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The cubical homology of trace monoids

This article contains an overview of the results of the author’s study in the field of algebraic
topology used in computer science. The relationship between the cubical homology groups of
generalized tori and homology groups of partial trace monoid actions is described. Algorithms
for computing the homology groups of asynchronous systems, Petri nets, and Mazurkiewicz
trace languages are shown.

The main results of the paper were reported at the International conference «Toric Topology
and Automorphic Functions» (September, 5-10th, 2011, Khabarovsk, Russia).
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Introduction

Trace monoids have found many applications in computer science [3], [19]. M. Bednarczyk
[2] studied and applied the category of asynchronous systems. The author has proved that any
asynchronous system can be regarded as a partial trace monoid with action on a set. It allows us
to build homology theory for the category of asynchronous systems and Petri nets [9]. It should
be noted that the homology theory was introduced and studied for higher dimensional automata
in |6]. E. Haucourt |7| applied the Baues-Wirsching homology.

The paper is a survey of the author’s results on the homology groups of models for concur-
rency. We study the relationship between the cubical homology of generalized tori and homology
of a trace monoid action on a set. We build the algorithms for computing the homology groups
of asynchronous systems, elementary Petri nets, and Mazurkiewicz trace languages. It allows
us to solve the problem posed in |9, Open problem 1| constructing an algorithm for computing
homology groups of the elementary Petri nets.

1. Trace monoids and their partial actions

This section is devoted to the basic definitions and the problems that have arisen.

1.1. Notations

Let Set be a category of all sets and maps and let Ab be a category of all Abelian groups
and homomorphisms. We denote by Z the additive group of integers. Let N denotes the set of
nonnegative integers or the free monoid {1, a,a?, - - - } generated by one element. Given a category
A, we denote the opposite category by A°. Let Ob A denotes the class of all objects and Mor A
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the class of all morphisms in category A. Given objects a,b € Ob A, we denote by A(a, b) the set
of all morphisms a — b. For any small category %, functors F' : ¥ — A will be called diagrams
of objects in A on €. In this case, along with the notation F' : ¥ — A we use the notation
{F(c)}eew. The category A of functors € — A is called a diagram category.

Let AZ : % — Ab be a diagram having the value Z at each ¢ € Ob% and the value 17 at
each o € Mor®.

Given a family of Abelian groups {A;};c, the direct sum is denoted by € A;. Elements of

Jj€J

summands are denoted as pairs (j,g) with j € J and g € A;. If A; = A for all j € J, then this

direct sum is denoted by @ A or A®) where p = |.J| is a cardinal number.
jeJ

1.2. Trace monoids

Let E beaset and let I C E X E be an arbitrary subset. The set I C E X F is an independence
relation on F if the following conditions are met:

e Va€ E)(a,a) ¢,
o Vac E)(VbeFE) (a,b) € I = (bya) € 1.

Let E* be a free monoid generated by a set E. It consists of the words in alphabet E. The
binary operation is defined as the concatenation of words (aq -« @, b1+ byp) > a1 -+ amby - - - by.
The empty word is denoted by 1.

Definition 1.1. Let I be an independence relation on a set E. A trace monoid (or free par-
tially commutative monoid) M(E, I) is the factor monoid E* /(=) by a least equivalence relation
for which uabv = ubav, for all (a,b) € I, uw € E*, v € E*. Elements a,b € E for which (a,b) € 1
are called commuting generators.

This definition is more general than the one given in [3] since we do not demand that E should
be finite.

For example, if E = {a,b}, I = {(a,b), (b,a)}, then M(FE,I) = N? is a free commutative
monoid generated by two elements.

If I =0, then M(E,I) = E*.

Any element w = ay ---a, € M(FE,I) of a trace monoid can be interpreted as finite sequence
of instructions aj,ag, - - ,a, in a program. Relation I consists of pairs (a,b) instructions which
can be executed concurrenrly.

1.3. State space

A partial map f : E — E’ between sets F and E’ is a relation f C E x E’ for which
(e,e)) € f & (e eh) € f implies €] = €}. Let PSet be a category of all sets and partial maps
between them. Any trace monoid M (F, I) can be considered as a category with the unique object
denoted by o(M (E,I)).

A partial trace monoid action of M(E,I) on a set S is a functor S : M (E,I)°? — PSet such
that its value at o(M (E,I)) equals S. We denote S(w)(s) by s-w. A state space (M(E,I),S)
consists of a trace monoid M (FE,I) with a partial action on a set S. A state space (M (E,I),S5)
is determined by partial maps (—)-a : S — S corresponding to a € E. Hence, it can be given by
a directed graph with vertexes s € S and labeled edges s % s - e.
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For example, if £ = {a,b} and I = {(a,b), (b,a)}, then the directed graph with labeled edges

S4
/
S1
/ X
s0 s3
x /
59

determines the action for which sg-a = s1, sg-b = s2, s1-a = s4, s1-b = 53, sS2-a = s3. But
s2-b, s3-a, s3-b, s4-a, and s4-b are not defined.

1.4. Augmented state space

In order to make the action (M(FE,I),S) to be total, we add the state * and extend the
partial maps (—)-a: S — S to the (total) maps (—)-a: SU{x} - SU{*} acting by s-a = *
if s a is not defined. Let S, = S U {*} and * - a = x. Then the pair (M (E,I),Ss) consists of
a trace monoid with the total action on the set Si. This pair is called the state space with an
augmentation.

For example, the previous state space gives the augmented state space

54

o
/\
\/

Let (M(E,I),S) be a state space. Consider an augmented state category K.(S) as follows.
Its class of objects is set S, = S U {x}. Morphisms s — s’ are triples (s,w, s’) of s € S, s’ € S,
we M(E,I).

For any subset X C S, let K(X) C K,(S) denotes a full subcategory with the class of objects
Y. For ¥ =5, K(S) C K,.(S) will be called a state category.

1.5. Homology groups of a small category

Let € be a small category and let F' : ¥ — Ab be a functor into the category of Abelian
groups and homomorphisms.

Definition 1.2. Let € be a small category and let F' : € — Ab be a functor into the category
of Abelian groups and homomorphisms. Let Co(€, F') denotes a chain complex of Abelian groups

C’n(cgv F) = @ F(CO)a nz 07

co—>—>Cn,
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and homomorphisms d, = Y (=1)'d} : Cp(€,F) — Co_1(€, F), n > 0, where dP(co =% ¢; 3

i=0
e ) =
(1B B, Fleg B e1)a) ifi=0
(oD Bl B e a) , ifl<i<n—1
[0 Qnp—1 p .
(co = 5 cuo1,a) ifi=n

For every integer n > 0, the n-th homology group H, (%, F) of € with coefficients in F' is the
factor groups Ker (dy,)/Im (dp+1).

It is well known that the functors H,(Co(€,—)) : Ab® — Ab are isomorphic to the left
derived functors hﬂf of the colimit functor hﬂg : Ab? — Ab.

Hence, the Abelian groups H,, (%, F') can be defined as homology groups of the complex
Okli%nlgpoﬁliggplkli%m(gpge-“
obtained from a projective resolution
0« FP <+ FP+—P+P+- -

of F € Ab? by the application of the functor liﬂg.

1.6. Homology of state categories, asynchronous systems and Petri nets

For an arbitrary small category €, let AZ : € — Ab be the functor taking constant values
7 at objects and 17 : Z — Z at morphisms of %.

An asynchronous system can be defined as a triple (S, so, M (E,I)) where (S, M(E,I)) is a
state space and sp € S is a distinguished element [9]. Elements of S(sg) = {s-u|lp € M(E,I)} C S
are reachable states. Homology groups of an asynchronous system with coefficients in an arbitrary
functor F : K(S) — Ab are Abelian groups hgnK(S(SO))F\K(S(SO)).

For a set B, the set of all its subsets is denoted by 25.

A CFE net [9] or Petri net [24] is a quintuple (B, E, pre, post, sg) consisting of finite sets B
and E, the maps pre, post : E — 28 and a subset sqg C B.

Let N = (B, E,pre,post, so) be a CE net. Relation I C E x F is defined as a set of all pairs
(a,b) for which (pre(a) U post(a)) N (pre(b) U post(b)) = 0. We assign to every element e € E a
partial map (—)-e : 2% — 28 which is defined as s-e = (s\ pre(e))Upost(e) for all s C B meeting
the condition (pre(e) C s) & (post(e) N's = ) [19]. This defines a partial action of M(E,I) on
set 28, Assuming S = 28, we get an asynchronous system (S, sg, M (E, I)), which corresponds
to the CE net N' = (B, E, pre, post, sg). The homology groups of H,(N') were defined in [9] as
liﬂf(s(so))AZ where S(sg) is a set of all reachable states.

For computing the groups H; (K (S), AZ), an algorithm was built in [9]. It is suitable for the
calculation of Hy(N). The following question was formulated in [9].

Problem 1. Constructing an algorithm for computing the integral homology groups of CE
nets.

By the definition of H,,(N\), this problem will be solved when we find an algorithm to compute
the homology groups H, (K (S), AZ) for the state categories. Problem 1 could not be solved for
a long time. We present a way to solve this problem. Detailed proof is published in the preprint
[12].

Let M(E,I) be a trace monoid. Its generators a,b € E are called to be independent if
(a,b) € I. In [9], it was proved that if M (E,I) does not contain triples of pairwise independent
generators, then H,,(K,(S),AZ) = 0 for n > 2. The following conjecture was put forward in [9].
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Problem 2. Let n > 0 be the mazimal number of pairwise independent generators. Prove
that Hi(K.(S), F) =0 for any k > n and for any functor F : K.(S) — Ab.

In the case of finite E, the conjecture was proved by L. Yu. Polyakova [23]. A complete
solution of Problem 2 is given in [10].

2. Semicubical sets and generalized tori

Let me remind you of the definition of semicubical set and its geometric realization. We
introduce generalized tori and assign a semicubical set to every partial trace monoid action.

2.1. Semicubical sets

Let O, be the category of posets I", n € N, where I is the set {0,1} ordered by 0 < 1.
Morphisms in O are increasing maps admitting a decomposition in the composition of maps
65’5 s I 5 TF 1 <i <k, e € I defined as 5?’5(331, s 1) = (X1, X1, 6, Xy 1)

A semicubical set is any functor X : Di”—)Set. In [6], it is called precubical set. Morphisms
between semicubical sets are defined as natural transformations. Any semicubical set can be
given by a pair (X,,8,"%) consisting of sequence of sets (X,,)nen and a family of maps 9;"° :
X, — Xp—1, defined for 1 <i < n, e € {0,1}, and satisfying to the condition

8?_1’0‘0(9?’5:8;__11’606?0‘ , for a, € {0,1},n>2and 1 <i<j<n.

These maps will be equal 6?’5 = X(&f’s).
Semicubical objects in an arbitrary category A are defined similarly as functors D‘f — A

2.2. Geometric realization

Let X € Set™ be a semicubical set. Its geometric realization [4] is defined as the topological
quotient space

(Xloy = [T Xux[0,1]"/ =
neN

with respect to the smallest equivalence relation satisfying
(8?7Vx’t1’ Tt 7tn—1) = (xvtlu e 7ti—17 v, tiu o )tn—l)a

foralln > 0, v € {0,1}, 1 < i < n, t; € [0,1]. Geometric realization determines the functor
| — |o, assigning to every morphism of semicubical sets f : X — Y the continuous map |f|o, :
| X|o, — Yo, such that |flo, (z,t1, -+ ,tn) = (f(x),t1,- - ,t,). The functor | — |o, can be
constructed from the functor H : O, — Top, H(I") = [0,1]", as in [5, Prop. I1.1.3] by extending
to the category of semicubical sets. It follows from [5, Prop. II.1.3] that | — |o preserves colimits.

2.3. Generalized tori

For a trace monoid M (FE, I) with a total order relation < on E, the generalized torus T(E, I)
is a semicubical set (T,,(F,I), ;") such that

To(E 1) ={(a1, - ,an) € E" 1 a; < aj & (aj,a;) € [ for all 1 <i < j<n}

and 9, (a1,- -+ ,an) = (ai, ++ ,@i—1,i41, -+ ,an), foralln > 0,1 <i< n, e € {0,1}.

For example, if £ = {a1,---,a,} ordered by a1 < ag < ---a, with I consisting of all pairs
(as,aj) for which ¢ # j, then the geometric realization |T'(E, I)|o, is homeomorphic to the usual
n-dimensional torus.
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2.4. Semicubical set of a state set

Let (M(E,I),S) be a state space with a total relation < on E. Assign the semicubical set
Q(E,I,S) to it with

Qn(E,1,S) ={(z,a1, - ,an) € Sx x T,,(E, I)|
a; < a; & (a;,a;) for all 1 <4 < j < n}.

with the boundary maps 9,"°(z, a1, ,a,) = (z-a5,a1, -+ ,a;—1,0i41, - ,a,) for 1 <i < n,
n>1,e€{0,1}. Here a° = 1 and a! = a.
For any state space (M(FE,I),S), a set of all triples (s,a,s’) € S x E x S for which s-a = s
is denoted by Tran.
Example 2.1. Consider the state space consisting of S = {sg, s1, s2, 83, 84, S5}, E = {a, b},
I = {(a,b), (b,a)}. Elements in Tran are triples (s, e, s') corresponding to arrows s — s’ in the
following diagram:
S3 — > 84 — > 85
Pl
a a

SQ — = 81— =952

The topological space |Q(E, 1, S)|o, can be obtained from the union of unit squares

a a
* * ——> %
b b b
a a
* * *
b b b
a a a a
83 S4 S5 * *
b b b b b
a a a a
S0 S1 S92 * *

2« with

by identifying the vertexes * with each other, and by identifying the segments x

each other, and with similar identifications for the segments x * and squares

a

* *

b b

a
*

*

Geometric realization can be interpreted as the topological space of intermediate states of
computational processes.

2.5. Homology groups of semicubical sets

To solve Problems 1 and 2, we need some information from the article [15].

Given a semicubical set X € Setmip, let O, /X be the category with objects o € [] X,.
neN

Its morphisms between o € X,,, and 7 € X, are triples (a,0,7), a € O (I™, I"), satisfying
the relation X (a)(7) = o. Homological system on a semicubical set X is an arbitrary functor
F:(04/X) — Ab.
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Given a semicubical set X and a homological system F', consider Abelian groups Cy, (X, F') =

@ F(o). Let d"° : Cp(X, F) — Cp—1(X, F) be the homomorphisms
oceXy

n,e

P rFo) = P Flo)

oceXny oceXp—1

defined on the direct summands for 1 <i<n,e € [ ={0,1}, 0 € X,,, f € F(0) by the equation
i< (o, f) = (0;" (), F(8;"%, 0" (0), o) (f)) -

For n > 0, the homology groups H,(X,F) of semicubical set X with coefficients in F are

defined as homology of the complex Co(X, F') consisting of the groups C,(X,F) = @ F(o)

oceXn
n

and differentials d, = > (—1)i(d?’1 —d?’o). Abelian groups H, (X, AZ) are called the nth integral
homology groups. =

Proposition 2.1. [15, Theorem 4.3] For any semicubical set X and a homological system F
on X there are isomorphisms lig?(?*/x)opF = H,(X,F), for alln > 0.

Proposition 2.2. [13, Prop. 2] For an arbitrary semicubical set X and integer n > 0,
the group Hy,(X,AZ) is isomorphic to the nth singular homology group of the topological space
’X’D+ :

3. Homology of factorization category

In [17], Leech cohomology groups of monoids were introduced. In this section, we study and
apply Leech cohomology and homology groups for trace monoids.

3.1. Factorization category

Let & be a small category. Given a € Mor %, we denote its codomain by cod « its codomain
and its domain by dom a.

The factorization category Fact(€') has objects Ob (Fact(€)) = Mor €, and for every a, 3 €
Mor (%) each element of Fact(€)(«, 3) is determined by a pair (f,g) of f,g € Mor (%) making
commutative the diagram

coda —2 cod 3

of E

dom « ~ dom

For example, any monoid M considered as a small category with a unique object has a fac-
torization category Fact(M ) such that Ob (Fact(M)) = M. Morphisms are given by quadruples

o9 8 of f,0,8,9 € M satistying gaf = B.

3.2. Leech homology of generalized tori

Leech homology groups of monoid M with coefficients in functor F : Fact(M)°? — Ab are
defined as the groups H, (Fact(M)°,F), n > 0.

Given trace monoid M(E,I),let S: 04 /T(E,I) — Fact(M(E,I)) be the functor assigning
to each (a1,--- ,a,) € Ob0Oy/T(E, I) the object aj ---a, € M(E,I) = Ob Fact(M(E,I)). Each
morphism of the category Oy /T(E,I) can be decomposed into a composition of morphisms of
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the form (8.°), (a1, ,@i—1,@it1," " ,an), (a1, ,an). Therefore, it suffices to define S on the

morphisms of this kind. Let

8(5?767(0417"' y Aj—1, Qg4-1, " * 7an)>(a17"' 7an)) =

(a1—57as)
(a1---@i1aiy1- - an  —> " ar---ap)

where a® = 1, and o' = a.
Theorem 3.1. [1}] If E does not contain infinite subsets of pairwise independent elements,
then there are natural in F € AbFetMEDI yoomorphisms

Hy(Fact(M(E, 1)), F) = H,(T(E,I),F o S).

In the case of a finite set F, this theorem allows us to construct a finite complex for comput-
ing the Leech homology groups.

3.3. Global dimension of a trace monoid

Cohomologies of small categories are defined as right derived functors of @gg : Ab% — Ab.

Let € be a small category and let F': € — Ab be a functor. The category Ab® has enough
injectives. Hence there is an injective resolution 0 — F — F% — F! — F2 — ... The functor
lime Ab% — Ab leads to a complex

0% limg FO % g F' % limg 2 — -

The nth cohomology group of € with coefficients in F is defined as H"(¢, F) = Ker d®/Im d" 1.

Given semicubical set X and a functor G : O /X — Ab, define cohomology groups H" (X, G)
of X with coefficients in G similarly to homology groups of semicubical set. It is easy to see that
H"(X,G) =2 H"(0O4/X,G).

The proof of [14, Theorem 2.2| contains the assertion that for each o € Ob Fact(M(E,I)),
H,(S/a,AZ)=0for n > 0, and Hy(S/a, AZ) = Z. Hence, it follows from the Oberst Theorem
[11, Prop. 1] the following assertion.

Theorem 3.2. For any functors F : Fact(M(E,I)) — Ab and for all n > 0, there are
isomorphisms H"(Fact(M(E,I)),F)= H"(T(E,I),F o S).

Given Abelian category A, its global dimension gl.dim A is a supremum of n > 0 for which the
functors Ext " (—, =) are not equal to 0. Let € be a small cancellative category in the sense of [8].
By [8, Theorem 4.2], its Hochschild-Mitchell dimension dim % equals cohomological dimension
of Fact(¥). For any Abelian category A with exact coproducts, Mitchell proved the inequality
gl.dim A% < dim % +gl.dim A [20]. It follows from [8, Theorem 5.1| that this inequality is true for
A with coproducts and enough projectives. It follows from Theorem 3.2 that dim M (E,I) < n
when E does not contains n + 1 pairwise independent elements. If M (E,I) contains n pairwise
independent generators, then the free commutative monoid N" is a retract of M (F, I). It follows
from [20, Prop. 11.6] the ineguality gl.dim AME) > ol.dim AN". Tt leads us to the following
generalization of Hilbert’s Syzygy Theorem.

Theorem 3.3. [11] Let A be an Abelian category with coproducts and let M (E,I) be a trace
monoid. If a mazimal cardinality of pairwise independent elements of E equals n < oo, then

gl.dim AMED — 5 4 ¢l dim A

i each of the following cases:
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(i) A has ezact coproducts (i.e. A satisfies to the axiom AB4),
(ii) A has enough projectives.

In the first case (i), this is proved in [11]. For proof for the second case (i) will be published
in Sib. Math. J.

Conjecture 1. This is true for all Abelian categories with coproducts.

Example 3.1. Let k be a field and F = {z1,x9,x3, 24,25} be a set of variables. Suppose
that the independence relation I C F x E is given by the following graph with vertexes E and
edges I:

I T2

AN

T3

e

T4

L5

The noncommutative polynomial ring in five variables is denoted by k(x1, 2, x3, x4, x5). Let (1)
be the ideal of k(x1, x2, x3, x4, x5) generated by polynomials x,x, — zyx, for which (z,,z,) € I,
1 < u,v < 5. The maximal number of independent variables equals 2. By Theorem 3.3, we have

gl.dim k(z1, z2, 23, 74, 25) /(1) = 2.

3.4. Homology of augmented state category

Let us consider the functor cod : Fact(¢) — €, a — cod (a), (« (.9 B) — g. For any

c€ Ob¥, Hy(cod /¢, AZ) =0 for all n > 0 and Hoy(cod /¢, AZ) = Z.

Proposition 3.4. Given a small category € and a functor F' : €°P — Ab, there exist
isomorphisms lingPF = hﬂfaCt(%)opF ocod? for alln > 0.

Given a state space (M (FE,I),S,) and a functor F' : K,(S) — Ab there are isomorphisms
H,(K.(S),F) = H,(M(E,I)°, F) where F = @ F(z) is Abelian group with the right action

TESK

(z,f) -1 = (zp, F(z & zp)(f)). By Proposition 3.4 and Theorem 3.1 we obtain the following
complex for the computing the homology of the state space.

Theorem 3.5. [14] If M(E,I) contains no infinite subsets of pairwise independent genera-
tors, then H,(K.(S), F) are isomorphic to nth homology groups of the complex

0+ @ Fla) & P Fal D Fz) « -+

xes* (fE,CLl)EQl(E,I,S) ((E,GJ_,(ZQ)GQQ(E,I,S)
e D F(z) <& D F(z) ¢ -,
(zya1, ,0n—1)EQn—-1(E,I,S) (z,a1, ,an)EQn(E,I,S)

with differentials

dn(.’E,al,"' aanaf):
Z(—l)s((x-as,a1,~-- gy an, F(x ga&as)(f))

—(ZB,(I1,"' 76\37"‘ ’amf))
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So, we have the following solution of Problem 2.

Corollary 3.6. [10] If the cardinality of pairwise generators of M(E,I) not greater than n,
then Hp(K.(S),F) =0 for all k > n.

In addition, we have a complex of finitely generated Abelian groups for calculating the integral
homology H,(K.(S),AZ) of augmented state category. This result has found applications [16].

Example 3.2. Let us consider a state space ¥ = (S, E, I, Tran), S = {so,s1}, £ = {a, b},
I = {(a,b),(b,a)}, Tran = {(so,a, so), (s0,b, 1), (s1,a,s1)}. The set consists of two elements
with the partial action of the free commutative monoid generated by a and b. Let us calculate
the groups Hy (K. (S),AZ).

We add the state

a a b
SRS ONED
S0y Ty T xs

and write down the matrixes of differentials. Since |Si| = 3, |Q1(E, I, Sx)| = 6, |Q2(E, I, Sy)| = 3,
the complex consists of Abelian groups

0« 738 788 73 ¢

The differential d;(s,e) = —s - e + s is defined by the matrix:

(507a) (SO’b) (Slva’) (Slvb) (*7a) (*7b)

S0 +1-—-1 +1 0 0 0 0
S1 0 —1 +1-—-1 +1 0 0
* 0 0 0 -1 —1+1 —1+1
The differential da(s,e1,e2) = —(s*e1,e2) + (s,e2) + (s *x ez, e1) — (s, e1) has the matrix:
(SOaa7 b) (81,&, b) (*)aab)

(so,a) -1 0 0

(So,b) —1+1 0 0

(s1,a) +1 -1 0

(Sl7b) 0 _1 + 1 O

(%,a) 0 +1  +1-1

(%, b) 0 0 -1+1

Using the reduction of these matrices to Smith normal form, we obtain Hy(K.(S),AZ) = Z,
Hi(K.(S),AZ) = Z*, Hy(K.(S),AZ) = 7', and H,(K.(S),AZ) =0 for all n > 3.

3.5. Homology of Mazurkiewicz trace languages

Given v,w € M(E,I), we let v < w if there exists u € M(E,I) such that vu = w. This
relation makes M (FE, I) into a partially ordered set, which we denote by P(E, I). A trace language
is any set of traces.

Definition 3.3. A set L C M(E,I) is prefix closed if for all v € M(E,I) and w € L the
relation v < w implies v € L.

Let L C M(E,I) be a prefix closed trace language. We have the pair (M (E,I), L) consisting
of a trace monoid with the following partial action for v € L, p € M(E,I).

I if vuel
H= unde fined, otherwise.

For any functor F': K,(L) — Ab, we can consider the homology groups H,(K.(L), F). The
groups H,(K.(L),AZ) are called integral homology groups.
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3.6. Homology groups of the poset of traces

Given prefix closed language L C M(E,I), let Z[L] : P(E,I) — Ab be a functor with
values Z[L](v) = Z for v € L and Z[L](v) = 0, otherwise. For v < v € L, we will define
Z[L)(u < v) = 17. We study the homology groups H,(P(E,I), Z[L]) of the poset P(E,I) and
their relationship with H,,(K,(L),AZ).

Let p,, denotes the cardinality of the set of n-cliques in the graph (E, I). In particular, pg = 1
as the number of empty subsets in E, p; = |E|. For example, if (E, I) is the graph

SN

thenpozl,p1:5,p2:4,p3:1.

Theorem 3.7. [13] H,(K,(L),AZ) = H,(P(E,I), Z[L]) & ZP),

Given a partially ordered set P, let lEIvn(P) be the reduced singular homology of the classifying
space B(P). It is not hard to see that H,(P(F,I), Z[L]) = H, 1(P(E,I)\ L) forn > 1.

Corollary 3.8. [13] H,(K.(L),AZ) = H, 1(P(E,I)\ L) ® Z") for alln > 1.

We see that Hi(K,(L),AZ) is a free Abelian group.

Conjecture 2. For any trace monoid M(E,I) with partial action on a set S, the Abelian
group Hi(K.(S),AZ) is free.

The following assertions on prefix closed trace languages are proved in [13]:

o If I ={(a,b) € ExE|a # b} and hence M (E, I) is commutative, then H,(P(E,I), Z[L]) =
0 for all n > 1.

e If I = () and hence M (FE,I) is free, then H,(P(FE,I), Z[L]) = 0 for all n > 2.

e For arbitrary finitely generated Abelian groups A;, Ag, ..., A, with free A;, there exists a
trace monoid M (E,I) such that H,(P(E,I), Z[{1}]) = Ay for all 1 <k < n.

3.7. Baues-Wirsching homology of the state category

Let M(E,I) be an arbitrary trace monoid and let X be a right M (F, I)-set. It should be
remembered that K(X) denotes the category of states with objects z € X and morphisms
5 xpfor € X and g € M(E,I). Considering M (E,I) as a category with a unique ob-
ject we can define a functor U : K(X) — M(E,I) assigning to each morphism = % zu the
morphism p € M(FE,I). Applying the functor Fact to U, we can consider a functor Fact(U) :
Fact(K(X)) — Fact(M(E,I)). For any functor F' : Fact(K (X))’ — Ab, there exists its Kan
extension Lan? ") : Fact(K(M(E,I))) — Ab [18].

Theorem 3.9. [12] Given functor F : Fact(K(X))°? — Ab, there exist isomorphisms

H,(Fact(K (X)), F) = H,(Fact(M(E, I))°, Lan”*"(U)* [
for allm > 0.

3.8. The solution of Problem 1

Let (M(E,I),S) be a trace monoid with a partial action on S and let K(S) C K,.(S) be
the state category defined in 1.4. Let ZS denotes the free Abelian group generated by S. Let

Q,(E, 1,S)={(s,a1, -+ ,an) € S X T, (E,I)|sai - ay # *}.
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Theorem 3.10. [12] Given a state space (M(E,I),S), the groups H,(K(S),AZ) are iso-
morphic to the homology groups of the complex

0 Z(S) & 7Q,(S, B, 1) & 7G,(S,E,I) + ---
o 7Q, (S, E, D) & 7Q,(S, B T) + -

with differentials

n

dn(s a1, an) = > (=1)'(sai, a1, @i 1,aiq1, )
i=1

n
B Z(—l)z(& A1yt @1, Qi1 5 Op)
i=1

Let us consider an example of computing the homology groups of a state category.

Example 3.4. Let M(FE,I) be a commutative trace monoid generated by two elements
and let us suppose that S consists of two elements. That is £ = {a,b}, I = {(a,b),(b,a)},
S = {so, s1}. The generators act by spa = sp, sob = s1, s1a = $1 as it is shown in the following

picture.
a a

DI,

S0 =— 81
The complex consists of Abelian groups

Co = Z{so,s1}, Ci= Z{(s0,a),(s0,b),(s1,a)}, C2= Z{(s0,a,b)}.
We have a complex 0 + Z2 $73% 74 04 0+ ... The differential di is described by the

following matrix.

(SO, CL) (507 b) (51’ CL)
so (1-1 1 0
S1 0 -1 1-1

The differential ds has the following matrix.

(Sﬂaaa b)
(So,(l) -1
(So,b) 141
(s1,a) +1

Using the reduction to Smith normal forms, we get

Ho(K(S),AZ) = Z, H\(K(S),AZ) = Z, Hy(K(S),AZ) =0 for all n > 2.

3.9. Homology groups of CE nets

For the computing the homology groups of a finite CE net, we first construct the state space
(M(E,I),S(s0)). Then we can compute Hy, (K (S(sp)), AZ) by the method described above.
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Let, for example, N be the following CE net.

1]
pO\/O

The corresponding trace monoid M (E,I) is defined by E = {a,b,c} and I = {(a,b), (b,a)}.
The set of states S consists of all subsets s C {p,q}. The corresponding asynchronous system
(M(E,I),S,sp) is defined by sp = () and a partial action of M(FE,I) shown in the following
figure.

q

N A

{p,q}

That is 0-a = {p}, 0-b={q}, {p} - b={p,a}, {¢} -a = {p,q}, and {p,q} - c = 0. All states are
admissible. Hence S(sg) = S. The complex consists of the Abelian groups

Co = Z{0, {p}.{a}, {p.4}} = Z*,

C1 = Z{(0,a), (0,b), {p},0), {a}, a), {p, ¢}, 0)} = Z°,
Cy = 72{(0,a,b)} = Z.

The differential d;(s,e) = —s - e + s has the following matrix.

@,a)  (@,0) ({p},b) (at,a) ({p,a},0)

1] 1 1 0 0 0
{p} ~1 0 1 1 ~1
{q} 0 1 0 0 0

{p,q} 0 0 -1 -1 1

We have da(0,a,b) = —(0-a,b) + (0,b) + (0 - b,a) — (0, a). Hence, the matrix of ds is described
by the matrix

(0, a,b)
(@, a) -1
(0,b) 1
({p},b) -1
({g}, @) 1
({p,a}, ¢) 0

We have the following complex for the computing H,,(N) for all n > 0.

0« Z'E L 7 00 -

Using the Smith normal forms, we get Ho(N) = Z, Hi(N) = Z, and H,(N) =0, for all n > 2.
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4.

Conclusion

The author believes that the results will help in the study of the Goubault homology of

asynchronous systems as the homology groups H,(K(S), Z°%), ¢ € {0,1}, with coefficients in
some suitable systems of Abelian groups. You can explore the n-deadlocks for asynchronous
systems. It is possible to find homological signs for the existence of bisimilar equivalence between
asynchronous systems, Petri nets, and trace languages.
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ABSTRACT

Crarbst cojiepkuT 0030p pe3y/AbTaTOB aBTOPa B 00/1aCTH aaredpanveckoii TOmOJIOTHH,
[pPUMEHsIEMOIl B KOMIIBIOTEpHBIX Haykax. Omnucana CBA3b MEXKJIY KyOWYecKuMu
rpymnmnamMu romoJioruii 0000IIEHHBIX TOPOB W I'PYII TOMOJIOTHIl MOHOMA TPAacCC,
JIeCTBYIOIIEr0 YacTUYHO Ha MHO2KecTBe. ONuCaHbl ajrOpUTMbl BEIYUCEHUS TPYIII
roMoJIOruii aCMHXPOHHBIX cucteM, cereit [lerpu u TpaccoBbix s3pikoB Mazypkesu4a.
OcHOBHBIE PE3YJIBTATHI CTATHU JOJOYKEHBI Ha, CEKITMOHHOM JT0K.Ia1e Mex 1yHapoaHoit
koudepennun «Topudeckast Tomosorust u aproMopdubie dyukuuny (5-10 cenTadbps
2011 r., r. Xa6aposck, Poccus).

Key words: noaykybuueckoe MHoocecmeo, 20MOAO2UY MAAVLT KaMe20PUTl, c80000HbIT
YACMUYHO KOMMYMAMUESHHT MOHOUD, ACUNHTPORHAA CUCTEMA NEPErodos, cemu
Iempu, asvixu mpacc.



