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Introduction

Trace monoids have found many applications in computer science [3], [19]. M. Bednarczyk
[2] studied and applied the category of asynchronous systems. The author has proved that any
asynchronous system can be regarded as a partial trace monoid with action on a set. It allows us
to build homology theory for the category of asynchronous systems and Petri nets [9]. It should
be noted that the homology theory was introduced and studied for higher dimensional automata
in [6]. E. Haucourt [7] applied the Baues-Wirsching homology.

The paper is a survey of the author's results on the homology groups of models for concur-
rency. We study the relationship between the cubical homology of generalized tori and homology
of a trace monoid action on a set. We build the algorithms for computing the homology groups
of asynchronous systems, elementary Petri nets, and Mazurkiewicz trace languages. It allows
us to solve the problem posed in [9, Open problem 1] constructing an algorithm for computing
homology groups of the elementary Petri nets.

1. Trace monoids and their partial actions

This section is devoted to the basic de�nitions and the problems that have arisen.

1.1. Notations

Let Set be a category of all sets and maps and let Ab be a category of all Abelian groups
and homomorphisms. We denote by Z the additive group of integers. Let N denotes the set of
nonnegative integers or the free monoid {1, a, a2, · · · } generated by one element. Given a category
A, we denote the opposite category by Aop. Let ObA denotes the class of all objects and MorA
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the class of all morphisms in category A. Given objects a, b ∈ ObA, we denote by A(a, b) the set
of all morphisms a→ b. For any small category C , functors F : C → A will be called diagrams
of objects in A on C . In this case, along with the notation F : C → A we use the notation
{F (c)}c∈C . The category AC of functors C → A is called a diagram category.

Let ∆Z : C → Ab be a diagram having the value Z at each c ∈ ObC and the value 1Z at
each α ∈MorC .

Given a family of Abelian groups {Aj}j∈J , the direct sum is denoted by
⊕
j∈J

Aj . Elements of

summands are denoted as pairs (j, g) with j ∈ J and g ∈ Aj . If Aj = A for all j ∈ J , then this
direct sum is denoted by

⊕
j∈J

A or A(p) where p = |J | is a cardinal number.

1.2. Trace monoids

Let E be a set and let I ⊆ E×E be an arbitrary subset. The set I ⊆ E×E is an independence
relation on E if the following conditions are met:

• (∀a ∈ E)(a, a) /∈ I ,

• (∀a ∈ E)(∀b ∈ E) (a, b) ∈ I ⇒ (b, a) ∈ I.

Let E∗ be a free monoid generated by a set E. It consists of the words in alphabet E. The
binary operation is de�ned as the concatenation of words (a1 · · · am, b1 · · · bn) 7→ a1 · · · amb1 · · · bn.
The empty word is denoted by 1.

De�nition 1.1. Let I be an independence relation on a set E. A trace monoid (or free par-
tially commutative monoid) M(E, I) is the factor monoid E∗/(≡) by a least equivalence relation
for which uabv ≡ ubav, for all (a, b) ∈ I, u ∈ E∗, v ∈ E∗. Elements a, b ∈ E for which (a, b) ∈ I
are called commuting generators.
This de�nition is more general than the one given in [3] since we do not demand that E should
be �nite.

For example, if E = {a, b}, I = {(a, b), (b, a)}, then M(E, I) ∼= N2 is a free commutative
monoid generated by two elements.

If I = ∅, then M(E, I) = E∗.
Any element w = a1 · · · an ∈M(E, I) of a trace monoid can be interpreted as �nite sequence

of instructions a1, a2, · · · , an in a program. Relation I consists of pairs (a, b) instructions which
can be executed concurrenrly.

1.3. State space

A partial map f : E ⇀ E′ between sets E and E′ is a relation f ⊆ E × E′ for which
(e, e′1) ∈ f & (e, e′2) ∈ f implies e′1 = e′2. Let PSet be a category of all sets and partial maps
between them. Any trace monoidM(E, I) can be considered as a category with the unique object
denoted by o(M(E, I)).

A partial trace monoid action of M(E, I) on a set S is a functor S : M(E, I)op → PSet such
that its value at o(M(E, I)) equals S. We denote S(w)(s) by s · w. A state space (M(E, I), S)
consists of a trace monoid M(E, I) with a partial action on a set S. A state space (M(E, I), S)
is determined by partial maps (−) · a : S ⇀ S corresponding to a ∈ E. Hence, it can be given by
a directed graph with vertexes s ∈ S and labeled edges s

a→ s · e.
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For example, if E = {a, b} and I = {(a, b), (b, a)}, then the directed graph with labeled edges
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determines the action for which s0 · a = s1, s0 · b = s2, s1 · a = s4, s1 · b = s3, s2 · a = s3. But
s2 · b, s3 · a, s3 · b, s4 · a, and s4 · b are not de�ned.

1.4. Augmented state space

In order to make the action (M(E, I), S) to be total, we add the state ∗ and extend the
partial maps (−) · a : S ⇀ S to the (total) maps (−) · a : S ⊔ {∗} → S ⊔ {∗} acting by s · a = ∗
if s · a is not de�ned. Let S∗ = S ⊔ {∗} and ∗ · a = ∗. Then the pair (M(E, I), S∗) consists of
a trace monoid with the total action on the set S∗. This pair is called the state space with an
augmentation.

For example, the previous state space gives the augmented state space
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Let (M(E, I), S) be a state space. Consider an augmented state category K∗(S) as follows.
Its class of objects is set S∗ = S ⊔ {∗}. Morphisms s→ s′ are triples (s, w, s′) of s ∈ S∗, s

′ ∈ S∗,
w ∈M(E, I).

For any subset Σ ⊆ S∗, let K(Σ) ⊆ K∗(S) denotes a full subcategory with the class of objects
Σ. For Σ = S, K(S) ⊆ K∗(S) will be called a state category.

1.5. Homology groups of a small category

Let C be a small category and let F : C → Ab be a functor into the category of Abelian
groups and homomorphisms.

De�nition 1.2. Let C be a small category and let F : C → Ab be a functor into the category
of Abelian groups and homomorphisms. Let C⋄(C , F ) denotes a chain complex of Abelian groups

Cn(C , F ) =
⊕

c0→···→cn

F (c0), n > 0,
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and homomorphisms dn =
n∑

i=0
(−1)idni : Cn(C , F ) → Cn−1(C , F ), n > 0, where dni (c0

α1→ c1
α2→

· · · αn→ cn, a) =
(c1

α2→ · · · αn→ cn, F (c0
α1→ c1)(a)) , if i = 0

(c0
α1→ · · · αi−1→ ci−1

αi+1αi→ ci+1
αi+2→ · · · αn→ cn, a) , if 1 6 i 6 n− 1

(c0
α1→ · · · αn−1→ cn−1, a) , if i = n

For every integer n > 0, the n-th homology group Hn(C , F ) of C with coe�cients in F is the
factor groups Ker (dn)/Im (dn+1).

It is well known that the functors Hn(C⋄(C ,−)) : AbC → Ab are isomorphic to the left
derived functors lim−→

C
n of the colimit functor lim−→

C : AbC → Ab.

Hence, the Abelian groups Hn(C , F ) can be de�ned as homology groups of the complex

0← lim−→
CP0 ← lim−→

CP1 ← lim−→
CP2 ← · · ·

obtained from a projective resolution

0← F ← P0 ← P1 ← P2 ← · · ·

of F ∈ AbC by the application of the functor lim−→
C .

1.6. Homology of state categories, asynchronous systems and Petri nets

For an arbitrary small category C , let ∆Z : C → Ab be the functor taking constant values
Z at objects and 1Z : Z→ Z at morphisms of C .

An asynchronous system can be de�ned as a triple (S, s0,M(E, I)) where (S,M(E, I)) is a
state space and s0 ∈ S is a distinguished element [9]. Elements of S(s0) = {s·µ|µ ∈M(E, I)} ⊆ S
are reachable states. Homology groups of an asynchronous system with coe�cients in an arbitrary

functor F : K(S)→ Ab are Abelian groups lim−→
K(S(s0))
n F |K(S(s0)).

For a set B, the set of all its subsets is denoted by 2B.
A CE net [9] or Petri net [24] is a quintuple (B,E, pre, post, s0) consisting of �nite sets B

and E, the maps pre, post : E → 2B, and a subset s0 ⊆ B.
Let N = (B,E, pre, post, s0) be a CE net. Relation I ⊆ E ×E is de�ned as a set of all pairs

(a, b) for which (pre(a) ∪ post(a)) ∩ (pre(b) ∪ post(b)) = ∅. We assign to every element e ∈ E a
partial map (−) ·e : 2B ⇀ 2B which is de�ned as s ·e = (s\pre(e))∪post(e) for all s ⊆ B meeting
the condition (pre(e) ⊆ s) & (post(e) ∩ s = ∅) [19]. This de�nes a partial action of M(E, I) on
set 2B. Assuming S = 2B, we get an asynchronous system (S, s0,M(E, I)), which corresponds
to the CE net N = (B,E, pre, post, s0). The homology groups of Hn(N ) were de�ned in [9] as

lim−→
K(S(s0))
n ∆Z where S(s0) is a set of all reachable states.

For computing the groups H1(K(S),∆Z), an algorithm was built in [9]. It is suitable for the
calculation of H1(N ). The following question was formulated in [9].

Problem 1. Constructing an algorithm for computing the integral homology groups of CE
nets.

By the de�nition ofHn(N ), this problem will be solved when we �nd an algorithm to compute
the homology groups Hn(K(S),∆Z) for the state categories. Problem 1 could not be solved for
a long time. We present a way to solve this problem. Detailed proof is published in the preprint
[12].

Let M(E, I) be a trace monoid. Its generators a, b ∈ E are called to be independent if
(a, b) ∈ I. In [9], it was proved that if M(E, I) does not contain triples of pairwise independent
generators, then Hn(K∗(S),∆Z) = 0 for n > 2. The following conjecture was put forward in [9].
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Problem 2. Let n > 0 be the maximal number of pairwise independent generators. Prove
that Hk(K∗(S), F ) = 0 for any k > n and for any functor F : K∗(S)→ Ab.

In the case of �nite E, the conjecture was proved by L. Yu. Polyakova [23]. A complete
solution of Problem 2 is given in [10].

2. Semicubical sets and generalized tori

Let me remind you of the de�nition of semicubical set and its geometric realization. We
introduce generalized tori and assign a semicubical set to every partial trace monoid action.

2.1. Semicubical sets

Let 2+ be the category of posets In, n ∈ N, where I is the set {0, 1} ordered by 0 < 1.
Morphisms in 2+ are increasing maps admitting a decomposition in the composition of maps
δk,εi : Ik−1 → Ik, 1 6 i 6 k, ε ∈ I de�ned as δk,εi (x1, · · · , xk−1) = (x1, · · · , xi−1, ε, xi, · · · , xk−1).

A semicubical set is any functor X : 2op
+→Set. In [6], it is called precubical set. Morphisms

between semicubical sets are de�ned as natural transformations. Any semicubical set can be
given by a pair (Xn, ∂

n,ε
i ) consisting of sequence of sets (Xn)n∈N and a family of maps ∂n,ε

i :
Xn → Xn−1, de�ned for 1 6 i 6 n, ε ∈ {0, 1}, and satisfying to the condition

∂n−1,α
i ◦ ∂n,β

j = ∂n−1,β
j−1 ◦ ∂n,α

i , for α, β ∈ {0, 1}, n > 2 and 1 6 i < j 6 n.

These maps will be equal ∂k,ε
i = X(δk,εi ).

Semicubical objects in an arbitrary category A are de�ned similarly as functors 2op
+ → A.

2.2. Geometric realization

Let X ∈ Set2
op
+ be a semicubical set. Its geometric realization [4] is de�ned as the topological

quotient space

|X|2+ =
⨿
n∈N

Xn × [0, 1]n/ ≡

with respect to the smallest equivalence relation satisfying

(∂n,ν
i x, t1, · · · , tn−1) ≡ (x, t1, · · · , ti−1, ν, ti, · · · , tn−1),

for all n > 0, ν ∈ {0, 1}, 1 6 i 6 n, ti ∈ [0, 1]. Geometric realization determines the functor
| − |2+ assigning to every morphism of semicubical sets f : X → Y the continuous map |f |2+ :
|X|2+ → |Y |2+ such that |f |2+(x, t1, · · · , tn) = (f(x), t1, · · · , tn). The functor | − |2+ can be
constructed from the functor H : 2+ → Top, H( In) = [0, 1]n, as in [5, Prop. II.1.3] by extending
to the category of semicubical sets. It follows from [5, Prop. II.1.3] that |−|2+ preserves colimits.

2.3. Generalized tori

For a trace monoid M(E, I) with a total order relation < on E, the generalized torus T (E, I)
is a semicubical set (Tn(E, I), ∂n,ε

i ) such that

Tn(E, I) = {(a1, · · · , an) ∈ En : ai < aj & (ai, aj) ∈ I for all 1 6 i < j 6 n}

and ∂n,ε
i (a1, · · · , an) = (a1, · · · , ai−1, ai+1, · · · , an), for all n > 0, 1 6 i 6 n, ε ∈ {0, 1}.

For example, if E = {a1, · · · , an} ordered by a1 < a2 < · · · an with I consisting of all pairs
(ai, aj) for which i ̸= j, then the geometric realization |T (E, I)|2+ is homeomorphic to the usual
n-dimensional torus.
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2.4. Semicubical set of a state set

Let (M(E, I), S) be a state space with a total relation < on E. Assign the semicubical set
Q(E, I, S) to it with

Qn(E, I, S) = {(x, a1, · · · , an) ∈ S∗ × Tn(E, I)|
ai < aj & (ai, ai) for all 1 6 i < j 6 n}.

with the boundary maps ∂n,ε
i (x, a1, · · · , an) = (x · aεi , a1, · · · , ai−1, ai+1, · · · , an) for 1 6 i 6 n,

n > 1, ε ∈ {0, 1}. Here a0 = 1 and a1 = a.
For any state space (M(E, I), S), a set of all triples (s, a, s′) ∈ S ×E × S for which s · a = s′

is denoted by Tran .
Example 2.1. Consider the state space consisting of S = {s0, s1, s2, s3, s4, s5}, E = {a, b},

I = {(a, b), (b, a)}. Elements in Tran are triples (s, e, s′) corresponding to arrows s
e→ s′ in the

following diagram:

s3
a // s4

a // s5

s0
a //

b

OO

s1
a //

b

OO

s2

b

OO

The topological space |Q(E, I, S)|2+ can be obtained from the union of unit squares

⋆
a

⋆
a // ⋆

⋆
a

b

⋆
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b

⋆

b
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⋆
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by identifying the vertexes ⋆ with each other, and by identifying the segments ⋆
a

⋆ with

each other, and with similar identi�cations for the segments ⋆
b

⋆ and squares

⋆

b

a
⋆

b

⋆
a

⋆

Geometric realization can be interpreted as the topological space of intermediate states of
computational processes.

2.5. Homology groups of semicubical sets

To solve Problems 1 and 2, we need some information from the article [15].

Given a semicubical set X ∈ Set2
op
+ , let 2+/X be the category with objects σ ∈

⨿
n∈N

Xn.

Its morphisms between σ ∈ Xm and τ ∈ Xn are triples (α, σ, τ), α ∈ 2+( Im, In), satisfying
the relation X(α)(τ) = σ. Homological system on a semicubical set X is an arbitrary functor
F : (2+/X)op → Ab.
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Given a semicubical set X and a homological system F , consider Abelian groups Cn(X,F ) =⊕
σ∈Xn

F (σ). Let dn,εi : Cn(X,F )→ Cn−1(X,F ) be the homomorphisms

⊕
σ∈Xn

F (σ)
dn,ε
i−→

⊕
σ∈Xn−1

F (σ)

de�ned on the direct summands for 1 6 i 6 n, ε ∈ I = {0, 1}, σ ∈ Xn, f ∈ F (σ) by the equation

dn.εi (σ, f) = (∂n,ε
i (σ), F (δn,εi , ∂n,ε

i (σ), σ)(f)) .

For n > 0, the homology groups Hn(X,F ) of semicubical set X with coe�cients in F are
de�ned as homology of the complex C⋄(X,F ) consisting of the groups Cn(X,F ) =

⊕
σ∈Xn

F (σ)

and di�erentials dn =
n∑

i=1
(−1)i(dn,1i −d

n,0
i ). Abelian groupsHn(X,∆Z) are called the nth integral

homology groups.
Proposition 2.1. [15, Theorem 4.3] For any semicubical set X and a homological system F

on X there are isomorphisms lim−→
(2+/X)op

n F ∼= Hn(X,F ), for all n > 0.

Proposition 2.2. [13, Prop. 2] For an arbitrary semicubical set X and integer n > 0,
the group Hn(X,∆Z) is isomorphic to the nth singular homology group of the topological space
|X|2+ .

3. Homology of factorization category

In [17], Leech cohomology groups of monoids were introduced. In this section, we study and
apply Leech cohomology and homology groups for trace monoids.

3.1. Factorization category

Let C be a small category. Given α ∈ MorC , we denote its codomain by codα its codomain
and its domain by domα.

The factorization category Fact(C ) has objects Ob (Fact(C )) = MorC , and for every α, β ∈
Mor (C ) each element of Fact(C )(α, β) is determined by a pair (f, g) of f, g ∈ Mor (C ) making
commutative the diagram

codα
g // codβ

domα

α

OO

domβ

β

OO

f
oo

For example, any monoid M considered as a small category with a unique object has a fac-
torization category Fact(M) such that Ob (Fact(M)) = M . Morphisms are given by quadruples

α
(f,g)→ β of f, α, β, g ∈M satisfying gαf = β.

3.2. Leech homology of generalized tori

Leech homology groups of monoid M with coe�cients in functor F : Fact(M)op → Ab are
de�ned as the groups Hn(Fact(M)op, F ), n > 0.

Given trace monoid M(E, I), let S : 2+/T (E, I)→ Fact(M(E, I)) be the functor assigning
to each (a1, · · · , an) ∈ Ob2+/T (E, I) the object a1 · · · an ∈M(E, I) = ObFact(M(E, I)). Each
morphism of the category 2+/T (E, I) can be decomposed into a composition of morphisms of
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the form (δn,εi ), (a1, · · · , ai−1, ai+1, · · · , an), (a1, · · · , an). Therefore, it su�ces to de�ne S on the
morphisms of this kind. Let

S(δn,εi , (a1, · · · , ai−1, ai+1, · · · , an), (a1, · · · , an)) =

(a1 · · · ai−1ai+1 · · · an
(a1−ε,aε)−→ a1 · · · an)

where a0 = 1, and a1 = a.
Theorem 3.1. [14] If E does not contain in�nite subsets of pairwise independent elements,

then there are natural in F ∈ AbFact(M(E,I))op isomorphisms

Hn(Fact(M(E, I))op, F ) ∼= Hn(T (E, I), F ◦ Sop).

In the case of a �nite set E, this theorem allows us to construct a �nite complex for comput-
ing the Leech homology groups.

3.3. Global dimension of a trace monoid

Cohomologies of small categories are de�ned as right derived functors of lim←−C : AbC → Ab.

Let C be a small category and let F : C → Ab be a functor. The category AbC has enough
injectives. Hence there is an injective resolution 0 → F → F 0 → F 1 → F 2 → · · · . The functor
lim←−C : AbC → Ab leads to a complex

0
d−1

→ lim←−CF
0 d0→ lim←−CF

1 d1→ lim←−CF
2 → · · ·

The nth cohomology group of C with coe�cients in F is de�ned as Hn(C , F ) = Ker dn/Im dn−1.
Given semicubical set X and a functor G : 2+/X → Ab, de�ne cohomology groups Hn(X,G)

of X with coe�cients in G similarly to homology groups of semicubical set. It is easy to see that
Hn(X,G) ∼= Hn(2+/X,G).

The proof of [14, Theorem 2.2] contains the assertion that for each α ∈ ObFact(M(E, I)),
Hn(S/α,∆Z) = 0 for n > 0, and H0(S/α,∆Z) = Z. Hence, it follows from the Oberst Theorem
[11, Prop. 1] the following assertion.

Theorem 3.2. For any functors F : Fact(M(E, I)) → Ab and for all n > 0, there are
isomorphisms Hn(Fact(M(E, I)), F ) ∼= Hn(T (E, I), F ◦ S).

Given Abelian category A, its global dimension gl.dimA is a supremum of n > 0 for which the
functors Ext n(−,=) are not equal to 0. Let C be a small cancellative category in the sense of [8].
By [8, Theorem 4.2], its Hochschild-Mitchell dimension dimC equals cohomological dimension
of Fact(C ). For any Abelian category A with exact coproducts, Mitchell proved the inequality
gl.dimAC 6 dimC +gl.dimA [20]. It follows from [8, Theorem 5.1] that this inequality is true for
A with coproducts and enough projectives. It follows from Theorem 3.2 that dimM(E, I) ≤ n
when E does not contains n+ 1 pairwise independent elements. If M(E, I) contains n pairwise
independent generators, then the free commutative monoid Nn is a retract of M(E, I). It follows
from [20, Prop. 11.6] the ineguality gl.dimAM(E,I) > gl.dimANn

. It leads us to the following
generalization of Hilbert's Syzygy Theorem.

Theorem 3.3. [11] Let A be an Abelian category with coproducts and let M(E, I) be a trace
monoid. If a maximal cardinality of pairwise independent elements of E equals n <∞, then

gl.dimAM(E,I) = n+ gl.dimA

in each of the following cases:
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(i) A has exact coproducts (i.e. A satis�es to the axiom AB4),

(ii) A has enough projectives.

In the �rst case (i), this is proved in [11]. For proof for the second case (ii) will be published
in Sib. Math. J.

Conjecture 1. This is true for all Abelian categories with coproducts.
Example 3.1. Let k be a �eld and E = {x1, x2, x3, x4, x5} be a set of variables. Suppose

that the independence relation I ⊂ E × E is given by the following graph with vertexes E and
edges I:

x1 x2

CC
CC

CC
CC

x3

x5 x4

{{{{{{{{

The noncommutative polynomial ring in �ve variables is denoted by k⟨x1, x2, x3, x4, x5⟩. Let (I)
be the ideal of k⟨x1, x2, x3, x4, x5⟩ generated by polynomials xuxv − xvxu for which (xu, xv) ∈ I,
1 6 u, v 6 5. The maximal number of independent variables equals 2. By Theorem 3.3, we have

gl.dim k⟨x1, x2, x3, x4, x5⟩/(I) = 2.

3.4. Homology of augmented state category

Let us consider the functor cod : Fact(C ) → C , α 7→ cod (α), (α
(f,g)−→ β) 7→ g. For any

c ∈ ObC , Hn(cod /c,∆Z) = 0 for all n > 0 and H0(cod /c,∆Z) = Z.
Proposition 3.4. Given a small category C and a functor F : C op → Ab, there exist

isomorphisms lim−→
C op

n F ∼= lim−→
Fact(C )op

n F ◦ cod op for all n > 0.

Given a state space (M(E, I), S∗) and a functor F : K∗(S) → Ab there are isomorphisms
Hn(K∗(S), F ) ∼= Hn(M(E, I)op, F ) where F =

⊕
x∈S∗

F (x) is Abelian group with the right action

(x, f) · µ = (xµ, F (x
µ→ xµ)(f)). By Proposition 3.4 and Theorem 3.1 we obtain the following

complex for the computing the homology of the state space.
Theorem 3.5. [14] If M(E, I) contains no in�nite subsets of pairwise independent genera-

tors, then Hn(K∗(S), F ) are isomorphic to nth homology groups of the complex

0←
⊕
x∈S∗

F (x)
d1←

⊕
(x,a1)∈Q1(E,I,S)

F (x)
d2←

⊕
(x,a1,a2)∈Q2(E,I,S)

F (x)← · · ·

· · · ←
⊕

(x,a1,··· ,an−1)∈Qn−1(E,I,S)

F (x)
dn←−

⊕
(x,a1,··· ,an)∈Qn(E,I,S)

F (x)← · · · ,

with di�erentials

dn(x, a1, · · · , an, f) =
n∑

s=1

(−1)s((x · as, a1, · · · , âs, · · · , an, F (x
as→ x · as)(f))

− (x, a1, · · · , âs, · · · , an, f))
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So, we have the following solution of Problem 2.
Corollary 3.6. [10] If the cardinality of pairwise generators of M(E, I) not greater than n,

then Hk(K∗(S), F ) = 0 for all k > n.
In addition, we have a complex of �nitely generated Abelian groups for calculating the integral

homology Hn(K∗(S),∆Z) of augmented state category. This result has found applications [16].
Example 3.2. Let us consider a state space Σ = (S,E, I,Tran ), S = {s0, s1}, E = {a, b},

I = {(a, b), (b, a)}, Tran = {(s0, a, s0), (s0, b, s1), (s1, a, s1)}. The set consists of two elements
with the partial action of the free commutative monoid generated by a and b. Let us calculate
the groups Hn(K∗(S),∆Z).

We add the state ⋆

s0

a




b

// s1

a




b

// ⋆

a




b

qq

and write down the matrixes of di�erentials. Since |S∗| = 3, |Q1(E, I, S∗)| = 6, |Q2(E, I, S∗)| = 3,
the complex consists of Abelian groups

0← Z3 d1← Z6 d2← Z3 ← 0

The di�erential d1(s, e) = −s · e+ s is de�ned by the matrix:

(s0, a) (s0, b) (s1, a) (s1, b) (∗, a) (∗, b)
s0
s1
⋆

 +1− 1 +1 0 0 0 0
0 −1 +1− 1 +1 0 0
0 0 0 −1 −1 + 1 −1 + 1


The di�erential d2(s, e1, e2) = −(s ∗ e1, e2) + (s, e2) + (s ∗ e2, e1)− (s, e1) has the matrix:

(s0, a, b) (s1, a, b) (⋆, a, b)

(s0, a)
(s0, b)
(s1, a)
(s1, b)
(⋆, a)
(⋆, b)



−1 0 0
−1 + 1 0 0
+1 −1 0
0 −1 + 1 0
0 +1 +1− 1
0 0 −1 + 1


Using the reduction of these matrices to Smith normal form, we obtain H0(K∗(S),∆Z) = Z,
H1(K∗(S),∆Z) = Z2, H2(K∗(S),∆Z) = Z1, and Hn(K∗(S),∆Z) = 0 for all n > 3.

3.5. Homology of Mazurkiewicz trace languages

Given v, w ∈ M(E, I), we let v 6 w if there exists u ∈ M(E, I) such that vu = w. This
relation makesM(E, I) into a partially ordered set, which we denote by P (E, I). A trace language
is any set of traces.

De�nition 3.3. A set L ⊆ M(E, I) is pre�x closed if for all v ∈ M(E, I) and w ∈ L the
relation v < w implies v ∈ L.

Let L ⊆M(E, I) be a pre�x closed trace language. We have the pair (M(E, I), L) consisting
of a trace monoid with the following partial action for v ∈ L, µ ∈M(E, I).

v · µ =

{
vµ, if vµ ∈ L
undefined, otherwise.

For any functor F : K∗(L)→ Ab, we can consider the homology groups Hn(K∗(L), F ). The
groups Hn(K∗(L),∆Z) are called integral homology groups.
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3.6. Homology groups of the poset of traces

Given pre�x closed language L ⊆ M(E, I), let Z[L] : P (E, I) → Ab be a functor with
values Z[L](v) = Z for v ∈ L and Z[L](v) = 0, otherwise. For u 6 v ∈ L, we will de�ne
Z[L](u 6 v) = 1Z. We study the homology groups Hn(P (E, I), Z[L]) of the poset P (E, I) and
their relationship with Hn(K∗(L),∆Z).

Let pn denotes the cardinality of the set of n-cliques in the graph (E, I). In particular, p0 = 1
as the number of empty subsets in E, p1 = |E|. For example, if (E, I) is the graph

b d

a

��������
c

>>>>>>>>

��������
e

then p0 = 1, p1 = 5, p2 = 4, p3 = 1.
Theorem 3.7. [13] Hn(K∗(L),∆Z) ∼= Hn(P (E, I), Z[L])⊕ Z(pn).

Given a partially ordered set P , let H̃n(P ) be the reduced singular homology of the classifying
space B(P ). It is not hard to see that Hn(P (E, I), Z[L]) ∼= H̃n−1(P (E, I) \ L) for n > 1.

Corollary 3.8. [13] Hn(K∗(L),∆Z) ∼= H̃n−1(P (E, I) \ L)⊕ Z(pn) for all n > 1.
We see that H1(K∗(L),∆Z) is a free Abelian group.
Conjecture 2. For any trace monoid M(E, I) with partial action on a set S, the Abelian

group H1(K∗(S),∆Z) is free.
The following assertions on pre�x closed trace languages are proved in [13]:

• If I = {(a, b) ∈ E×E|a ̸= b} and henceM(E, I) is commutative, thenHn(P (E, I), Z[L]) =
0 for all n > 1.

• If I = ∅ and hence M(E, I) is free, then Hn(P (E, I), Z[L]) = 0 for all n > 2.

• For arbitrary �nitely generated Abelian groups A1, A2, ..., An with free A1, there exists a
trace monoid M(E, I) such that Hn(P (E, I), Z[{1}]) ∼= Ak for all 1 6 k 6 n.

3.7. Baues-Wirsching homology of the state category

Let M(E, I) be an arbitrary trace monoid and let X be a right M(E, I)-set. It should be
remembered that K(X) denotes the category of states with objects x ∈ X and morphisms

x
µ→ xµ for x ∈ X and µ ∈ M(E, I). Considering M(E, I) as a category with a unique ob-

ject we can de�ne a functor U : K(X) → M(E, I) assigning to each morphism x
µ→ xµ the

morphism µ ∈ M(E, I). Applying the functor Fact to U , we can consider a functor Fact(U) :
Fact(K(X)) → Fact(M(E, I)). For any functor F : Fact(K(X))op → Ab, there exists its Kan
extension LanFact(U)op : Fact(K(M(E, I)))op → Ab [18].

Theorem 3.9. [12] Given functor F : Fact(K(X))op → Ab, there exist isomorphisms

Hn(Fact(K(X))op, F ) ∼= Hn(Fact(M(E, I))op,LanFact(U)opF )

for all n > 0.

3.8. The solution of Problem 1

Let (M(E, I), S) be a trace monoid with a partial action on S and let K(S) ⊂ K∗(S) be
the state category de�ned in 1.4. Let ZS denotes the free Abelian group generated by S. Let
Qn(E, I, S) = {(s, a1, · · · , an) ∈ S × Tn(E, I)|sa1 · · · an ̸= ⋆}.
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Theorem 3.10. [12] Given a state space (M(E, I), S), the groups Hn(K(S),∆Z) are iso-
morphic to the homology groups of the complex

0← Z(S) d1← ZQ1(S,E, I)
d2← ZQ2(S,E, I)← · · ·

· · · ← ZQn−1(S,E, I)
dn← ZQn(S,E, I)← · · ·

with di�erentials

dn(s, a1, · · · , an) =
n∑

i=1

(−1)i(sai, a1, · · · , ai−1, ai+1, · · · , an)

−
n∑

i=1

(−1)i(s, a1, · · · , ai−1, ai+1, · · · , an)

Let us consider an example of computing the homology groups of a state category.
Example 3.4. Let M(E, I) be a commutative trace monoid generated by two elements

and let us suppose that S consists of two elements. That is E = {a, b}, I = {(a, b), (b, a)},
S = {s0, s1}. The generators act by s0a = s0, s0b = s1, s1a = s1 as it is shown in the following
picture.

s0

a




b

// s1

a





The complex consists of Abelian groups

C0 = Z{s0, s1}, C1 = Z{(s0, a), (s0, b), (s1, a)}, C2 = Z{(s0, a, b)}.

We have a complex 0← Z2 d1← Z3 d2← Z← 0← 0← · · · . The di�erential d1 is described by the
following matrix.

(s0, a) (s0, b) (s1, a)

s0
s1

(
1− 1 1 0
0 −1 1− 1

)
The di�erential d2 has the following matrix.

(s0, a, b)

(s0, a)
(s0, b)
(s1, a)

 −1
−1 + 1
+1


Using the reduction to Smith normal forms, we get

H0(K(S),∆Z) = Z, H1(K(S),∆Z) = Z, Hn(K(S),∆Z) = 0 for all n > 2.

3.9. Homology groups of CE nets

For the computing the homology groups of a �nite CE net, we �rst construct the state space
(M(E, I), S(s0)). Then we can compute Hn(K(S(s0)),∆Z) by the method described above.
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Let, for example, N be the following CE net.

a

��

b

��
p⃝

!!C
CC

CC
CC

C ⃝ q

||zz
zz
zz
zz

c

The corresponding trace monoid M(E, I) is de�ned by E = {a, b, c} and I = {(a, b), (b, a)}.
The set of states S consists of all subsets s ⊆ {p, q}. The corresponding asynchronous system
(M(E, I), S, s0) is de�ned by s0 = ∅ and a partial action of M(E, I) shown in the following
�gure.

∅
a

{{xx
xx
xx
xx
x

b

##F
FF

FF
FF

FF

{p}

b ""F
FF

FF
FF

F
{q}

a
||yy
yy
yy
yy

{p, q}

c

OO

That is ∅ · a = {p}, ∅ · b = {q}, {p} · b = {p, q}, {q} · a = {p, q}, and {p, q} · c = ∅. All states are
admissible. Hence S(s0) = S. The complex consists of the Abelian groups

C0 = Z{∅, {p}, {q}, {p, q}} ∼= Z4,

C1 = Z{(∅, a), (∅, b), ({p}, b), ({q}, a), ({p, q}, c)} ∼= Z5,

C2 = Z{(∅, a, b)} ∼= Z.

The di�erential d1(s, e) = −s · e+ s has the following matrix.

(∅, a) (∅, b) ({p}, b) ({q}, a) ({p, q}, c)
∅
{p}
{q}
{p, q}


1 1 0 0 0
−1 0 1 1 −1
0 −1 0 0 0
0 0 −1 −1 1


We have d2(∅, a, b) = −(∅ · a, b) + (∅, b) + (∅ · b, a)− (∅, a). Hence, the matrix of d2 is described
by the matrix

(∅, a, b)
(∅, a)
(∅, b)

({p}, b)
({q}, a)
({p, q}, c)


−1
1
−1
1
0


We have the following complex for the computing Hn(N ) for all n > 0.

0← Z4 d1← Z5 d2← Z← 0← 0← · · ·

Using the Smith normal forms, we get H0(N ) = Z, H1(N ) = Z, and Hn(N ) = 0, for all n > 2.
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4. Conclusion

The author believes that the results will help in the study of the Goubault homology of
asynchronous systems as the homology groups Hn(K(S), Zε), ε ∈ {0, 1}, with coe�cients in
some suitable systems of Abelian groups. You can explore the n-deadlocks for asynchronous
systems. It is possible to �nd homological signs for the existence of bisimilar equivalence between
asynchronous systems, Petri nets, and trace languages.
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ABSTRACT

Ñòàòüÿ ñîäåðæèò îáçîð ðåçóëüòàòîâ àâòîðà â îáëàñòè àëãåáðàè÷åñêîé òîïîëîãèè,
ïðèìåíÿåìîé â êîìïüþòåðíûõ íàóêàõ. Îïèñàíà ñâÿçü ìåæäó êóáè÷åñêèìè
ãðóïïàìè ãîìîëîãèé îáîáùåííûõ òîðîâ è ãðóïï ãîìîëîãèé ìîíîèäà òðàññ,
äåéñòâóþùåãî ÷àñòè÷íî íà ìíîæåñòâå. Îïèñàíû àëãîðèòìû âû÷èñëåíèÿ ãðóïï
ãîìîëîãèé àñèíõðîííûõ ñèñòåì, ñåòåé Ïåòðè è òðàññîâûõ ÿçûêîâ Ìàçóðêåâè÷à.
Îñíîâíûå ðåçóëüòàòû ñòàòüè äîëîæåíû íà ñåêöèîííîì äîêëàäå Ìåæäóíàðîäíîé
êîíôåðåíöèè ¾Òîðè÷åñêàÿ òîïîëîãèÿ è àâòîìîðôíûå ôóíêöèè¿ (5-10 ñåíòÿáðÿ
2011 ã., ã. Õàáàðîâñê, Ðîññèÿ).
Key words: ïîëóêóáè÷åñêîå ìíîæåñòâî, ãîìîëîãèè ìàëûõ êàòåãîðèé, ñâîáîäíûé
÷àñòè÷íî êîììóòàòèâíûé ìîíîèä, àñèíõðîííàÿ ñèñòåìà ïåðåõîäîâ, ñåòè
Ïåòðè, ÿçûêè òðàññ.


