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On certain Littlewood-like and Schmidt-like problems

in inhomogeneous Diophantine approximations

We give several results related to inhomogeneous approximations to two real numbers and
badly approximable numbers. Our results are related to classical theorems by A.Khintchine
[7] and to an original method invented by Y.Peres and W. Schlag [13].
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1. Functions and parameters

In all what follows, || · || is the distance to the nearest integer. All functions here are non-
negative valued functions in real non-negative variables.

Consider strictly increasing functions ω1(t), ω2(t). Let ω
∗
1(t) be the inverse function to ω1(t),

that is
ω∗
1(ω1(t)) = t.

Suppose that another function in two variables Ω(x, y) satis�es the condition{
xy ≤ ω

(
z
x

)
,

x ≤ z
=⇒ x ≤ Ω(y, z), ∀x, y, z ∈ Z+. (1)

This condition may be rewritten as{
xω∗

1(x · y) ≤ z,

x ≤ z
=⇒ x ≤ Ω(y, z), ∀x, y, z ∈ Z+. (2)

Suppose that the functions ϕ(t), ϕ2(t), ϕ2(t), ψ1(t), ψ2(t), increase as t→ ∞ and

ϕ(0) = ϕ1(0) = ϕ2(0) = ψ1(0) = ψ2(0) = 0. (3)

Suppose that ψj(t), j = 1, 2 are strictly increasing functions and that ψ∗
j (t) is the inverse

function of ψj(t), that is
ψ∗
j (ψj(t)) = t ∀ t ∈ R+, j = 1, 2.

For a positive ε > 0 and integers ν, µ de�ne

δ[1]ε (µ, ν) = ψ∗
2

(
ε

ϕ(2ν)ψ1(2−µ−1)

)
, (4)
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δ[2]ε (ν) = ψ∗
2

(
ε

ϕ2(2ν)

)
. (5)

Suppose that A > 1. For functions ω1(t), ω2(t), ϕ(t), ψ1(t), ψ2(t) we consider the following
sum:

S
[1]
A,ε(X) =

∑
X≤ν<A(X+1)

∑
1≤µ≤log2(ω2(2ν+1))+1

δ[1]ε (µ, ν) ·max
(
Ω(2µ−1, 2ν+1), 2ν−µ, 1

)
(6)

For functions ω1(t), ω2(t), ϕ1(t), ϕ2(t), ψ1(t), ψ2(t) we consider another sum:

S
[2]
A,ε(X) =

∑
X≤ν<A(X+1)

δ[2]ε (ν) ·max
(
Ω(1/2rε(ν), 2

ν+1), 2νrε(ν), 1
)
, (7)

where

rε(ν) = ψ∗
1

(
ε

ϕ1(2ν)

)
. (8)

2. Main results

Here we formulate two new results � Theorems 1,2. Proofs of these theorems are given in
Sections 6, 7, 8. Section 4 below is devoted to certain examples of applications of Theorem 1.
Section 5 deals with applications of Theorem 2. In Section 3, we discuss Khintchine's theorems
and some of their extensions.

Theorem 1. Suppose that functions ψ1(t), ψ2(t), ϕ(t) are increasing. Suppose that (3) is
valid. Suppose that for certain A > 1, ε > 0, X0 ≥ 0 all the functions satisfy the conditions

log2

 X

2ψ∗
2

(
ε

ϕ(X)ψ1(1/2)

)
 ≤ (A− 1) log2X, ∀X ≥ X0, (9)

and

sup
X≥X0

S
[1]
A,ε(X) ≤ 1

29
. (10)

Consider two real numbers α, η such that

inf
x≥X0

ω1(x) · ||xα|| ≥ 1 (11)

and
inf
x≥X0

ω2(x) · ||xα− η|| ≥ 1 (12)

Then for any sequence of real numbers η1, η2, ..., ηx, ... there exists a real number β such that

inf
x≥X0

ϕ(x)ψ1(||xα− η||)ψ2(||xβ − ηx||) ≥ ε. (13)

A simpler version of the theorem was announced in [4] (Theorem 8 from [4]). Some inhomogeneous
results in special case were announced in [9] (see Appendix from [9]).

The following Theorem 2 generalizes a result from [10].
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Theorem 2. Consider a real number α satisfying (11). Let η be an arbitrary real number.
Suppose that

log2

 X

2ψ∗
2

(
ε

ϕ2(X)

)
 ≤ (A− 1) log2X, ∀X ≥ X0, (14)

and

sup
X≥X0

S
[2]
A,ε(X) ≤ 1

29
. (15)

Then for any sequence of real numbers η1, η2, ..., ηx, ... there exists a real number β such that

inf
x≥X0

max (ϕ1(x) · ψ1(||xα− η||), ϕ2(x) · ψ2(||xβ − ηx||) ) ≥ ε. (16)

Remark. The method under consideration enables one to obtain results about intersections.
Suppose that j ∈ {1, 2}. Given two di�erent collections of functions

ωj1(t), ω
j
2(t), ψ

j
1(t), ψ

j
2(t), ϕ

j(t), σj1(t), σ
j
2(t),

two sequences {ηjx}∞x=1 and two couples of reals αj , ηj satisfying the conditions speci�ed (with
more restrictions on constants) it is easy to prove the existence of a real β such that the
conclusions (13, 16) (or even both of them) are valid for both values of j ∈ {1, 2}. A simpler
example of such a result was proved in [10]. Moreover the method can give lower bound for
Hausdor� dimension of the sets.

3. Khintchine's theorems and their extensions

In [7] A.Khintchine proved the following result.
Theorem A. There exists an absolute constant γ such that for any real α there exists a real

η such that
inf
x∈Z+

x · ||xα− η|| ≥ γ. (17)

One can �nd this theorem in the books [5] (Ch. 10) and [14] (Ch. 4). The best known value
of γ probably is due to H. Godwin [6]. From [19] we know that for every α ∈ R the set of all η
for which there exists a positive constant γ such that (17) is true is a 1/2-winning set.

From Khintchine's theorem it follows that there exist reals α, η such that inequalities (11),
(12) are valid with

ω1(t) = ω2(t) = γt

with an absolute positive constant γ.
Here we formulate an immediate corollary to Khintchine's Theorem A.
Corollary 1.

(i) Suppose that reals α1 and α2 are linearly dependent over Z together with 1. Then there
exist reals η1, η2 such that

inf
x∈Z+

x · ||xα1 − η1|| · ||xα2 − η2|| > 0.

(ii) Suppose that α1 is a badly approximable number satisfying

inf
x∈Z+

x · ||xα1|| > 0.
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Suppose that α2 is linearly dependent with α1 and 1. Then there exists η such that

inf
x∈Z+

x · ||xα1|| · ||xα2 − η|| > 0.

Quite similar result was obtained recently by U. Shapira [17] by means of dynamical systems.
We would like to note here that two papers by E. Lindenstrauss and U. Shapira [8, 18] related
to the topic appeared very recently.

Proof of Corollary 1.
As α1, α2 are linearly dependent, we have integers A1, A2, B, not all zero, such that

A1α1 +A2α2 +B = 0.

From Khintchine's Theorem A we can deduce that there exists uncountably many η satisfying
the conclusion of the theorem. (From [19] we know that the corresponding set is a winning set
and hence is uncountable and dense). So we may �nd η1, η2 satisfying

inf
x∈Z+

x · ||αix− ηi|| ≥ δ, i = 1, 2. (18)

and
||A1η1 +A2η2|| ≥ δ

with some positive δ. (For the statement (ii) one can take η1 = 0, η2 = η.) Then

δ ≤ ||A1η1+A2η2|| = ||A1(α1x−η1)+A2(α2x−η2)|| ≤ A ·max
i=1,2

||αix−ηi||, A = max
i=1,2

|Ai|. (19)

Take a positive integer x. From (19) we see that one of the quantities ||αix − ηi||i = 1, 2 is not
less than δ/A. To the other quantity we may apply lower bound from (19). This gives

x · ||xα1|| · ||xα2 − η|| ≥ δ2/A.

Corollary 1 is proved.
For α = (α1, α2) ∈ R2 we de�ne a function

Ψα(t) = min
(x1,x2)∈Z2\{(0,0)},max |xi|≤t

||α1x1 + α2x2||.

Now we formulate another two theorems from Khintchine's paper [7].
Theorem B. Given a function φ(t) decreasing to zero there exist α1, α2 linearly independent

over Z together with 1 such that
Ψα(t) ≤ φ(t)

for all t large enough.
Theorem C. Given a function ψ(t) increasing to in�nity there exist reals α1, α2 linearly

independent over Z together with 1 and reals η1, η2 such that

inf
x∈Z+

ψ(x) ·max
i=1,2

||αix− ηi|| > 0.

In fact A.Khintchine deduces Theorem C from Theorem B. In the fundamental paper [7]
A.Khintchine states also two additional general results. One of them is as follows.

Theorem D. Given a tuple of real numbers (η1, η2) and given a function ψ(t) increasing to
in�nity there exist reals α1, α2 linearly independent over Z together with 1 such that

inf
x∈Z+

ψ(x) ·max
i=1,2

||αix− ηi|| > 0.
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On the other hand, by a result of J. Tseng [19], we know that for any real α the set

B = {η : inf
x∈Z+

x · ||αx− η|| > 0}

is an 1/2-winning set in R. It follows that the sets

B1 = {(η1, η2) : η1 ∈ B, η2 ∈ R}, B2 = {(η1, η2) : η1 ∈ R, η2 ∈ B }

are 1/2-winning sets in R2.
In the paper [11] N.Moshchevitin proved a general result. The theorem below is a particular

case of this result.
Theorem E. Suppose that ψ(t) is a function increasing to in�nity as t→ +∞. Suppose that

for any w ≥ 1 we have the inequality

sup
x≥1

ψ(wx)

ψ(x)
< +∞. (20)

Let ρ(t) be the function inverse to the function t 7→ 1/ψ(t) Let α = (α1, α2) ∈ R2 be such that

Ψα(t) ≤ ρ(t).

Then the set
B[ψ] = {(η1, η2) : inf

x∈Z+

ψ(x) ·max
i=1,2

||αix− ηi|| > 0}

is an 1/2-winning set in R2.
From the theory of winning sets (see [15]) we know that a countable intersection of α-winning

set is also an α-winning set. In particular the set

B[ψ] ∩ B1 ∩ B2

is an 1/2-winning set in R2. Moreover every α-winning set has full Hausdor� dimension and
hence is not empty. Thus we deduce the following result.

Theorem 3. Suppose that ψ(t) is a function increasing to in�nity as t→ +∞. Suppose that
(20) is valid. Then there exist real numbers α1, α2 linearly independent over Z together with 1
and real numbers η1, η2 such that

inf
x∈Z+

xψ(x) · ||α1x− η1|| · ||α2x− η2|| > 0.

A proof immediately follows from the fact that B[ψ] ∩B1 ∩B2 ̸= ∅. Let (α1, α2) be the tuple
from Theorem C applied to φ(t) = ρ(t). Take (η1, η2) ∈ B[ψ] ∩ B1 ∩ B2. Take positive integer x.
One of the values ||αix − ηi|| should be greater than ε/ψ(x) where ε depends on α1, α2, η1, η2
only. Then the other one is greater than ε′/x where ε′ depends on α1, α2, η1, η2 only. Theorem 3
is proved.

Theorem 3 may be compared with the main result from the paper [17]. It does not answer
the following question, already posed in [3].

Problem. Let α and β be real numbers with 1, α, β being linearly independent over the
rationals. Let α0, β0 and γ be real numbers. To prove or to disprove that

inf
q ̸=0

|q| · ∥qα− α0∥ · ∥qβ − β0∥ = 0
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and/or that
inf

(x,y) ̸=(0,0)
∥xα+ yβ − γ∥ ·max{|x|, 1} ·max{|y|, 1} = 0.

The following two theorems by U. Shapira from the paper [17] worth noting in the context of
this problem.

Theorem F. Almost all (in the sense of Lebesgue measure) pairs (α1, α2) ∈ R2 satisfy the
following property: for every pair (η1, η2) ∈ R2 one has

lim inf
q→∞

q ||qα1 − η1|| ||qα1 − η2|| = 0.

Theorem G. The conclusion of Theorem F is true for numbers α1, α2 which form together
with 1 a basis of a totally real algebraic �eld of degree 3.

Also we would like to refer to one more Khintchine's result (see [7], Hilfssatz 4)
Theorem H. Given c ∈ (0, 1) there exists Γ > 0 with the following property. For any α ∈ R

there exists β ∈ R such that

max(cx|αx− y|, Γ|βx− z|) ≥ 1,

where maximum is taken over integers x > 0, y, z, (x, y) = 1. In other words if

|αx− y| ≤ 1

cx
, (x, y) = 1

then

||βx|| ≥ 1

Γ
.

At the end of this section we want to refer to wondeful recent result by D.Badziahin,
A. Pollington and S.Velani from the paper [1]. In this paper they solve famous W.M. Schmidt's
conjecture [16].

Theorem I. Let u, v ≥ 0, u+ v = 1. Suppose that

inf
x∈Z+

x
1
u ||αx|| > 0. (21)

Then the set
Bu(α) = {β ∈ R : inf

x∈Z+

max(xu||αx||, xv||βx||) > 0}

has full Hausdor� dimension.
Here we should note that the main result from [1] shows for a given α under the condition

(21) that intersections of sets of the form Bu(α) for a �nite collection of di�erent values of u
has full Hausdor� dimension. An explicit version of the original proof invented by D.Badziahin,
A. Pollington and S.Velani was given in [12], in the simplest case u = 1/2.

Recently D.Badziahin [2] proved the following result.
Theorem J. The set

{(α, β) ∈ R2 : inf
x∈Z,x≥3

x log x log log x ||αx|| ||βx|| > 0}

has Hausdor� dimension equal to 2.
Moreover if α is a badly approximable number then the set

{β ∈ R : inf
x∈Z,x≥3

x log x log log x ||αx|| ||βx|| > 0}

has Hausdor� dimension equal to 1.
We think that the method from [1, 2] cannot be generalized for inhomogeneous setting.
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4. Examples to Theorem 1

Here we give several special choices of parameters in Theorem 1 and deduce several corollaries.
Example 1. Put

ω1(t) = ω2(t) = γt

with some positive γ > 1. Then

ω∗
1(t) =

t

γ

and we may take in (1)

Ω(y, z) =

√
1

γ

z

y
.

Put
ψ1(t) = ψ2(t) = t, ϕ(t) = t · ln2 t.

Then
ψ∗
2(t) = t.

So

δ[1]ε (µ, ν) = 2 · ε · 2
µ−ν

ν2
(22)

and

S
[1]
A,ε(X) = 2 · ε ·

∑
X≤ν<A(X+1)

∑
1≤µ≤ν+log2 γ+2

2µ−ν

ν2
max

(√
1

γ
2ν−µ+2, 2ν−µ, 1

)
≤

≤ 4 · ε ·
∑

X≤ν<A(X+1)

 ∑
1≤µ≤ν

1

ν2
+

∑
ν+1≤µ≤ν+2+log2 γ

2µ−ν

ν2

 ≤ 8 · ε ·
∑

X≤ν<A(X+1)

(
1

ν
+

4γ

ν2

)
≤

≤ 16ε ln(2A)

for X0 large enough (X0 ≥ γ/ε). Put A = 4. Then the condition (9) is satis�ed provided
X0

ln2X0
≥ 1

ε . Thus we obtain the following results.

Corollary 1.1. Let ηx, x = 1, 2, 3, .. be a sequence of reals. Given positive ε ≤ 2−14 and a
badly approximable real α such that

||αx|| ≥ 1

γx
∀x ∈ Z+, γ > 1,

there exist X0 = X0(ε, γ) and a real β such that

inf
x≥X0

x ln2 x · ||xα|| · ||xβ − ηx|| ≥ ε.

Corollary 1.2. Let ηx, x = 1, 2, 3, .. be a sequence of reals. Given positive ε ≤ 2−14 and real
α, η such that simultaneously

||αx|| ≥ 1

γx
∀x ∈ Z+, γ > 1

and

||αx− η|| ≥ 1

γx
∀x ∈ Z+, γ > 1,
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there exist X0 = X0(ε, γ) and a real β such that

inf
x≥X0

x ln2 x · ||xα− η|| · ||xβ − ηx|| ≥ ε.

From Khintchine's Theorem A we deduce the following result.
Corollary 1.3. Let ηx, x = 1, 2, 3, .. be a sequence of reals. Given positive ε ≤ 2−14 and a

real α such that

||αx|| ≥ 1

γx
∀x ∈ Z+, γ > 1,

there exist X0 = X0(ε, γ) and real η, β such that

inf
x≥X0

x ln2 x · ||xα− η|| · ||xβ − ηx|| ≥ ε.

Example 2. Put
ω1(t) = ω2(t) = t ln t

Then

ω∗
1(t) ≍

t

ln t

and we may take in (1)

Ω(y, z) = c

√
z ln z

y

with small positive c.
Put

ψ1(t) = ψ2(t) = t, ϕ(t) = t · ln2 t.

Then
ψ∗
2(t) = t,

and again δ
[1]
ε (µ, ν) satis�es (22). Now

S
[1]
A,ε(X) ≪ ε ·

∑
X≤ν<A(X+1)

∑
1≤µ≤ν+log2(ν+1)+2

2µ−ν

ν2
max

(√
2ν−µν, 2ν−µ, 1

)
≪

≪ ε ·
∑

X≤ν<A(X+1)

∑
1≤µ≤ν+log2(ν+1)+2

2µ−ν

ν2
max

(√
2ν−µν, 2ν−µ

)
≪

≪ ε ·
∑

X≤ν<A(X+1)

 ∑
1≤µ≤ν

1

ν2
+

∑
ν−log2(ν+1)≤µ≤ν+log2(ν+1)+2

2
µ−ν
2

ν3/2

 ≪ ε ln 2A,

for X0 large enough. Put A = 4. Then for X0 large enough the inequality (9) is valid. Thus we
obtain the following results.

Corollary 2.1. There exists an absolute positive constant ε0 with the following property. Let
ηx, x = 1, 2, 3, .. be a sequence of reals. Given positive ε ≤ ε0 and a real α such that for all x ≥ X1

one has

||αx|| ≥ 1

x lnx
,

there exist X0 = X0(ε,X1) and a real β such that

inf
x≥X0

x ln2 x · ||xα|| · ||xβ − ηx|| ≥ ε.
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Corollary 2.1 is a more general statement than Corollary 1.1.
Corollary 2.2. Let ηx, x = 1, 2, 3, .. be a sequence of reals. Given positive ε small enough

and real α, η such that for all x ≥ X1 simultaneously

||αx|| ≥ 1

x lnx
,

and

||αx− η|| ≥ 1

x lnx
,

there exist X0 = X0(ε,X1) and a real β such that

inf
x≥X0

x ln2 x · ||xα− η|| · ||xβ − ηx|| ≥ ε.

Example 3. Put
ω1(t) = t ln2 t, ω2(t) = γt, γ > 1.

Then

ω∗
1(t) ≍

t

ln2 t

and we may take in (1)

Ω(y, z) = c

√
z

y
ln z

with small positive c.
Put

ψ1(t) = ψ2(t) = t, ϕ(t) = t · ln2 t.

Then
ψ∗
2(t) = t,

and again δ
[1]
ε (µ, ν) satis�es (22). So

S
[1]
A,ε(X) ≪ ε ·

∑
X≤ν<A(X+1)

∑
1≤µ≤ν+log2 γ+2

2µ−ν

ν2
max

(√
2ν−µ · ν, 2ν−µ

)
≪

≪ ε ·
∑

X≤ν<A(X+1)

 ∑
1≤µ≤ν

1

ν2
+

∑
ν−2 log2(ν+1)≤µ≤ν+log2 γ+2

2
µ−ν
2

ν

 ≪

≪ ε ·
∑

X≤ν<A(X+1)

∑
1≤µ≤ν

1 +
√
γ

ν
≪ ε(1 +

√
γ) ln 2A,

for X0 large enough. Again for A = 4 and X0 large enough the inequality (9) is valid. Thus we
obtain the following results. This result is a more general statement than Corollary 1.2.

Corollary 3.1. Let ηx, x = 1, 2, 3, .. be a sequence of reals. Let γ > 1. Suppose that the
product ε

√
γ is small enough. Suppose that for certain real α, η and for x ≥ X1 simultaneously

one has

||αx|| ≥ 1

x ln2 x

and

||αx− η|| ≥ 1

γx
.
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Then there exist X0 = X0(ε, γ,X1) and a real β such that

inf
x≥X0

x ln2 x · ||xα− η|| · ||xβ − ηx|| ≥ ε.

Now from Khintchine's Theorem A we deduce a result which is more general than Corollary
1.3.

Corollary 3.2. Let ηx, x = 1, 2, 3, .. be a sequence of reals. Given positive ε small enough
and a real α such that

||αx|| ≥ 1

x ln2 x
,

there exist X0 = X0(ε) and real η, β such that

inf
x≥X0

x ln2 x · ||xα− η|| · ||xβ − ηx|| ≥ ε.

Example 4. Put
ω1(t) = ω2(t) = γt

with some positive γ > 1. Then as in Example 1 we have

ω∗
1(t) =

t

γ
, Ω(y, z) =

√
1

γ

z

y
.

Suppose that 0 ≤ a < 1. Put

ψ1(t) = t · (log2 1/t)a, ψ2(t) = t, ϕ(t) = t · log2−a2 t.

Then
ψ∗
2(t) = t

and

δ[1]ε (µ, ν) = 2 · ε · 2µ−ν

ν2−a(µ+ 1)a
.

Now

S
[1]
A,ε(X) ≪ 4ε ·

∑
X≤ν<A(X+1)

∑
1≤µ≤ν+log2 γ+2

2µ−ν

ν2−a(µ+ 1)a
max

(√
2ν−µ/γ , 2ν−µ, 1

)
≤

≤ 4 · ε ·
∑

X≤ν<A(X+1)

 ∑
1≤µ≤ν

1

ν2−a(µ+ 1)a
+

∑
ν+1≤µ≤ν+2+log2 γ

2µ−ν

ν2−a(µ+ 1)a

 ≤

≤ 8ε

1− a

∑
X≤ν<A(X+1)

(
1

ν
+

4γ

ν2

)
≤ 32ε ln(2A)

1− a

for X0 ≥ γ/ε. Put again A = 4. Then the condition (9) is satis�ed provided X0

ln2X0
≥ 1

ε . Thus we

obtain the following results (compare with Theorem 3 from [4]).
Corollary 4.1. Let ηx, x = 1, 2, 3, .. be a sequence of reals. Suppose that 0 ≤ a < 1. Given

positive ε ≤ 1
220(1−a) and a badly approximable real α such that

||αx|| ≥ 1

γx
∀x ∈ Z+, γ > 1,
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there exist X0 = X0(ε, γ) and a real β such that

inf
x≥X0

x(log2 x)
2−a · (log2 1/||xα||)a · ||xα|| · ||xβ − ηx|| ≥ ε.

Corollary 4.2. Let ηx, x = 1, 2, 3, .. be a sequence of reals. Given positive ε ≤ 1
220(1−a) and

real α, η such that simultaneously

||αx|| ≥ 1

γx
, ||αx− η|| ≥ 1

γx
∀x ∈ Z+, γ > 1,

there exist X0 = X0(ε, γ) and a real β such that

inf
x≥X0

x(log2 x)
2−a · (log2 1/||xα− η||)a · ||xα− η|| · ||xβ − ηx|| ≥ ε.

Corollary 4.3. Let ηx, x = 1, 2, 3, .. be a sequence of reals. Given positive ε ≤ 1
220(1−a) and a

real α such that

||αx|| ≥ 1

γx
∀x ∈ Z+, γ > 1,

there exist X0 = X0(ε, γ) and real η, β such that

inf
x≥X0

x(log2 x)
2−a · (log2 1/||xα− η||)a · ||xα− η|| · ||xβ − ηx|| ≥ ε.

Of course one can deduce other corollaries of a similar type from Theorem 1. For example
one may deduce statements which are more general than Corollaries 4.1 - 4.3 in the same manner
as it was done in Examples 2,3.

5. Examples to Theorem 2

Here we consider some corollaries related to special choices of parameters in Theorem 2.
Example 5. Let u, v > 0, u+ v = 1. Put

ω1(t) =
γt

1
u

(ln t)u
, γ > 1.

Then we may take in (1)

Ω(y, z) = c

(
z

yu(ln z)u2

) 1
1+u

with small positive c (we take into account that x≪ z1/2 ln z) .
Put

ψ1(t) = ψ2(t) = t, ϕ1(t) = (t log2 t)
u, ϕ2(t) = (t log2 t)

v.

Then
ψ∗
1 = ψ∗

2(t) = t,

and
δ[2]ε (ν) =

ε

(ν2ν)v
, rε(ν) =

ε

(ν2ν)u
.

So

S
[2]
A,ε(X) ≪ ε ·

∑
X≤ν<A(X+1)

1

(ν2ν)v
· 2

(1−u)ν

νu
≪ ε ·

∑
X≤ν<A(X+1)

∑
1≤µ≤ν

1

ν
≪ ε ln 2A,
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So we get
Corollary 5.1. Suppose that u, v > 0, u+ v = 1. Let ηx, x = 1, 2, 3, .. be a sequence of reals.

Let η be an arbitrary real number. Let γ > 0. Suppose that ε is small enough. Suppose that for
certain real α and for x ≥ X1 one has

||αx|| ≥ γ (lnx)u

x1/u
.

Then there exist X0 = X0(ε, γ,X1) and a real β such that

inf
x≥X0

max((x lnx)u · ||xα− η||, (x lnx)v · ||xβ − ηx||) ≥ ε.

Example 6. Put
ω1(t) = γtln t, γ > 1.

Then we may take in (1)

Ω(y, z) = c

√
z ln z

y

with small positive c.
Put

ψ1(t) = ψ2(t) = t, ϕ1(t) = ∆t, ϕ2(t) = (log2 t)
3/2, ∆ > 0.

Then
ψ∗
1 = ψ∗

2(t) = t,

and
δ[2]ε (ν) =

ε

ν3/2
, rε(ν) =

ε

∆2ν
.

So

S
[2]
A,ε(X) ≪ ε ·

∑
X≤ν<A(X+1)

Ω(1/2ν+1)

ν3/2
≪ ε3/2

∆1/2
·

∑
X≤ν<A(X+1)

∑
1≤µ≤ν

1

ν
≪ ε3/2

∆1/2
lnA,

So we get
Corollary 6.1. Let ηx, x = 1, 2, 3, .. be a sequence of reals. Let η be an arbitrary real number.

Let ∆ > 1. Suppose that 220ε3 ≤ ∆ . Suppose that for certain real α and for all positive integers
x one has

||αx|| ≥ γ

x lnx
.

Then there exist X0 = X0(γ) and a real β such that

inf
x≥X0

max(∆x · ||xα− η||, (lnx)3/2 · ||xβ − ηx||) ≥ ε.

In other words for this β if

||xα− η|| ≤ ε

∆x

then
||xβ − ηx|| ≥

ε

(lnx)3/2
.
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6. Sets of integers.

Consider sets

Aν,µ = {x ∈ Z+ : 2ν ≤ x < 2ν+1, 2−µ−1 < ||αx− η|| ≤ 2−µ},

Aν(t) = {x ∈ Z+ : 2ν ≤ x < 2ν+1, ||αx− η|| ≤ t},

Now we deduce an upper bound for the cardinality of the set Aν,µ.
Lemma 1. Under the condition (11) one has

cardAν,µ ≤ 23max
(
Ω(2µ−1, 2ν+1), 2ν−µ, 1

)
.

Proof. For a ∈ Aν,µ de�ne integer y from the condition

||xα− η|| = |xα− η − y|.

Case 10. All integer points z = (x, y), x ∈ Aν,µ form a convex polygon Π of positive measure
mesΠ > 0. Then

cardAν,µ ≤ 6mesΠ ≤ 6 · 2ν+1−µ < 2ν−µ+3. (23)

Case 20. All integer points z = (x, y), x ∈ Aν,µ lie on the same line. Then all these points
are of the form

z0 + lz1, zj = (xj , yj), 0 ≤ l ≤ L.

Now we see that
|αLx1 − Ly1| ≤ 2−µ+1

and
|αx1 − y1| ≤ 2−µ+1L−1.

From (11) we have
ω1(x1) ≥ 2µ−1L.

So
x1 ≥ ω∗

1(2
µ−1L)

and
Lx1 ≤ 2ν+1.

We conclude that
L ≤ 2ν+1, L · ω∗

1(2
µ−1L) ≤ 2ν+1.

So by (2) we have
cardAν,µ ≤ L+ 1 ≤ Ω(2µ−1, 2ν+1) + 1. (24)

We take together (23,24) to obtain

cardAν,µ ≤ max
(
Ω(2µ−1, 2ν+1), 2ν−µ, 1

)
.

Lemma is proved.
The next lemma deals with the cardinality of Aν(t).
Lemma 2. Under the condition (11) one has

cardAν(t) ≤ 22max
(
Ω(1/2t, 2ν+1), 2νt, 1

)
.
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Proof. The proof is quite similar to the proof of Lemma 1. We should consider two similar
cases 10 and 20. In the Case 10 we deduce the bound

cardAν(t) ≤ 2ν+2t.

In the Case 20 we see that

L ≤ 2ν+1, L · ω∗
1

(
L

2t

)
≤ 2ν+1.

By (2) we have
cardAν,µ ≤ L+ 1 ≤ Ω(1/2t, 2ν+1) + 1.

Lemma 2 follows.

7. Lemmas about fractional parts

Put

σ[1]ε (x) = σ[1]ε,α,γ(x) = ψ∗
2

(
ε

ϕ(x)ψ1(||xα− γ||)

)
, (25)

σ[2]ε (x) = σ[2]ε,α,γ(x) = ψ∗
2

(
ε

ϕ2(x)

)
. (26)

Then from the de�nitions (25) of σ
[1]
ε (x) and δ

[1]
ε (µ, ν) and monotonicity conditions we see

that
x ∈ Aν,µ =⇒ σ[1]ε (x) ≤ δ[1]ε (µ, ν). (27)

Consider sums
T
[1]
A,ε(Y ) =

∑
Y≤x<Y A

σ[1]ε (x), (28)

(with σ de�ned in (25)) and

T
[2]
A,ε(Y ) =

∑
Y≤x<Y A, ϕ1(x)ψ1(||αx||)≤ε

σ[2]ε (x), (29)

Lemma 3. Suppose that (11) and (12) are valid. Then under the condition (10) one has

sup
Y ∈Z+

T
[1]
A,ε(Y ) ≤ 1

26
. (30)

Proof. Put X = [log2 Y ]. We see that

T
[1]
A,ε(Y ) ≤

∑
X≤ν<A(X+1)

∞∑
µ=1

∑
x∈Aν,µ

σ[1]ε (x).

Note that from (12) it follows that sets Aν,µ are empty for µ > log2(ω2(2
ν+1)) + 1. So from (27)

we have

T
[1]
A,ε(Y ) ≤

∑
X≤ν<A(X+1)

[log2(ω2(2ν+1))]+1∑
µ=1

δ[1]ε (µ, ν) × cardAν,µ. (31)

Now from (31) and Lemma 1 we have

T
[1]
A,ε(Y ) ≤ 23

∑
X≤ν<A(X+1)

[log2(ω2(2ν+1))]+1∑
µ=1

δ[1]ε (µ, ν) × max
(
Ω(2µ−1, 2ν+1), 2ν−µ, 1

)
.
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Lemma 3 follows from (10).
Lemma 4. Suppose that (11) is valid. Then under the condition (15) one has

sup
Y ∈Z+

T
[2]
A,ε(Y ) ≤ 1

26
. (32)

Proof. The proof is quite similar to those of Lemma 3. Put X = [log2 Y ]. Then

T
[2]
A,ε(Y ) ≤

∑
X≤ν<A(X+1)

∑
x∈Aν(rε(ν))

σ[2]ε (x),

where rε(ν) is de�ned in (8). Now Lemma 4 immediately follows from (7, 15), Lemma 2 and the

inequality σ
[2]
ε (x) ≤ δ

[2]
ε (ν) which is valid for x ∈ Aν(rε(ν)).

8. Common PS argument

Here we follow the arguments from the paper [13] by Y.Peres and W. Schlag.
Let j ∈ {1, 2}. For integers 2 ≤ x, 0 ≤ y ≤ x de�ne

E[j](x, y) =

[
y + ηx
x

− σ
[j]
ε (x)

x
,
y + ηx
x

+
σ
[j]
ε (x)

x

]
, E[j](x) =

x∪
y=0

E[j](x, y)
∩

[0, 1]. (33)

De�ne
l0 = 0, lx = l[j]x = [log2(x/2σ

[j]
ε (x))], x ∈ N. (34)

Each segment from the union Eα(x) from (33) can be covered by a dyadic interval of the form(
b

2lx
,
b+ z

2lx

)
, z = 1, 2.

Let A[j](x) be the smallest union of all such dyadic segments which cover the whole set
E[j](x). Put

(A[j])c(x) = [0, 1] \A[j](x).

Then

(A[j])c(x) =

τx∪
ν=1

Iν

where closed segments Iν are of the form[
a

2lx
,
a+ 1

2lx

]
, a ∈ Z. (35)

We take q0 to be a large positive integer. In order to prove Theorem 1 it is su�cient to show
that for all q ≥ q0 the sets

B[1]
q =

q∩
x=q0

(A[1])c(x)

are not empty. Indeed as the sets B
[1]
q are closed and nested we see that there exists real β such

that
β ∈

∩
q≥q0

B[1]
q .

One can see that the pair α, β satis�es the conclusion of Theorem 1.
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Similarly, in order to prove Theorem 2 it is su�cient to show that for all q ≥ q0 the sets

B[2]
q =

∩
x≤q, ϕ1(x)ψ1(||αx||)≤ε

(A[2])c(x)

are not empty.
Under the conditions of Theorems 1 and 2 the following statement is valid:
Lemma 5. Let j ∈ {1, 2}. Suppose that ε is small enough. Then for q0 large enough and for

any
q1 ≥ q0, q2 = qA1 , q3 = qA2

the following holds. If
mesB[j]

q2 ≥ mesB[j]
q1 /2 > 0 (36)

then
mesB[j]

q3 ≥ mesB[j]
q2 /2 > 0. (37)

Theorems 1, 2 follow from Lemma 5 by induction as the base of the induction obviously follows
from the arguments of Lemma's proof.

Proof of Lemma 5. First of all we show that for every j ∈ {1.2} and x ≥ qA where q ≥ q0
one has

mes
(
B[j]
q

∩
A[j](x)

)
≤ 24σ[1]ε (x)×mesB[j]

q . (38)

Indeed as from (34) and from (9) in the case j = 1 (or from (14) in the case j = 2) it follows
that

l[j]x ≤ (A− 1) log q, ∀x ≤ q.

We see that B
[j]
q is a union

B[j]
q =

Tq∪
ν=1

Jν

with Jν of the form [
a

2l
,
a+ 1

2l

]
, a ∈ Z.

Note that A[j](x) consists of the segments of the form (35) and for x ≥ qA > 2l+1 (for q0 large
enough) we see that each Jν has at least two rational fractions of the form

y
x ,

y+1
x inside. So

mes(Jν ∩A[j](x)) ≤ 24σ[j]ε (x)×mesJν . (39)

Now (38) follows from (39) by summation over 1 ≤ ν ≤ Tq.
To continue we observe that

B[1]
q3 = B[1]

q2 \

 q3∪
x=q2+1

A[1](x)

 ,

and

B[2]
q3 = B[2]

q2 \

 ∪
q2+1≤x≤q3, ϕ1(x)ψ1(||αx||)≤ε

A[2](x)

 .

Hence

mesB[1]
q3 ≥ mesB[1]

q2 −
q3∑

x=q2+1

mes(B[1]
q2 ∩A[1](x)).
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At the same time

mesB[2]
q3 ≥ mesB[2]

q2 −
∑

q2+1≤x≤q3, ϕ1(x)ψ1(||αx||)≤ε

mes(B[2]
q2 ∩A[2](x)).

As
B[j]
q2 ∩A[j](x) ⊆ B[j]

q1 ∩A[j](x)

we can apply (38) for every x from the interval q31 ≤ q2 < x ≤ q3:

mes(B[j]
q2 ∩A[j](x)) ≤ mes(B[j]

q1 ∩A[j](x)) ≤ 24σ[j]ε (x)×mesB[j]
q1 ≤ 25σ[j]ε (x)×mesB[j]

q2

(in the last inequality we use the condition (36) of Lemma 2). Now as log2 q3
log2 q2

= A the conclusion

(37) of Lemma 5 in the case j = 1 follows from Lemma 3:

mesB[1]
q3 ≥ mesB[1]

q2

(
1− 25T

[1]
A,ε(q2)

)
≥ mesB[1]

q2 /2.

In the case j = 2 Lemma 5 follows from Lemma 4 by a similar argument.
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Ìîùåâèòèí Í. Ã. Î íåêîòîðûõ çàäà÷àõ òåîðèè íåîäíîðîäíûõ äèîôàíòîâûõ
ïðèáëèæåíèé, ñâÿçàííûõ ñ ïðîáëåìàìè Ëèòòëâóäà èØìèäòà. Äàëüíåâîñòî÷íûé
ìàòåìàòè÷åñêèé æóðíàë. 2012. Ò. 12. � 2. Ñ. 237�254.

ÀÍÍÎÒÀÖÈß

Äîêàçûâàåòñÿ ðÿä íîâûõ ðåçóëüòàòîâ î íåîäíîðîäíûõ äèîôàíòîâûõ
ïðèáëèæåíèÿõ äëÿ äâóõ âåùåñòâåííûõ ÷èñåë. Íàøè òåîðåìû ñâÿçàíû ñî
ñòàðûìè ðåçóëüòàòàìè À.ß. Õèí÷èíà [7] è íîâûì ïîäõîäîì, ïðåäëîæåííûì
Þ. Ïåðåñîì è Â. Øëàãîì [13].
Êëþ÷åâûå ñëîâà: äèîôàíòîâû ïðèáëèæåíèÿ, ãèïîòåçà Ëèòòëâóäà, ìåòîä
Ïåðåñà � Øëàãà, ïëîõî ïðèáëèæàåìûå ÷èñëà.


