section 4.
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(recall that a20s2 = p5).
In terms of τp, τp,1 this polynomial is

fr 4 − τp
p+1 fr

3 + p2

(p2+1)(p−1)
[−(

τp
p+1)

2 + τp,1 + p6 − 2p5 + 2p4 − 2p3 + 2p2]fr 2 − p5τp
p+1 fr + p10.

It can be also obtained by taking the Hecke polynomial for g = 3, substituting τp,2 from (4.5)
and factorizing the obtained expression.

9. Another way to �nd relations between mp, mp,i.

Here we give this method only for the case P of Appendix, 8(b). Let α1, . . . , α2g−1 be the Weil
numbers of M−, so pα1, . . . , pα2g−1 are the Weil numbers of M+. We denote the Weil numbers
of MP by γ1, . . . , γ2g (the union of sets α1, . . . , α2g−1 and pα1, . . . , pα2g−1), so we have

σi(γ∗) =
i∑

j=0

pjσi−j(α∗)σj(α∗) (A1)

Further, σi(γ∗) = hi. From now we consider only the case g = 3.
Taking values of hi from Table 4 and taking into consideration that σ3(α∗) = p5σ1(α∗),

σ4(α∗) = p10 we get from (A1), i = 1, 2:

σ1(α∗) =
mp

p+1 ;

σ2(α∗) =
p(mp,1+(p2+1)mp,2−p5−p3+2p2+1−

m2
p

(p+1)2
)

p2+1

Further, the equality for h3 is equivalent to mpA = 0 and the equality for h4 is equivalent to
AB = 0, where the common multiple A is the left hand side of (4.5):

A =
m2

p

(p+1)2
+
∑3

i=1 Yimp,i = (p3 − p2 + p− 1)mp,2 + (−p7 + p6 − p5 + p4 + p3 − 2p2 + p− 1) +

m2
p

(p+1)2
−mp,1

and
B = − m2

p

(p+1)2
+

∑3
i=1 Y

+
i mp,i = (p3 + p2 + p + 1)mp,2 + (p7 + p6 + p5 + p4 + p3 + 2p2 + p +

1) − m2
p

(p+1)2
+ mp,1, where Y +

i are polynomials in p whose coe�cients are the absolute values of

the ones of Yi.

(4.5) shows that mp,∗ satisfy the condition A = 0 (but not mp = B = 0).
Substituting the condition A = 0 to the formula for σ2(α∗), we can slightly simplify it:

σ2(α∗) = p2(mp,2 − p4 + p3 − p2 + 1).

Notation Index

ai 2.1 α After 3.1.2

αG(χ) 2.1 αT (χ) 2.1

a 3.5 ai 3.5

bi 2.1 bI 0, Step 1

B Borel subgroup, 2.1 B(∗) Proof of 4.3

bi 0.2, 3.1.1 ci 3.3

c∗ coe�cients, after 4.3.6 c 3.3

C 3.3 di 3.5

D 3.5 Di 3.5

d Line between (4.3.1) and (4.3.2) Eg the unit matrix
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Eij , Ei,j the elementary matrix ej after 4.3.6

E �eld of coe�cients, Introduction fi Remark of 3.5

Fi 1.1 Φi 1.1

g genus G GSp2g

γ 3.2 h 0; 3.4

H(∗) 1.1 hi 1.5

θπχ Langlands element 2.7 k 0.2, 3.1.1

K 3.5 Kc Centralizer of µ 3.5

l length of an element of Ω mD 3.5

mDi 3.5 mi,mj after 0.2; after 3.1.1

mρ 3.5 Ms 1.1

M Levi subgroup 3.1 Mc Levi subgroup after 3.1.2

µ 3.4 M Introduction

MP after 0.1 m after 0.1

mp,mp,i above 4.4 mM Introduction

N 3.1 Nc after 3.1.2

N∗ 3.3 N normalizer

Ω Weyl group p prime, Introduction

pw 3.4 πc, πw 3.3

πχ 2.1 P parabolic subgroup 3.1

ΠP Section 0; 3.3 qw 3.4

r 2.6 Rn(i) 1.3

ρ 3.5 S(n) permutations group

S∗ Satake map, 1.1 σi i-th symmetric polynomial

S(c, b) 0, Step 2c; 3.5 S(c, P ) 0.3; 3.5

T diagonal in G, 1.1 Tp, Tp,i 1.1

τp, τp,i generators of Hecke algebra, 1.1 Ui 1.5

UI 1.5 Vi 1.5

Vπ after 4.3 VP after 4.3

w 3.3.1, 3.3.2 w 3.4

wI end of 3.2 W 2.6

W 3.3 xI 2.6

xn Between 4.3.6 and 4.3.7 X Shimura variety, Section 0.

xc 4.1 χ 2.1

Yi 4.6
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ÀÍÍÎÒÀÖÈß

Ñóùåñòâóþò ãèïîòåòè÷åñêèå ñîîòíîøåíèÿ ìåæäó L-ôóíêöèÿìè ïîäìîòèâîâ
ìíîãîîáðàçèé Øèìóðû è àâòîìîðôíûìè ïðåäñòàâëåíèÿìè ñîîòâåòñòâóþùèõ
ðåäóêòèâíûõ ãðóïï, ïðèíàäëåæàùèå Ëåíãëåíäñó � Àðòóðó. Â íàñòîÿùåé
ðàáîòå ýòè ñîîòíîøåíèÿ èñïîëüçóþòñÿ äëÿ ïîëó÷åíèÿ ÿâíûõ ñîîòíîøåíèé
ìåæäó ñîáñòâåííûìè ÷èñëàìè p-îïåðàòîðîâ Ãåêêå (îáðàçóþùèõ p-àëãåáðû Ãåêêå
ìíîãîîáðàçèÿ X) íà ïðîñòðàíñòâàõ êîãîìîëîãèé íåêîòîðûõ òàêèõ ïîäìîòèâîâ
â ñëó÷àå, êîãäà X � ìíîãîîáðàçèå Çèãåëÿ. Ýòîò ðåçóëüòàò òàêæå ÿâëÿåòñÿ
ãèïîòåòè÷åñêèì: ìåòîäû ïîäñ÷åòà òî÷åê íà ðåäóêöèÿõ X, îñíîâàííûå íà
ôîðìóëå ñëåäà Ñåëüáåðãà, íå èñïîëüçóþòñÿ.
Ïîëó÷åííûå ñîîòíîøåíèÿ îêàçûâàþòñÿ ëèíåéíûìè, êîýôôèöèåíòû â íèõ
ÿâëÿþòñÿ ìíîãî÷ëåíàìè îò p è óäîâëåòâîðÿþò ïðîñòîé ðåêóððåíòíîé ôîðìóëå.
Àíàëîãè÷íûé ðåçóëüòàò ìîæåò áûòü ëåãêî ïîëó÷åí äëÿ ïðîèçâîëüíîãî
ìíîãîîáðàçèÿ Øèìóðû.
Ïðåäñòàâëåííûé ðåçóëüòàò åñòü ïðîìåæóòî÷íûé øàã â îáîáùåíèè òåîðåìû
Êîëûâàãèíà î êîíå÷íîñòè ãðóïïû Òýéòà � Øàôàðåâè÷à ýëëèïòè÷åñêèõ êðèâûõ
àíàëèòè÷åñêîãî ðàíãà 0 èëè 1 íàä Q íà ñëó÷àé ïîäìîòèâîâ äðóãèõ ìíîãîîáðàçèé
Øèìóðû, â ÷àñòíîñòè, ìíîãîîáðàçèé Çèãåëÿ ðîäà 3, ñì. [9].
Èäåÿ äîêàçàòåëüñòâà: ñ îäíîé ñòîðîíû, óïîìÿíóòûå ôîðìóëû Ëåíãëåíäñà �
Àðòóðà äàþò (ãèïîòåòè÷åñêèå) ñîîòíîøåíèÿ íà ÷èñëà Âåéëÿ ïîäìîòèâà; ñ äðóãîé
ñòîðîíû, îòîáðàæåíèå Ñàòàêå ïîçâîëÿåò ïðåîáðàçîâûâàòü ýòè ñîîòíîøåíèÿ â
ñîîòíîøåíèÿ íà ñîáñòâåííûå ÷èñëà p-îïåðàòîðîâ Ãåêêå íà X.
Ñòàòüÿ òàêæå ñîäåðæèò îáçîð íåêîòîðûõ áëèçêèõ âîïðîñîâ, íàïðèìåð, ÿâíîãî
íàõîæäåíèÿ ïîëèíîìîâ Ãåêêå ìíîãîîáðàçèÿ X. Â ïðèëîæåíèè ñîäåðæàòñÿ
òàáëèöû äëÿ ñëó÷àåâ g = 2, 3.
Êëþ÷åâûå ñëîâà: ìíîãîîáðàçèÿ Çèãåëÿ, ïîäìîòèâû, ñîîòâåòñòâèÿ Ãåêêå,÷èñëà
Âåéëÿ, îòîáðàæåíèå Ñàòàêå.
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