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On certain Littlewood-like and Schmidt-like problems
in inhomogeneous Diophantine approximations

We give several results related to inhomogeneous approximations to two real numbers and
badly approximable numbers. Our results are related to classical theorems by A.Khintchine
[7] and to an original method invented by Y.Peres and W. Schlag [13].
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1. Functions and parameters

In all what follows, || - || is the distance to the nearest integer. All functions here are non-
negative valued functions in real non-negative variables.

Consider strictly increasing functions wi (t),w2(t). Let wj(¢) be the inverse function to w(t),
that is

wi(wi(t)) =t

Suppose that another function in two variables Q(z,y) satisfies the condition

<wl(?
{xy <w@) o s<awe), Vegzez, (1)
<z
This condition may be rewritten as
ZBWT(;U ' y) < 2,
— x < Q(ya Z)? \V/I',y,Z € Z-‘r' (2)
<z

Suppose that the functions ¢(t), ¢2(t), p2(t), ¥1(t),¥2(t), increase as t — oo and

$(0) = ¢1(0) = ¢2(0) = ¥1(0) = ¥2(0) = 0. (3)

Suppose that 1;(t), j = 1,2 are strictly increasing functions and that 17 (¢) is the inverse
function of 1;(t), that is

i) =t VieRy, j=12

For a positive € > 0 and integers v, u define

3801, =03 ( gy ) o
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20 =43 (5037 )- )

Suppose that A > 1. For functions wi(t),wa(t), ¢(t), ¥1(t), ¥2(t) we consider the following
sum:

S0 = 3 2. 68 (pov) - max (Q(271,277), 270, 1) - (6)

X<v<A(X+1) 1<u<logy (w2 (2v+1))+1
For functions w (t),wa(t), ¢1(t), pa(t), v1(t), 2(t) we consider another sum:

S,[i]e(X) = Z 66[32] (V) - max (Q(l/QTE(V)7 2y+1)7 2VT€(V)7 1) ’ (7)

X<v<A(X+1)

where

2. Main results

Here we formulate two new results — Theorems 1,2. Proofs of these theorems are given in
Sections 6, 7, 8. Section 4 below is devoted to certain examples of applications of Theorem 1.
Section 5 deals with applications of Theorem 2. In Section 3, we discuss Khintchine’s theorems
and some of their extensions.

Theorem 1. Suppose that functions ¥1(t),a(t), p(t) are increasing. Suppose that (3) is
valid. Suppose that for certain A > 1,e > 0, Xy > 0 all the functions satisfy the conditions

X
25 (s
and
sl (x)< = 10
sup LX) < o5 (10)
X>Xo
Consider two real numbers a,n such that
. . >
Jnf wi(2) - [leall = 1 (11)
and
. ‘ o>
inf (o) [fa =yl > 1 (12)

Then for any sequence of real numbers n1,m2, ..., Mg, ... there exists a real number B such that

inf - p(x)r([|ra —nl)va((|lzf — nell) = e (13)

z>Xo

A simpler version of the theorem was announced in [4] (Theorem 8 from [4]). Some inhomogeneous
results in special case were announced in [9] (see Appendix from [9]).
The following Theorem 2 generalizes a result from [10].
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Theorem 2. Consider a real number o satisfying (11). Let n be an arbitrary real number.
Suppose that

log, % < (A—-1)logy, X, VX > X, (14)
203 (t07)
and
1
sup SI[EL(X) < 929 (15)

X>Xo

Then for any sequence of real numbers 1y, M2, ..., Ny, ... there exists a real number B such that

inf max (61(2) - ¥ (|lza — nl]), doa) - va(llzf - nol))) > =. (16)

x> Xo

Remark. The method under consideration enables one to obtain results about intersections.
Suppose that j € {1,2}. Given two different collections of functions

w] (8), W] (8), 9 (1), ¥ (L), &7 (1), o] (1), o (1),

two sequences {nﬁ; %, and two couples of reals o/, 7’ satisfying the conditions specified (with
more restrictions on constants) it is easy to prove the existence of a real 8 such that the
conclusions (13, 16) (or even both of them) are valid for both values of j € {1,2}. A simpler
example of such a result was proved in [10]. Moreover the method can give lower bound for
Hausdorff dimension of the sets.

3. Khintchine’s theorems and their extensions

In [7] A. Khintchine proved the following result.
Theorem A. There exists an absolute constant v such that for any real o there exists a real
n such that

inf - [lza— 7| > . 1
oz llea =l =y (17)

One can find this theorem in the books [5] (Ch. 10) and [14] (Ch. 4). The best known value
of v probably is due to H. Godwin [6]. From [19] we know that for every a € R the set of all n
for which there exists a positive constant v such that (17) is true is a 1/2-winning set.
From Khintchine’s theorem it follows that there exist reals a,n such that inequalities (11),
(12) are valid with
wi(t) = wa(t) = ~t

with an absolute positive constant ~.

Here we formulate an immediate corollary to Khintchine’s Theorem A.

Corollary 1.

(i) Suppose that reals a1 and g are linearly dependent over Z together with 1. Then there
exist reals m1,m2 such that

inf x-||lza; —m|| - [Jzas —n2f| > 0.
€Ly

(ii) Suppose that oy is a badly approzimable number satisfying
inf z-|lzaq|| > 0.

x€Z+
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Suppose that as s linearly dependent with ay and 1. Then there exists  such that

inf =« - . — > 0.
nf - flzaa - [Jaaz — 1

Quite similar result was obtained recently by U. Shapira [17] by means of dynamical systems.
We would like to note here that two papers by E. Lindenstrauss and U. Shapira [8, 18] related
to the topic appeared very recently.

Proof of Corollary 1.

As aq, ag are linearly dependent, we have integers A1, As, B, not all zero, such that

Aijaq + Asan + B = 0.

From Khintchine’s Theorem A we can deduce that there exists uncountably many n satisfying
the conclusion of the theorem. (From [19] we know that the corresponding set is a winning set
and hence is uncountable and dense). So we may find 71, 72 satisfying

inf z-|loz —mnl| >0, i=1,2. (18)
€L 4

and
[[Aim + Aamp|| > 6

with some positive 0. (For the statement (ii) one can take n; = 0,772 = 7.) Then

§ < ||Arm +Aame|| = [|Ar(a12 —m1) + Az(coz —n2)|| < A'g%Haz‘fB—mH, A= g?§|f4¢|- (19)

Take a positive integer x. From (19) we see that one of the quantities ||a;x — n;||[i = 1,2 is not
less than 0/A. To the other quantity we may apply lower bound from (19). This gives

z - |Jzan]| - |lraz - nl| > 8/A.

Corollary 1 is proved.
For a = (a1, as) € R? we define a function

U, (t) = n [laiz1 + agxal].

mi
(z1,22)€Z2\{(0,0)},max |z;|<t
Now we formulate another two theorems from Khintchine’s paper [7].

Theorem B. Given a function ¢(t) decreasing to zero there exist ax, g linearly independent
over 7 together with 1 such that

Po(t) < (t)
for all t large enough.
Theorem C. Given a function 1(t) increasing to infinity there exist reals vy, s linearly
mdependent over Z together with 1 and reals n1,n2 such that

inf : @ — ;]| > 0.
xlenmw(w) max [z — 7| >

In fact A.Khintchine deduces Theorem C from Theorem B. In the fundamental paper |7]
A Khintchine states also two additional general results. One of them is as follows.

Theorem D. Given a tuple of real numbers (n1,m2) and given a function 1 (t) increasing to
mnfinity there exist reals oy, ag linearly independent over Z together with 1 such that

inf () max ||a;xz — n;|| > 0.
€Ly 1=1,2
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On the other hand, by a result of J. Tseng [19], we know that for any real « the set

B={n:££@‘ww—nH>®

is an 1/2-winning set in R. It follows that the sets

Bi={(n,m): meB,meR}, By={(m,m): meR, nneB}

are 1/2-winning sets in R2.

In the paper [11] N. Moshchevitin proved a general result. The theorem below is a particular
case of this result.

Theorem E. Suppose that 1)(t) is a function increasing to infinity as t — 4+00. Suppose that
for any w > 1 we have the inequality

Y(we)
o ()

< +00. (20)

Let p(t) be the function inverse to the function t — 1/ (t) Let a = (a1, as) € R? be such that

U, (t) < p(t).

Then the set
BY = {(n1,m2) :  inf (z) - max||agz — ni|| > 0}
F<y/m 1=1,2

is an 1/2-winning set in R2,
From the theory of winning sets (see [15]) we know that a countable intersection of a-winning
set is also an a-winning set. In particular the set

BY N BN By

is an 1/2-winning set in R?. Moreover every a-winning set has full Hausdorff dimension and
hence is not empty. Thus we deduce the following result.

Theorem 3. Suppose that (t) is a function increasing to infinity as t — +00. Suppose that
(20) is valid. Then there exist real numbers oy, g linearly independent over Z together with 1
and real numbers n1,n2 such that

inf z1(x) - ||arx — ]| - [Jagz —n2|| > 0.
<y

A proof immediately follows from the fact that BN By N By # . Let (a1, az) be the tuple
from Theorem C applied to ¢(t) = p(t). Take (n1,712) € B¥! N By N By. Take positive integer .
One of the values ||o;x — ;|| should be greater than £/v(z) where € depends on ay, g, 1,12
only. Then the other one is greater than &’/x where € depends on oy, as, 71,72 only. Theorem 3
is proved.

Theorem 3 may be compared with the main result from the paper [17]|. It does not answer
the following question, already posed in [3].

Problem. Let o and B be real numbers with 1,«a, 5 being linearly independent over the
rationals. Let ag, By and v be real numbers. To prove or to disprove that

inf lal - _ ) _ -0
;go\ﬂ llga — aol| - [lgB — Boll
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and/or that

iIlf o+ — - max ;1;7]_ . max ’1 =0.
it vty = o) maxfal, 1} - max{lyl, 1}

The following two theorems by U. Shapira from the paper [17] worth noting in the context of
this problem.

Theorem F. Almost all (in the sense of Lebesque measure) pairs (a1, c0) € R? satisfy the
following property: for every pair (n1,m2) € R? one has

liminf q ||ga1 —m|| |[gar — n2|| = 0.
q_>OO

Theorem G. The conclusion of Theorem F' is true for numbers oy, as which form together
with 1 a basis of a totally real algebraic field of degree 3.

Also we would like to refer to one more Khintchine’s result (see |7|, Hilfssatz 4)

Theorem H. Given c € (0,1) there exists T' > 0 with the following property. For any o € R
there exists B € R such that

max(cx|ax — y|, Tz —z|) > 1,

where mazimum is taken over integers x > 0,y,z, (x,y) = 1. In other words if
oz —y| < (2,y) =1
cx
then
|Bz]] >

M=

At the end of this section we want to refer to wondeful recent result by D.Badziahin,
A. Pollington and S. Velani from the paper [1]. In this paper they solve famous W.M. Schmidt’s
conjecture [16].

Theorem 1. Let u,v > 0,u + v = 1. Suppose that

inf zullaz|| > 0. (21)
Ly

Then the set
By(a)={BeR: 1€an max(z"||az||, °||Bz|]) > 0}
TCLqt

has full Hausdorff dimension.

Here we should note that the main result from [1| shows for a given a under the condition
(21) that intersections of sets of the form B,(«) for a finite collection of different values of u
has full Hausdorff dimension. An explicit version of the original proof invented by D. Badziahin,
A.Pollington and S. Velani was given in [12], in the simplest case u = 1/2.

Recently D. Badziahin |2] proved the following result.

Theorem J. The set

{(a, ) €R?: inf alogx loglogx||ouxl||||Sz|| > 0}
TE€EZL,x>3
has Hausdorff dimension equal to 2.
Moreover if a is a badly approximable number then the set

R: inf zlogz logl 0
{B € nf zlogz log ogz ||azx||]|Bz|| > 0}

W

has Hausdorff dimension equal to 1.
We think that the method from |1, 2| cannot be generalized for inhomogeneous setting.
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4. Examples to Theorem 1

Here we give several special choices of parameters in Theorem 1 and deduce several corollaries
Example 1. Put

with some positive v > 1. Then

and we may take in (1)

1z
Qy,z) =1/——.
(9:2) Yy
Put

Then
P3(t) =t.
So

/i
5&@(/‘7”) =2-€- 2
and

Piaig 1
sho=2e P Y Hpme((Troern) s
X<v<A(X+1) 1<u<v+logy v+2
1 Vald
st LY ar %

1 4
<8.e- ) S <
v V2 V2
X<v<A(X+1) \1<p<v v+1<pu<v+2+log, ¥ X<v<A(X+1)

(22)

< 16 1n(24)

for Xy large enough (Xo > 7/e). Put A = 4. Then the condition (9) is satisfied provided
lnéfg(O > 1. Thus we obtain the following results.

Corollary 1.1. Let ny,z = 1,2,3,.. be a sequence of reals. Given positive € < 2714 and a
badly approzimable real o such that

1
||O£$H > % Vo € ZJra v > ]-a

there exist Xo = Xo(e,7y) and a real 5 such that

inf zln’z- : — > €.
Jnf zlnz lzal - |28 —nal| >
Corollary 1.2. Let ny,x = 1,2,3,.. be a sequence of reals. Given positive € < 2714 and real
a,n such that simultaneously

1
llax|| > — Ve e Zy, v>1
~yT
and

1
llow —nll 2 =2 Vo € Zy, 7> 1,
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there exist Xo = Xo(e,7) and a real 5 such that

inf zlnz- -7l — > ¢
RUSE L lzac =l - [|[zB —mal| =€

From Khintchine’s Theorem A we deduce the following result.
Corollary 1.3. Let ny,z = 1,2,3,.. be a sequence of reals. Given positive € <
real o such that

271 and a

1
loz|| > — Vz € Zy, v>1,
~yT
there exist Xo = Xo(e,7) and real n, 3 such that

inf zln?z- — |- — > ¢,
o wine |z = || [[x8 — || > ¢

Example 2. Put

Then ;
() x —
wi () Int
and we may take in (1)
1
Qy,2) = | ==
Yy
with small positive c.
Put
Pit) =pa(t) =t, o(t) =t-In*t.
Then

and again he (u, v) satisfies (22). Now
Qv
SEL(X) <Le- Z Z g max <\/ kY 2VTH, 1) <

X<v<A(X+1) 1<u<v+logy(v+1)+2

iy
Le€- E E 5~ max (\/ 2V—Hy, 2”_’“”> <
v

X<v<A(X+1) 1<u<v+logy (v+1)+2

p—v

<e Y Y %jt 3 % < eln24,

X<v<A(X+1) \1<pusv v—log, (v+1)<p<v+log, (v+1)+2

for X large enough. Put A = 4. Then for X large enough the inequality (9) is valid. Thus we
obtain the following results.

Corollary 2.1. There ezists an absolute positive constant €g with the following property. Let
N, = 1,2,3,.. be a sequence of reals. Given positive € < g9 and a real o such that for all x > X3
one has

||| =

zlnx’

there exist Xo = Xo(e, X1) and a real 5 such that

inf zln?x- . — > €.
Jnf zln’s lze] - [z8 —mal| =€
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Corollary 2.1 is a more general statement than Corollary 1.1.
Corollary 2.2. Let g,z = 1,2,3,.. be a sequence of reals. Given positive € small enough
and real o, m such that for all x > X1 simultaneously

||| >

zlnz’

and

— |l >
oz =l = ——.

there exist Xo = Xo(e, X1) and a real 5 such that

inf z1n?z- _ . — > e
a:lZnXox n-r HCCOJ TIH Hxﬁ nIH 2 &

Example 3. Put
wi(t) =tln?t, we(t) =~t,y > 1.

Then ;
wi(t) < ——
1( ) ln2t

z
Qy,z)=cy/ —Inz
(y,2) Vi

PYi(t) = o(t) =t, ¢(t) =t -In’t.

and we may take in (1)

with small positive c.
Put

Then

and again he (u, v) satisfies (22). So
] 2 NoT=r
SL.(X)xe- Z Z 2 max( k2 “)<<

£
X<v<A(X+1) 1<u<Lv+logy v+2

<e Y Z%"’- > 27 <

X<v<A(X+1) \1<p<lv v—2logs (v+1)<pu<v+log, v+2

1+
<e- Y > T‘ﬁ < e(1+/7)In24,

X<v<A(X+1) 1<p<v

for X large enough. Again for A = 4 and X large enough the inequality (9) is valid. Thus we
obtain the following results. This result is a more general statement than Corollary 1.2.

Corollary 3.1. Let nz,z = 1,2,3,.. be a sequence of reals. Let v > 1. Suppose that the
product €/ 1s small enough. Suppose that for certain real a,n and for x > Xy simultaneously
one has

1
laz|| > —
zln®z

and

1
lax —nl| = —.
v
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Then there exist Xo = Xo(e,v, X1) and a real § such that

inf zln?z-||Jza— || - ||28 — || > €.

z>Xo

Now from Khintchine’s Theorem A we deduce a result which is more general than Corollary

1.3.
Corollary 3.2. Let ny,x = 1,2,3,.. be a sequence of reals. Given positive € small enough
and a real o such that

||| =

)

xIn?x

there exist Xo = Xo(e) and real n, 5 such that

inf v’z |lva =] - [[2f — 1al| > e
x

Example 4. Put
wi(t) = wa(t) =7t

with some positive v > 1. Then as in Example 1 we have

Suppose that 0 < a < 1. Put

P1(t) =t - (logy 1/8)*, a(t) =t, ¢(t) =t-logs “t.

Then
P5(t) =
and o
(1] =2.g.—=
5 (/"L7 ) € VQ_G(M—F l)a’
Now

n—v
SUEIEEDS > e (VIR 2 <

X<v<A(X+1) 1<u<v+logy y+2

on—V

1
<doe Y Zm* > V24 1)e

X<v<A(X+1) \1<p<v v+1<p<v+2+logy v

8¢ 1 32e1n(24)
< -
- 1= Z <V + V2) - 1—aq

a
X<v<A(X+1)

for Xy > v/e. Put again A = 4. Then the condition (9) is satisfied provided lnéfg(() > é Thus we
obtain the following results (compare with Theorem 3 from [4]).
Corollary 4.1. Let ny,x = 1,2,3,.. be a sequence of reals. Suppose that 0 < a < 1. Given

positive € < m and a badly approzimable real o such that

1
o] > - Ve e Zy, v>1,

246



there exist Xo = Xo(e,7) and a real 5 such that

inf x(logy2)*™ - (logy 1/||zal))* - ||zall - |28 — n.|| = e.

z>Xo

Corollary 4.2. Let n,,x = 1,2,3,.. be a sequence of reals. Given positive ¢ < m and
real o, such that simultaneously

1 1
laall 2 . oz —nll > = Ve € Zy, 7> 1,

there exist Xo = Xo(e,7) and a real B such that

inf x(logy 2)*™* - (logy 1/||lza —n|)* - [|lza — || - ||z — na| > e.
z>Xo

Corollary 4.3. Let n,,x = 1,2,3, .. be a sequence of reals. Given positive € < m and a
real o such that 1
loz|| = — Vo € Zy, v>1,
yx

there exist Xo = Xo(e,7) and real n, 3 such that

inf z(logy x)*® - (logy 1/[[xc — | )* - [Jzar = nl| - [|28 — na|| > &.
z>Xo

Of course one can deduce other corollaries of a similar type from Theorem 1. For example
one may deduce statements which are more general than Corollaries 4.1 - 4.3 in the same manner
as it was done in Examples 2,3.

5. Examples to Theorem 2

Here we consider some corollaries related to special choices of parameters in Theorem 2.
Example 5. Let u,v >0, u+v=1. Put

1
Ytu

Then we may take in (1)

with small positive ¢ (we take into account that = < z'/?Inz) .
Put
1(t) = vat) =t ¢u1(t) = (tlogyt)", éa(t) = (tlogyt)”.
Then
U1 = 5(t) =

and ) . -

o) = e W) = G
So

S <e Y mio—<e Y Y S<eh

X<v<A(X+1) X<v<A(X+1) 1<p<v
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So we get

Corollary 5.1. Suppose that u,v >0, u+v=1. Let ny,x = 1,2,3,.. be a sequence of reals.
Let n be an arbitrary real number. Let v > 0. Suppose that € is small enough. Suppose that for
certain real o and for x > X1 one has

v (Inz)*

laa] > 10

Then there exist Xo = Xo(e,v, X1) and a real § such that

inf max((zlnz)" - ||z -7, (zInz)" [|zf —nl]) =€
z>Xo

Example 6. Put
wi(t) = ~tlnt, v > 1.

Then we may take in (1)

zlnz
Qy,z)=c "
with small positive c.
Put
Yir(t) =a(t) =, G1(t) = At, o(t) = (logy 1), A > 0.
Then
v =5(t) =
and
S () = uif/?’ re(v) = AZV.
So
S[Q] (X)<e- > 9(111/32/?1) < 231//22 _ Z A1/2 nA,
X<v<A(X+1) X<v<A(X+1) 1<p<r ”
So we get

Corollary 6.1. Let ny,x = 1,2,3, .. be a sequence of reals. Let n be an arbitrary real number.
Let A > 1. Suppose that 2203 < A . Suppose that for certain real o and for all positive integers
x one has

Then there exist Xo = Xo(7y) and a real B such that

inf max(Az-||lza — 7|, (Inz)¥?||z8 —n|) > ¢
z>Xo

In other words for this 3 if

3
_ <
lea—nll <

then -
— ] > ——.
Hxﬁ 77 ||— (1n$)3/2
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6. Sets of integers.
Consider sets
Ayy={r€Zy: 2" <z <2 27071 < lax — || < 271},

AW ={zecZ;: 2" <z<2" |laz—n| <t

Now we deduce an upper bound for the cardinality of the set A, ,.
Lemma 1. Under the condition (11) one has

card 4, < 2* max (Q(2#1,2vT1), 2774 1) .

Proof. For a € A, , define integer y from the condition
lza =l = [z —n —yl.

Case 1°. All integer points z = (z,y),z € A, form a convex polygon II of positive measure
mes1I > 0. Then
card A, , < 6mesII < 6 -2V F1H < 213, (23)

Case 2°. All integer points z = (z,9),x € Ay, lie on the same line. Then all these points
are of the form
zo + lzla Rj = (xjvy])7 0<I<L.

Now we see that
‘OéL.fCl — Lyl‘ S 2—,u+1

and
laxy — 1| < 27ATLL7L

From (11) we have
wl($1) > or=1r,.

So
1 > wi (2“*1L)

and
La:l S 2V+1.

We conclude that
L<2vtl L.wi(2t L) < 2vth

So by (2) we have
card A, < L+1<Q( 12" + 1. (24)

We take together (23,24) to obtain
card 4, < max (Q(2"1,2vT1) 2V 71 1) .

Lemma is proved.
The next lemma deals with the cardinality of A, (t).
Lemma 2. Under the condition (11) one has

card 4, (t) < 2° max (Q(1/2¢,2"11),2¢,1)..
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Proof. The proof is quite similar to the proof of Lemma 1. We should consider two similar
cases 12 and 2°. In the Case 1° we deduce the bound

card A, (t) < 2v72%t,
In the Case 2° we see that

LSQV—H, L-w}k <i) §2V+1-

By (2) we have
card A, , < L+1<Q(1/2t,2"71) + 1.

Lemma 2 follows.

7. Lemmas about fractional parts

Put
o) = ol () — o 2
te) = ot (e) = Gtz %)
oll(w) = o’} (x) = ¥3 ( e )> (26)

Then from the definitions (25) of ol () and 5[1]( ,v) and monotonicity conditions we see
that

re A, = o) <sl(u,v). (27)
Consider sums )
Tivy= > o), (28)
Y<z<YA

(with o defined in (25)) and
Tou(Y) = > o). (29)

Y<a<Y4, ¢1(x)v1(||az||)<e

Lemma 3. Suppose that (11) and (12) are valid. Then under the condition (10) one has

1
sup TE]E(Y) < =

< —. 30
YeZy ’ 26 ( )

Proof. Put X = [log, Y]. We see that

ISEDY Z > o

X<v<A(X+1) p=1 z€A,,

Note that from (12) it follows that sets A, ,, are empty for 1 > logy(w2(2"1)) + 1. So from (27)

we have
[logg (w2 (2vT1))]+1

e YN s e 6

X<v<A(X+1) p=1

Now from (31) and Lemma 1 we have

[logy (w2 (2" F1))]+1

Tlyy<22 Y 3 W (1, 1) x max (Q(2¢71,2°T1), 2V 7# 1)
X<v<A(X4+1) pw=1
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Lemma 3 follows from (10).
Lemma 4. Suppose that (11) is valid. Then under the condition (15) one has

L

sup TEL(Y)S 5 (32)

vez, 2

Proof. The proof is quite similar to those of Lemma 3. Put X = [logy Y]. Then
2
HIOEIED'S > o),
X<v<A(X+1) z€A,(re(v))

where 7-(v) is defined in (8). Now Lemma 4 immediately follows from (7, 15), Lemma 2 and the

inequality o (x) < (5£2]<V) which is valid for x € A, (rz(v)).

8. Common PS argument

Here we follow the arguments from the paper [13] by Y. Peres and W. Schlag.
Let j € {1,2}. For integers 2 < 2,0 < y < = define

17 17 @
il |yt o () yt+ne o (x) oy 4]
EV(z,y) . | B yUOE (z,y) (0,1 (33)
Define ' '
lp=0, I, = =[logy(x/20Y)(x))], # € N. (34)

Each segment from the union E,(z) from (33) can be covered by a dyadic interval of the form

b b+=z
<2[1’2lz)7 Z:1,2.

Let AUl(z) be the smallest union of all such dyadic segments which cover the whole set
EUl(z). Put ‘ '
(AVD(@) = [0, 1]\ AP)(2).

Then .
(ANe(z) = U I,
v=1

where closed segments I, are of the form

a a+1
ols” 9l

], a € 7. (35)

We take go to be a large positive integer. In order to prove Theorem 1 it is sufficient to show

that for all ¢ > qg the sets
q

Bl = () (AM)(@)

T=q0

are not empty. Indeed as the sets Bc[ll]

that

are closed and nested we see that there exists real 5 such

pe () B

q>q0

One can see that the pair «, 8 satisfies the conclusion of Theorem 1.
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Similarly, in order to prove Theorem 2 it is sufficient to show that for all ¢ > go the sets

B = N (APhe(2)

z<q, ¢1(z)¥1(|laz||)<e

are not empty.
Under the conditions of Theorems 1 and 2 the following statement is valid:
Lemma 5. Let j € {1,2}. Suppose that ¢ is small enough. Then for qo large enough and for
any
0>q @=q, 6=d¢
the following holds. If ' 4
mesBY) > mesBYl/2 > 0 (36)

then ' '
mesB(%] > mesB([fQ}/Z > 0. (37)

Theorems 1, 2 follow from Lemma 5 by induction as the base of the induction obviously follows
from the arguments of Lemma’s proof.

Proof of Lemma 5. First of all we show that for every j € {1.2} and = > ¢* where ¢ > qo
one has

mes (BI[]j] ﬂ Al (:1:)) < 2ol (z) x mesB(gﬂ. (38)

Indeed as from (34) and from (9) in the case j = 1 (or from (14) in the case j = 2) it follows
that A
W < (A—1)logg, Va < q.

We see that B,[Ij] is a union
T‘I
B9 =)
v=1

with J, of the form

a a+1
|:2l’ 2l:| , a € 7.
Note that AVl(z) consists of the segments of the form (35) and for z > ¢ > 241 (for ¢ large
enough) we see that each J, has at least two rational fractions of the form ¥, yTH inside. So

mes(J, N AVl(2)) < 246V (2) x mesJ,. (39)

Now (38) follows from (39) by summation over 1 < v < Tj.
To continue we observe that

q3
Bl =B\ | U AM@) |

r=qo+1
and
B = B\ U AR)(z)
q2+1<x<q3, ¢1(x)P1(||ax|])<e
Hence

a3
mesB[[]é] > mesB(EIQ] - Z mes(B[[é] n AN ().
r=qa+1
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At the same time
meng} > mesB([g] = Z mes(B[[Iz] N AR(z)).
q2+1<z<gs, $1(x)¥1(||az||)<e

As
B n AVl(z) € BUI n AUl(z)

we can apply (38) for every z from the interval ¢ < g2 < = < gs:
mes(B[[IJ; N Alil(z)) < mes(BC[ﬁ] N AVl(z)) < 240l)(2) x mesB(gjﬂ < 255U (z) x mesB(gJ;

log, g3

g gy = A the conclusion

(in the last inequality we use the condition (36) of Lemma 2). Now as
(37) of Lemma 5 in the case j = 1 follows from Lemma 3:

mesBlY > mesBL (1 - 25T£}5(q2)> > mesBlY /2.

In the case j = 2 Lemma 5 follows from Lemma 4 by a similar argument.
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Mowesumun H.I. O HEKOTOPBIX 3aJadaX TEOPUU HEOTHOPOIHBIX IMOMAHTOBBIX
npubIMKeHuit, CBI3aHHbIX ¢ pobsiemamu Jluttiasyaa u lllvuara. JlaabHeBOCTOIHBII
Maremarnaecknii Kypraa. 2012, T. 12. Ne 2. C. 237-254.

AHHOTAINS

Jloka3biBaeTCst  psiJi HOBBIX  PE3YJIBTATOB O  HEOJHOPOJHBIX  JTUOMAHTOBBIX
OpUOJIVMKEHUSTX JJIS JIBYX BEIECTBEHHBIX dwcesJ. Hallm TeopeMbl CBSI3aHBI CO
crappivu pesyabratamu A. 9. Xunuwna [7| ¥ HOBBIM TOIXOZOM, TPEITOKEHHBIM
1O. Tlepecom u B. lnarom [13].

Kntouersie cioBa: duoganmosor npubausicenus, 2unomesa Jlummasyda, memod
Ilepeca — Illaaza, naoxo npubAUINCAEMDLE YUCAQ.



