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Lie derivations on the algebra
of measurable operators affiliated
with a type I finite von Neumann algebra

Let M be a type I finite von Neumann algebra and let S(M) be the algebra
of all measurable operators affiliated with M. We prove that every Lie
derivation on S(M) has standard form, that is, it is decomposed into the
sum of a derivation and a center-valued trace.
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1. Introduction

The structure of Lie derivations on C*-algebras, and on more general Banach al-
gebras, has attracted some attention over the past years. Let A be an algebra over
the field of complex numbers. A linear operator D : A — A is called a deriwation if
D(zy) = D(z)y+aD(y) for all x,y € A (the Leibniz rule). Each element a € A defines
a derivation D, on A given by D,(z) = ax — xa, x € A. Such derivations D, are said to
be inner derivations. If the element a implementing the derivation D, on A belongs to
a larger algebra B containing A as a proper ideal, then D, is called a spatial derivation.
A linear operator L : A — A is called a Lie derivation if L ([x,y]) = [L(x),y]+ [z, L(y)]
for all x,y € A, where [x,y] = 2y — yx.

Let Z(A) denote the center of A. A linear operator 7 : A — Z(A) is called a
center-valued trace if T(zy) = 7(yx) for all x,y € A. The problem of the standard
decomposition for a Lie derivation in ring theory was studied in work by W. S. Martindale
[8]. W. S. Martindale solved this problem for primitive rings containing nontrivial
idempotents and with the characteristic not equal to 2. Following these results obtained
for rings, C. R. Miers in [10] solved the problem of the standard decomposition for the
case of von Neumann algebras. In [4], M. BreSar determinend the structure of Lie
derivations of prime rings which does not satisfy the standard polynomial identity Sj.
Banning and Mathieu [3] extended to semiprime rings the description of Lie derivations
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obtained by Bresar in the prime case. V. E. Johnson proved in [7] that every continuous
Lie derivation L from a C*-algebra A into a Banach A-bimodule X can be decomposed
as L = D+ 7, where D : A — X is a derivation and 7 is a center-valued trace from
A into the center of X. This result was obtained by cohomological methods, namely
the concept of symmetric amenability, and in fact holds for symmetrically amenable
Banach algebras [7, Theorem 9.2]. In [2], P. Ara and M. Mathieu developed a theory of
local multipliers of C*-algebras which one deal with the situation of C*-algebras which
are non commutative enough. A positive answer has also recently been given for Lie
derivations from an arbitrary C*-algebra into itself [9] by combining the techniques of 2]
and [13]. The present paper is devoted to the standard decomposition of Lie derivations
on the algebra of measurable operators affiliated with a type I, von Neumann algebra.

The present paper is devoted to the standard decomposition of Lie derivations on
the algebra of measurable operators affiliated with a type I,, von Neumann algebra, and
is a somewhat extended English version of [14].

2. Preliminaries

Throughout the paper, let H denote a Hilbert space, and let B(H) be the algebra
of all bounded linear operators acting on H. Let M denote a von Neumann subalgebra
in B(H), and let P(M) be the complete lattice of all orthogonal projections in M.

A linear subspace D of H is said to be affiliated with M (written DnM) if u(D) C D
for any unitary operator u belonging to the commutant

M :={ye B(H) : xy =yx for all x € M}

of the algebra M.

A linear operator x in H with domain D(x) is said to be affiliated with M (written
xnM) if for each unitary operator u € M’ u (D (z)) C D(x) and uz(§) = zu(§) for all
€ € D(z).

A linear subspace D of H is said to be strongly dense in H with respect to the
von Neumann algebra M if DnM and if there exists a sequence {p,} -, of projections
in P(M) such that p, 1 1, p,(H) C D for each n € N, and p = 1 — p, is a finite
projection in M for each n € N; here, as subsequently, 1 stands for the unit of M.

A closed linear operator x acting in H is said to be measurable with respect to
the von Neumann algebra M if xnM and if D(x) is strongly dense in H. Throughout
let S(M) be the set of all measurable operators affiliated with M (see [12]) and let
Z(S(M)) be the center of the algebra S(M). A von Neumann algebra M is of type I if
it contains a faithful abelian projection.

3. Structure of Lie Derivations
Let M be a homogeneous von Neumann algebra of type I, (n € N), with the center

Z. Then M is *-isomorphic to the algebra M, (Z) of n x n matrices over Z (see |11,
Theorem 2.3.3]). In addition, S(M) = M, (Z(S(M))) and Z(S(M)) = S(Z) (see [1]) as
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S(Z) = L°%Q) (see [12]), where L%(Q)) =: L° is the algebra of all complex measurable
functions on 2, and S(Z) is the algebra of measurable operators for the commutative von

Neumann algebra Z. Moreover, any element x € M, (S(Z)) can be represented in the

formz = Y e, where \;; € LY and e;; are the matrix units. Let L : S(M) — S(M)
ij=1
be any Lie derivation, and let ¢ = L|;0 be the restriction of L to the center of L°. This
definition is correct because L maps the center into itself. Indeed, since, by definition,
L([z,2]) = [L(2),x] + [z, L(z)] for all z € LY and all z € S(M), and since [z, L (z)] = 0
and L ([z,z]) = 0, it follows that [L (z),z] = 0, i.e. L(z) belongs to the center whenever
z e LO. . .
Define 7(x) = > 9 (Ay) provided z = Y \;je;;.
i=1 ij=1
Proposition. 7 is a linear map, and 7(zy) = 7(yx).

Proof. The linearity of L implies the linearity of 7. Let us prove that 7(xy) = 7(yx). If
we let

Tr = (AIJ) Y= (:ul]) , XY = ng = Z )\zk,ukw

yr = (b)), by = ZHikAkz’, i,j=1,n,
k=1

then
T(ry) =Y 0 Nikpi) = (Z /\zkﬂkz) =9 (Z #ik)\ki) = 7(yx).
k=1 k=1
Thus, 7: M, (L) — L° is a center-valued trace. [

In order to prove the desired equality L = D + 7, we shall show that (L —7) = D
is a derivation.

If p; = pis a projection in S(M), ps = 1 p then set p;S(M)p; = {pixp; : v € S(M)}
for i,j = 1,2. It is clear that S(M) = Z sz (M)p;. Let further M;; = p;S(M)p,
i=1j=1

where 4, j = 1,2, and recall that M;; C M;;My; for 7,5 = 1,2.

Lemma 1. Let p be a projection in S(M). Then, for all x € S(M),
z{pL(p)+L(p)p+pL(p)p—L{p)}—{pLp)+Lpp+pLp)p—L({p}te
=3pz{pL(p) + L(p)p—L(p)}—-3{pL(p)+L(p)p—L{p}tzp. (1)

Proof. The equality
holds for any = € S(M). Applying L to the identity (2), we obtain

L[[x, p], p], p] = L[z, p],
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[L([[z, p], p]), p] + [[[=, p], 2], L(p)] = [[L([2, p]), ] + [[z, ], L(P)], p] + [[[z, p], P], L(P)]
= [[[L(z), p| + [z, L(p)], p] + [z, p], L(p)], p] + [[[z, p], P, L(p)]
= [[L(z)p — pL(x) + xL(p) — L(p)z, p| + [xp — px, L(p)], p] + [[zp — p, p|, L(p)]
(p)p — L(p)xp — pL(x)p + pL(x) — pxL(p) + pL(p)x

= [L(x)p — pL(x)p + =L
+ xpL(p) — prL(p) — L(p)xp + L(p)pz,p] + [xp — 2pzp + pz, L(p)]
= L(z)p — pL(2)p + 2 L(p)p — L(p)xp — pL(z)p + pL(x)p
— pxL(p)p + pL(p)xp + xpL(p)p — prL(p)p — L(p)xp + L(p)pxp — pL(z)p
+ pL(z)p — pxL(p)p + pL(p)zp + pL(z)p — pL(z) + pzL(p) — pL(p)x
— pxpL(p) + prL(p) + pL(p)xp — pL(p)px + xpL(p) — 2pxpL(p) + prL(p)
— L(p)xp + 2L(p)prp — L(p)pr = L(x)p — pL(x) + xL(p) — L(p)z,

which implies the required equality. [
Lemma 2. L(p) = [p, s] + z for some s € S(M) and z € Z(S(M)).
Proof. Let L(p) = Y fij, fij € My; (1,7 = 1,2). Applying (1) for all z € S(M), we

obtain

o{p(fir + fiz + for + fa2) + (fur + fiz + for + fo2)p + p(fi1 + fio + for + fa2)p
— (fu + fio + far + f22)} — {p(fir + fi2 + for + fa2) + (f11 + fi2 + for + f22)p
+p(fir + fiz + for + fo2)p — (fir + fio + for + fa2) }o
= 3px{p(fi1 + fi2 + for + fo2) + (fir + frz + for + fo2)p — (fi1 + fiz + for + fo2)}
= 3{p(fur + fiz + for + fo2) + (f1i1 + fi2 + for + fo2)p — (fir + fr2 + for + fa2) }ap.

Since fi;; € M;; (1,5 = 1,2), it follows that f;; = p;fi;jp;. Therefore
pfij = ppifijp; = fij for i=1, pfij = ppifijp; =0 for @ # 1,
fijp = pifijpjp = fij for j=1, fijp = pifijpjp =0 for j#1,
pfijp = ppifijpjp = fij for i =j7=1, pfijp = ppifijpjp =0 for 7,7 # 1.
Thus
p(fi1 + fiz + for + fo2) = fu1 + fio,

(fir + fiz + for + fo2)p = fi1 + for,
p(fi1 + fiz + for + fa2)p = fu1,

o(fir + fio+ fur + for + fir — fir = fio = for — fa2) = (fuu + fio + fu + fa + fa
— fi1 — fi2 — for — fa2)x = 3px(fi1 + fio + fi1r + for — fi1 — fi2 — for — fa2)
—3(fu+ fi+ fu+ fa — fu1 — fiz — fa — fa2)ap.

Therefore

37(2f11 - fzz) - (2f11 - f22)$ = 3P$(f11 - f22) - 3(f11 - f22)$17- (3)
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If x € My, and y € My;, then xy = 0 for m # k, and zy € M;; for m = k.
If x € Mo, then (3) implies f112 = z fa2, whence it follows that

(fir + fo2)z = x(fi1 + fa2) (x € M),

because fypor = xf;; = 0. Similarly, (f11 + fa2)r = z(f11 + f22) (x € My;). Now let
x € My; and y € My5. Then

{(fin + fa2)r — 2(fur + fo2) yy = (fir + fa2)wy — 2(f11 + fa2)y
= (fu1 + fa2)zy — 2y(fur + f22) = (fu1 + fa2)zy — (fu1 + fax)2y = 0,

because y, xy € M. It follows that
{(fin+ fa2)z —2(fir + fa2) }y =0

for all y € M;,. From here, we obtain

<f11+f22)x_x(f11+f22) :0 (l’e M11)~

Similarly,
(fi1 + fo2)xr — x(fin + f22) =0 (x € M),

iLe. fi1+ foo =2 € Z(S(M)). Hence, L(p) = (fi12 + f21) + 2z and, setting s = f1o — fo1,
we obtain L(p) = (ps — sp) + z. O

Throughout the rest of this paper we impose the additional assumption that L(p)
is an element of Z(S(M)).

Lemma 3. L (M,;) C M,; if i # j.

Proof. Let x € My, and L(z) = ) y;; where y;; € M;; for i,j = 1,2. Then, taking into
account the equality = = [p, z|, we obtain

>y = L(x) = L(lp,2]) = [L(p), «] + [p, L(2)] = [p, L(2)] = y12 — yon,

since L(p) € Z(S(M)). It follows that y1; = yo1 = y22 = 0. Thus, L(z) € Ms. The case
of x € My, can be proved similarly. O

Lemma 4. D(M;) C M.

Proof. Let x € My; and L(z) = Y yij, vi; € M;;. Then [p,z] =0 and 0 = L ([p,z]) =
[L(p), x] + [p, L(x)] = y12 — Y21, and 80 y1o = y21 = 0 and L(x) € My + Mas. Similarly,
ifz e MQQ, then L(Z‘) € Mll —|—M22. Let x € M11 and Y < MQQ, and let L(LC) = ay1 + G99
and L(y) = by + bay where a;;,b; € M;;. Then 0 = L([z,y]) = [L(x),y] + [z, L(y)] =
lage, y] + [x,b11] = 0, where [ag,y] € Msy and [z,b1;] € Mi;. Hence, in particular,
[age,y] = 0 for all y € My, i.e. as is a central element in Mo, and so as = (1 — p)z,
z € S(Z). Therefore

L(z) = an + (1 — p)z = [(an — pz) + 2] € M + 5(2),

where z € S(Z).

On the other hand, L = D + 7, and hence L(z) = D(z) + z for some z € S(Z).
Comparing the last equalities gives D(xz) € M;; where x € M;;. A similar argument
holds if x € M,. O
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Now we prove that L — 7 = D is a derivation on elements of M;;.
Lemma 5. D(zy) = D(x)y + xD(y) forx € My andy € M, (j # k).

Proof. Let x € My, and y € Mjy. Then D(zy) = L(zy) — 7(zy) = L(zy), 7(vy) =
7(yx) = 0, since yxr = 0. Therefore D(xy) = Llz,y] = [L(x),y] + [z, L(y)] = [(D +
)(x),y|+ [z, (D+7)(y)] = [D(x),y]+ [z, D(y)], because 7(x), 7(y) are central elements
fulfilling [7(z),y| = [z, 7(y)] = 0. It follows that D(xy) = D(x)y+xD(y), since yD(z) =
D(y)x = 0. The case in which € My, and y € My; can be proved similarly. ]

Lemma 6. D(zy) = D(x)y +2D(y) for x € M;; and y € Mj;.
Proof. Let x,y € My, r € My, then by Lemma 5 we have
D((zy)r) = D(xy)r + zyD(r).
D(zy)r = D(xyr) — zyD(r) = D(x)yr + xD(yr) — xyD(r)
= D(@)yr +z{D(y)r +yD(r)} —wyD(r) = {D(x)y + xD(y)} r.

Hence, {D(zy) — D(z)y — xD(y)}r = 0 for all r € M. It follows that D(xy)—D(z)y—
xD(y) = 0. The case when z € My, and y € My can be proved similarly. H

Theorem 1. D is a derivation from S(M) into S(M).

Proof. We have to prove that D(zy) = D(z)y + xD(y) for all z,y € S(M). Let = #
0 € Mo, y € Ms,. Then the equality

7([z,y]) = L[z, y]) = D([z,y]) = [L(x),y] + [z, L(y)] = D([z,y])
= [D(z),y] + [z, D(y)] — D(xy) + D(yx)

implies {D(z)y+xD(y) — D(xy)} +{D(yx) — D(y)x —yD(x)} = 0. Therefore [D(z)y +
zD(y) — D(zy)] € (M1 N M), ie. [D(z)y +2D(y) — D(zy)] = 0. O

Corollary. If L|;0 = 0, then any Lie derivation from S(M) into S(M) is a derivation.

Remark. We supposed in the proof of Lemma 3 that L(p) € S(Z). In reality,
according to Lemma 2 one can write L(p) = [p, s| + z, where p € S(M), z € S(Z). An
element s € S(M) defines the inner derivation Dy by the rule: Dy(x) = sz — xs for all
x € S(M). Consider the Lie derivation L' = L — Dy from S(M) into S(M). It is clear
that L'(p) = z € S(Z). By Theorem 1, L' =D+ 7 or L = (D + D) + 7.

Our standard decomposition result now follows from Theorem 1 and its Corollary,
and we state it as the following main theorem.

Theorem 2. Let M be a homogeneous von Neumann algebra of type I,. Any Lie
derivation on S(M) can be uniquely represented in the form

L=D+r,

where D is a derivation and T is a center-valued trace from S(M) into S(Z).
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Another proof of Theorem 2, not essentially distinct from that given above, but
different in form and detail, is offered in [14].

Let A be a commutative algebra, and let M, (A) be the algebra of n x n matrices
over A. If e;; (z',j = L_n) are the matrix units in M, (A), then each element z € M, (A)
has form

Tr = Z )\,-jel-j, where )\ij € A, Z,] = I,_n
ij=1
Let 0 : A — A be a derivation. Setting

Da( i Az‘ﬁz‘j) = i d(Aij)eis, (4)

1,j=1 1,5=1

we obtain a well-defined linear operator Ds on the algebra M, (A). Moreover, Dy is
a derivation on the algebra M, (A) and its restriction onto the center of the algebra
M,, (A) coincides with the given . Now Lemma 2.2 [1] implies the following.

Corollary. Let M be a homogeneous von Neumann algebra of type I,,, n € N. Every Lie
derivation L on the algebra S(M) can be uniquely represented as a sum L = D,+ Ds+T,
where D, is an inner derivation implemented by an element a € S(M), while Ds is the
derivation of the form (4) generated by a derivation § on the center S(M) identified
with S(Z).

Now let M be an arbitrary finite von Neumann algebra of type I with center Z. There
exists a family {z, }ner (F C N) of central projections from M with sup,,cp 2z, = 1 such
that the algebra M is x-isomorphic with the C*-sum of von Neumann algebras z,, M of

type I, (n € F), i.e.
M =P zM.
By Proposition 1.1 [1] we have that
S(M) =[] S(zuM).
nelF

Suppose that D is a derivation on S(M), and that § is its restriction onto its center
S(Z). Since § maps each z,5(Z) = Z(S(z,M)) into itself, § generates a derivation
0, on z,5(Z) for each n € F. Let Ds, be the derivation on the matrix algebra
M (2, Z(S(M))) = S(z,M) defined as in (4). Put

Ds({xn}tner) = {Ds,(xn)}; {Zn}ner € S(M). (5)
Then the map Dj is a derivation on S(M). Now Lemma 2.3 [1] implies the following.

Corollary. Let M be a finite von Neumann algebra of type I. Fvery Lie derivation L
on the algebra S(M) can be uniquely represented as a sum L = D, + D5+ T, where D,
is an inner derivation implemented by an element a € S(M), and Dy is a derivation
given as in (5).
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AHHOTAIINA

st anrebp M3MEpPUMBIX ONEPATOPOB, MPUCOEMHEHHBIX K KOHEUHOMN
asiredbpe ¢dhon Heiimana tuma [, jokazana Teopema 0 mpejcTaB/IeHAN
JIMeBbIX JuddepeHmpoBalii B BHJAE CYMMbI  aCCOIIMATHBHOIO
uddepeHnnpoBaHns U IMEHTPO3HATHOTO CJIeIA.

Knrouesnie cJIoBa: anzebpa pon Hetimana, UBMEPUMDLL
onepamop, anzebpa pon Hetdmana muna I, Jdupdepenyuposanue,
aueso  dugpeperuuposanue, enympennee  duddepernyuposarue,

UEHMPOZHAUHBIT CAeD.



