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Effective estimations of the measure of the
sets of real numbers in which integer

polynomials take small value

In this paper we obtain the effective estimates in the terms of n and Q
for the measure of the sets of real numbers with the given approximation
property by algebraic numbers of degree n and height bounded by Q ∈ N.
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1. Introduction
Let P (x) = anx

n + an−1x
n−1 + · · · + a1x + a0 be an integer polynomial of degree

degP = n and height H = H(P ) = max06j6n |aj|. Denote by P≤n the class of integer
polynomials P of degree at most n and Pn the class of integer polynomials P of degree n.
Denote by J ⊂ R some interval. For convenience, let J = [−1/2, 1/2]. Using Minkowski
theorem on linear forms or Dirichlet box principle it is easy to prove that for any x ∈ J
and Q ∈ N>1 there exists a polynomial P ∈ P≤n, H(P ) ≤ Q satisfying

|P (x)| < 2−2Q−n. (1)

Then it is not difficult to show that for all x ∈ J the inequality

|P (x)| < 2−2H(P )−n (2)

has infinitely many solutions in polynomials P ∈ P≤n. The inequalities (1) and (2) can
not be improved in principal. It is not difficult to show that for γ = n+1

√
2 the inequality

|P (γ)| > c(γ)H(P )−n holds for any P ∈ P≤n. However, Khintchine [1] has shown that
for any ϵ > 0 and almost all x ∈ R (in the sence of Lebesgue measure) the inequality

|P (x)| < ϵH(P )−n
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holds for infinitely many polynomials P ∈ P≤n.
Let Ψ(x) be a monotonic decreasing function of x ∈ R+. Denote by Ln(Ψ) the set

of real numbers x ∈ J such that the inequality

|P (x)| < Ψ(H(P )) (3)

has infinitely many solutions in polynomials P ∈ P≤n. In [2, 3] it was proved that

µ(Ln(Ψ)) =


0 if

∞∑
H=1

Hn−1Ψ(H) < ∞,

µ(J) if
∞∑

H=1

Hn−1Ψ(H) = ∞.
(4)

Note that for n = 1 the result (4) coincides with Khintchine theorem on approximation
of real numbers by rational numbers [4]. If Ψ(H) = H−n−ϵ then the series in (4)
converges and it is known as a Mahler hypothesis [5] which was been proven by Sprindzuk
[6]. Recently the result in (4) was generalized to the non-degenerate curves [7, 8] and to
simultaneous approximation in the fields of real, complex and p-adic numbers [9, 10].

For the investigation of the distribution of real algebraic integers the following
effective estimate of the measure was used (which is based on the results from [2]).

Proposition 1. [11] Let n ≥ 2 be an integer. Denote by Mn(Q) the set of x ∈ J for
which the inequalities

|P (x)| ≤ n−12−n−5Q−n and H(P ) ≤ Q (5)

have a solution in P ∈ P≤n. Then there exists a sufficiently large Q0 = Q0(n, J) such
that for all Q > Q0 we have µ(Mn(Q)) ≤ 2−2µ(J).

In Proposition 1 the two variables n and Q have different nature: the variable n =
degP is fixed and the variable Q must be chosen to be sufficiently large (note that Q
is not defined explicitly).

The effective versions of metric theorems have begun to develop in recent years. This
led to estimates for the number of integer polynomials with given distance between the
roots [12, 13, 14, 15], to estimates for discriminants [16] and resultants [17].

Let µ(A) be the Lebesgue measure of a measurable set A ⊂ R, and |I| be the length
of an interval I ⊂ R. In what follows c0 = c0(n), c1, c2, . . . denote positive constants
which depend only on n. Let #S will denote the number of elements in a finite set S.
We will also use the Vinogradov symbol f ≪ g which means that there exists a constant
c > 0 such that f ≤ cg. The notation f ≍ g means that f ≪ g ≪ f .

We introduce two classes of polynomials

P≤n(Q) = {Pn ∈ P≤n : H(P ) 6 Q} and Pn(Q) = {Pn ∈ Pn : H(P ) 6 Q}. (6)

Let I = [0, 1] and δ = δ(n,Q). Denote by Mn(Q, I, δ) the set of x ∈ I for which the
inequality

|P (x)| < δ (7)
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has a solution in polynomials P ∈ P≤n(Q). In this paper we are interested on the metric
properties of the set Mn(Q, I, δ). We are going to prove a few theorems with estimations
of the form

µ(Mn(Q, I, δ)) < s(n)Qlδµ(I), (8)

where s(n) is a function of n. Then we can choose δ = δ1(s(n))
−1Q−l and conclude that

the inequality (7) holds for P ∈ P≤n(Q) only on the set of x ∈ I with the measure
at most δ1µ(I), 0 < δ1 ≤ 1, for the rest of x from the set of the measure at least
(1− δ1)µ(I) the inequality opposite to (7) holds.

First, we are going to prove the theorem which is based on the known inequalities
in the theory of transcendental numbers [18].

Theorem 1. For any δ satisfying

2−3n2+2Q−2n−3 ≤ δ ≤ 2−6n2

Q−2n−1 (9)

we have
µ(Mn(Q, I, δ)) < 26n

2

Q2n+1δµ(I).

Note that (9) holds for Q ≥ 23n
2/2+1. The proof of Theorem 1 is based on Lemma

1. But if instead we will use Lemma 2 then we obtain that

µ(Mn(Q, I, δ)) < e10n log2 nQ3n−1δµ(I)

for sufficiently large Q and sufficiently small δ. In the following theorem we are proving
the best possible result for the measure of the set Mn(Q, I, δ) in the terms of the height
of the polynomials. For this result we require that Q ≥ 244n

4 and instead of 26n
2 in

Theorem 1 we will have 23n
3+n2

n2.
Let βn > 0 be a constant depending on n and ϵ ∈ R+. Denote by Ln(Q, I) the set

of x ∈ I for which the inequality

|P (x)| < βnQ
−n (10)

has a solution in polynomials P ∈ Pn(Q).

Theorem 2. For any real number ϵ, satisfying 2−n2 ≤ ϵ ≤ 1, and βn = 2−3n3−n2
n−2ϵ,

for Q ≥ 244n
4 we have that

µ(Ln(Q, I)) < ϵµ(I).

2. Auxiliary statements
By translation and taking the reciprocals (if necessary) each polynomial P ∈ Pn

can be transformed into a polynomial R satisfying

|an(R)| ≥ H(R)/n, (11)

and H(R) ≍ H(P ). Consider the polynomials P ∈ Pn satisfying (11). Let α1, α2, . . . , αn

be the roots of the polynomial P in C. Define the sets

SP (αi) = {x ∈ R : |x− αi| = min
16m6n

|x− αm|}, 1 ≤ i ≤ n.
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Further assume without loss of generality that i = 1. Reorder the other roots of P so
that

|α1 − α2| ≤ |α1 − α3| ≤ . . . ≤ |α1 − αn|.
For the polynomial P define the real numbers ρj by

|α1 − αj| = H(P )−ρj , 2 ≤ j ≤ n, ρ2 ≥ ρ3 ≥ . . . ≥ ρn.

Let ϵ > 0 be sufficiently small, d > 0 be a large fixed number, ϵ1 = ϵ/d and T = [ϵ−1
1 ]+1.

Also, define the integers lj, 2 ≤ j ≤ n, by the relations

lj − 1

T
≤ ρ1j <

lj
T
, l2 ≥ l3 ≥ . . . ≥ ln ≥ 0.

Finally, define the numbers qi by qi = li+1+...+ln
T

, (1 ≤ i ≤ n − 1). All irreducible
polynomials P ∈ Pn(Q) satisfying (11) and corresponding to the same vector l =
(l2, . . . , ln) are grouped together into a class Pn(Q, l), and the number of such classes is
finite and depends only on n and ϵ1, i.e. is at most C(n, ϵ1), see [6]. Also, we define the
class Pn(l) to consist of all irreducible polynomials Pn satisfying (11) and corresponding
to a vector l. In 4.2.4 we fix the vector l and will continue the proof for this fixed vector.

A number of lemmas for later use are now given.

Lemma 1. [19] Suppose P (z) ∈ Z[z] is a polynomial without multiple roots of degree n
and height H, and let α1, . . . , αn be its roots. Then for any number θ,

min
i=1,...,n

|θ − αi| · e−n2

H−n ≤ |P (θ)| ≤ min
i=1,...,n

|θ − αi| · n2H(H + 2)n−1max{1, |θ|n}.

Denote by L(P ) the length of the polynomial P (t) =
∑n

i=0 ait
i, i.e. L(P ) =

∑n
i=0 |ai|.

Obviously, H(P ) ≤ L(P ) ≤ (n+ 1)H(P ).

Lemma 2. [18] Suppose P (z) ∈ Z[z] is an irreducible polynomial of degree n, height
H = H(P ), length L = L(P ), and let α1, . . . , αn be its roots. Then for any θ,

min
i=1,...,n

|θ − αi| · n−3n2−3nH−2n+2 ≤ |P (θ)|

or
min

i=1,...,n
|θ − αi| · 2−n+1n−n+1L(P )−2n+2 ≤ |P (θ)|.

In Lemma 2 in contrast of Lemma 1, H−2n+2 occurs instead of H−n. But instead of
e−n2 we have n−3n2−3n = e−3n lnn−3n ln 2.

Lemma 3. [6, 20] Let x ∈ SP (α1). Then

|x− α1| 6 n
|P (x)|
|P ′(x)|

for P ′(x) ̸= 0,

|x− α1| 6 2n−1|P (x)||P ′(α1)|−1 for P ′(α1) ̸= 0, (12)
and

|x− α1| 6 min
26j6n

(2n−j|P (x)||P ′(α1)|−1

j∏
k=2

|α1 − αk|)
1
j for P ′(α1) ̸= 0.
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The next lemma is proved in [20].

Lemma 4. Let P ∈ Pn(l) satisfying (11). Then

|P ′(α1)| ≥ nH(P )1−q1 and |P (l)(α1)| ≤ H(P )1−ql+(n−l)ϵ1 , 1 ≤ l ≤ n− 1.

Lemma 5. [21] Let J be an interval in R and let B be a measurable subset of J with
µ(B) ≥ |J |/v, where v ∈ N. Suppose that |P (x)| < H(P )−u for all x ∈ B, where u > 0
and degP ≤ n. Then |P (x)| < (3v)n(n+ 1)n+1H(P )−u for all x ∈ J .

Lemma 6. [21] Let δ0 > 0 and Q > Q0(δ0). Further, let P1 and P2 be two integer
polynomials of degree at most n with no common roots and max(H(P1), H(P2)) ≤ Q.
Let J ⊂ R be an interval with µ(J) = Q−η, η > 0. If there exists τ > 0 such that for
all x ∈ J

|Pj(x)| < Q−τ ,

for j = 1, 2, then
τ + 1 + 2max(τ + 1− η, 0) < 2n+ δ0. (13)

Lemma 7. [6] Let P (x) = anx
n + . . . a0. If |an| ≫ H(P ) then for any i, 1 6 i 6 n

there exists a constant c > 0 such that |αi| < c.

Lemma 8. [22] Let P1(x), . . . , Pr(x) be non-zero complex polynomials of degree n1, . . . , nr,
respectively, and set n = n1 + . . .+ nr. We then have

2−nH(P1) . . . H(Pr) ≤ H(P1 . . . Pr) ≤ 2nH(P1) . . . H(Pr).

3. Proof of Theorem 1
For polynomials P of degree degP ≥ 2 we proceed by mathematical induction with

inductive hypothesis being that for 1 ≤ s ≤ n− 1 we have

µ
(
x ∈ I : ∃P ∈ P≤s(Q) s.t. |P (x)| < δs

)
< 26s

2

Q2s+1δsµ(I).

Note that the base case for s = 1 follows from (17).

3.1. Polynomials without common roots

Define two classes of polynomials without common roots, so that

P≤n(j, T ) = {P ∈ P≤n, |aj| = H(P ) = T}, 0 ≤ j ≤ n,
P≤n(T ) = ∪n

j=0P≤n(j, T ).

Obviously, the following estimates

#P≤n(j, T ) ≤ (2T + 1)n,
#P≤n(T ) ≤ (n+ 1)(2T + 1)n

(14)

hold.
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Denote by σ̄(P ) the set of solutions x ∈ I of the inequality |P (x)| < δ for a fixed
polynomial P ∈ P≤n(j, T ). Let xi ∈ σ̄(P ) ∩ SP (αi). Then, by Lemma 1, we have

|xi − αi| ≤ en
2

δT n.

Summing the last estimate over all roots of polynomial P , we have

µ(σ̄(P )) ≤ 2nen
2

δT n. (15)

Then sum the estimate (15) over all polynomials P in P≤n(T ) and obtain
n∑

j=0

∑
P∈P≤n(j,T )

µ(σ̄(P )) ≤

≤ 2n(n+ 1)en
2

T n(2T + 1)nδµ(I) ≤ 21−nn(n+ 1)en
2

(2T + 1)2nδµ(I).

(16)

To find an estimate of the measure for all polynomials P in Pn(Q) we sum the estimate
(16) over T from 1 to Q and approximate the sum over T by the integral on T from 1
to Q+ 1. Thus,

∑
P∈P≤n(Q)

µ(σ̄(P )) ≤ 21−nn(n+ 1)en
2

δµ(I)

Q∑
T=1

(2T + 1)2n <

< 2−nn(n+ 1)(2n+ 1)−1(2Q+ 3)2n+1en
2

δµ(I) =

= 2−nn(n+ 1)(2n+ 1)−1(2Q)2n+1(1 + 3/(2Q))2n+1en
2

δµ(I) <

< 2n+1nQ2n+1en
2+3(2n+1)/(2Q)δµ(I) ≤ 2n+1nen

2+(2n+1)/2Q2n+1δµ(I)

(17)

for n ≥ 1 and Q ≥ 3.

3.2. Reducible polynomials

Let P ∈ P≤n(Q) be an reducible polynomial of the form

P (x) = P1(x)P2(x), degP1 = n1, degP2 = n− n1, 1 ≤ n1 ≤ n− 1,

and the inequality |P (x)| < δ holds for x ∈ I. Let 2−1Qλ < H(P1) ≤ Qλ where
0 ≤ λ ≤ 1. Then by Lemma 8, H(P2) < 2n+1Q1−λ. By the continuity of P there exists
θ such that

µ (x ∈ σ̄(P ) : |P1(x)| < θ) = µ(σ̄(P ))/2. (18)

Then for the complement to (18) we have

µ (x ∈ σ̄(P ) : |P1(x)| ≥ θ) = µ(σ̄(P ))/2 (19)

or
µ
(
x ∈ σ̄(P ) : |P2(x)| < δθ−1

)
= µ(σ̄(P ))/2. (20)

Then, according to Lemma 5 and by (18), (20), for all x ∈ σ̄(P ) we have

|P1(x)| < 2n13n1(n1 + 1)n1+1θ, |P2(x)| < 2n−n13n−n1(n− n1 + 1)n−n1+1δθ−1. (21)
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For θ ≤ 26n
2−2−6n2

1−n13−n1(n1+1)−n1−1Q2n+1−λ(2n1+1)δ we apply inductive hypothesis
to polynomials P1 and obtain that the measure of x ∈ I for which there is the polynomial
P (x) = P1(x)P2(x) with P1 satisfying (21) does not exceed 26n

2−2Q2n+1δµ(I).
For θ > 26n

2−2−6n2
1−n13−n1(n1+1)−n1−1Q2n+1−λ(2n1+1)δ we apply inductive hypothesis

to polynomials P2 and obtain that the measure of x ∈ I for which there is the polynomial
P (x) = P1(x)P2(x) with P2 satisfying (21) does not exceed

22n
2+4n+12n2

1−14nn1−2n1+33n(n1 + 1)n1+1(n− n1 + 1)n−n1+1Q4n1λ−2n1−2nλµ(I) ≤
≤ 22n

2+4n+12n2
1−14nn1−2n1+53nnnQ4n1λ−2n1−2nλµ(I)

(22)

since (n1 + 1)n1+1(n− n1 + 1)n−n1+1 ≤ 22nn. Define two functions

f1(n1) = 2n2 + 4n+ 12n2
1 − 14nn1 − 2n1 + 5, f2(λ, n1) = 4n1λ− 2n1 − 2nλ.

It is readily verified that the function f1(n1) attains its maximum value of 2n2−10n+15
on the domain D1 = {1 ≤ n1 ≤ n− 1} for n ≥ 2, and the function f2(λ, n1) attains its
maximum value of −2 on the domain D2 = {(λ, n1) : 0 ≤ λ ≤ 1 and 1 ≤ n1 ≤ n− 1}.

Therefore, the estimate in (22) does not exceed

22n
2−10n+153nnnQ−2µ(I) = 22n

2−10n+15+n log2 3+n log2 nQ−2µ(I) < 23n
2

Q−2µ(I) (23)

for n ≥ 2. The last estimate does not exceed 26n
2−2Q2n+1δµ(I) for δ ≥ 2−3n2+2Q−2n−3.

Then, using a trivial estimate for the measure of the set Mn(Q, I, δ), we obtain (9).

4. Proof of Theorem 2

Let 0 < t < 1 be a sufficiently small number which we will specify later.
First, consider linear polynomials. Let P (x) = ax + b ∈ P1(Q) satisfying |P (x)| <

β1Q
−1. Then |x+ b/a| < β1Q

−1|a|−1 and the measure does not exceed

2
∑
|a|≤Q

β1Q
−1|a|−1|a|µ(I) = 2

∑
|a|≤Q

β1Q
−1µ(I) ≤

≤ 2(2Q+ 1)β1Q
−1µ(I) < 23β1µ(I) ≤ tµ(I)

for β1 ≤ 2−3t. For polynomials P of degree degP ≥ 2 we proceed by mathematical
induction with the inductive hypothesis being that for 1 ≤ m ≤ n− 1 we have

µ

(
x ∈ I : ∃P ∈ Pm(Q)s.t.

|P (x)| < βmQ
−m,

βm = 2−3m3
m−2t

)
< f(m)tµ(I)

for Q ≥ 244m
4 , where f(m) = 2m

2 . The base case for m = 1 follows from the estimate
for the linear polynomials from above.

From now on we assume that n ≥ 2.
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4.1. Connection between the derivative at the root and the deriva-
tive at a point closest to the root

4.1.1. Case 1: |P ′(x)| > 2n5/2β
1/2
n Q−n−1

2 .

Denote by σ∗(P ) the set of solutions x ∈ I of the system

|P (x)| < βnQ
−n, |P ′(x)| > n5/2β1/2

n Q−n−1
2

for a fixed polynomial P ∈ Pn(Q). Let P ∈ Pn(Q) and x ∈ σ∗(P )∩SP (α1). By Lemma 3

|x− α1| ≤ nβnQ
−n|P ′(x)|−1 < 2−1n−3/2β1/2

n Q−(n+1)/2.

By the Taylor’s formula

P ′(x) =
n∑

j=1

((j − 1)!)−1P (j)(α1)(x− α1)
j−1.

Estimating each terms for 2 ≤ j ≤ n and using the fact that x ∈ [0, 1] and trivial
estimate |P (j)(x)| < nj+1Q, gives

|P (j)(α1)(x− α1)
j−1| < nj+1Q(2−1n−3/2β1/2

n Q−(n+1)/2)j−1 ≤ 2−1n3/2β1/2
n Q−n−1

2

since βn < 1, which implies
n∑

j=2

|((j − 1)!)−1P (j)(α1)(x− α1)
j−1| ≤ 2−1n3/2β1/2

n Q−n−1
2

n∑
j=2

|((j − 1)!)−1 <

< 2−1n3/2β1/2
n (e− 1)Q−n−1

2 < n5/2β1/2
n Q−n−1

2

and
|P ′(x)|/2 < |P ′(α1)| < 2|P ′(x)|.

Therefore, the set σ∗(P ) ∩ SP (α1) is contained in σ(P, α1) which is defined by

|x− α1| < 2nβnQ
−n|P ′(α1)|−1. (24)

4.1.2. Case 2: |P ′(x)| ≤ 2n5/2β
1/2
n Q−n−1

2 .

Denote by σ∗(P ) the set of solutions x ∈ I of the system

|P (x)| < βnQ
−n, |P ′(x)| ≤ 2n5/2β1/2

n Q−n−1
2

for a fixed polynomial P ∈ Pn(Q). Let P ∈ Pn(Q) and x ∈ σ∗(P ) ∩ SP (α1). Show that
the value of the derivative of P at the α1, P (α1) = 0, satisfies

|P ′(α1)| < 2nn2β1/2
n Q−n−1

2 . (25)

To show this, assume the opposite of (25). Then develop P ′ as a Taylor series in the
neighborhood of α1 and use the estimate |x−α1| ≤ 2−1n−2β

1/2
n Q−n+1

2 from Lemma 3. It

follows that |P ′(α1)| ≤ |P ′(x)|+
n∑

j=2

|((j − 1)!)−1P (j)(α1)(x− α1)
j−1| < 2nn2β

1/2
n Q−n−1

2

for n ≥ 2, which contradicts to the condition that |P ′(α1)| ≥ 2nn2β
1/2
n Q−n−1

2 .
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4.1.3. Partitioning the roots

Each of the roots of a polynomial P ∈ Pn(Q) will lie in one of the following sets:

Tk : dk+1Q
−(k−1)

2 <|P ′(α1)| ≤ dkQ
−(k−2)

2 , 0 ≤ k ≤ n,

Tn+1 : |P ′(α1)| ≤ dn+1Q
−(n−1)

2 ,

where d0 = 2n2, dn+1 = n5/2β
1/2
n , di = 2−n/2+1, 1 ≤ i ≤ n. These inequalities partitioned

the roots of P ∈ Pn(Q) and are labelled A
(k)
0 (P ), k = 0, 1, . . . , n+ 1, respectively. Note

that in
n∪

k=0

Tk from the Subsection 4.1.1, |P ′(α1)| ≍ |P ′(x)| for x ∈ SP (α1).

The proof of theorem is divided into two cases: the irreducible and reducible polyno-
mials. The proof in the case of irreducible polynomials relies upon the division of |P ′(α1)|
which is given above. Note that the Propositions 2–3 hold for all polynomials P ∈ Pn(Q)
not only the irreducible.

4.2. Irreducible polynomials

4.2.1. Establishing Case A: |P ′(α1)| ∈ T0.

Define the set Ln,0(Q, I) of x ∈ I ∩ SP (α1) with α1 ∈ A
(0)
0 (P ) for which the system

|P (x)| < βnQ
−n, d1Q

1
2 < |P ′(α1)| ≤ 2n2Q, (26)

has a solution in polynomials P ∈ Pn(Q).

Proposition 2. For Q ≥ n
3 ln 2

we have

µ(Ln,0(Q, I)) < 2tµ(I).

Proof. For a polynomial P ∈ Pn(Q) and α1 ∈ A
(0)
0 (P ) define the interval

σ0(P, α1) := {x ∈ I : |x− α1| < c0|P ′(α1)|−1}, c0 < 1, (27)

and
σ0(P ) = ∪

α1∈A(0)
0 (P )

σ0(P, α1).

From (24), (26) and (27) it follows that µ(σ0(P, α1)) < µ(I) for 2c0d
−1
1 Q−1/2 < µ(I)

and σ(P, α1) ⊆ σ0(P, α1) for 2nβnQ
−n ≤ c0. By (24) and (27) we obtain

µ(σ(P )) < 2nβnc
−1
0 Q−nµ(σ0(P )). (28)

Fix the vector b1 = (an, . . . , a1) which consists of the coefficients of the polynomial

P (t) =
n∑

j=0

ajt
j ∈ Pn(Q). Let the subclass of polynomials P ∈ Pn(Q) with the same

vector b1 be denoted by Pn(Q,b1). The intervals σ0(P, α1) divide into two classes using
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Sprindzuk’s method of essential and inessential domains [6]. The interval σ0(P, α1) is
called inessential if there is a polynomial P̃ ∈ Pn(Q,b1) (with P̃ ̸= P ), such that

µ(σ0(P, α1) ∩ σ0(P̃ )) ≥ 1/2µ(σ0(P, α1)), (29)

and essential otherwise.
First, the essential intervals σ0(P, α1) are investigated. By definition∑

P∈Pn(Q,b1)

∑
α1∈A(0)

0 (P )

σ0(P, α1) < 2nµ(I).

Using the last estimate, (29) and the fact that the number of different vectors b1 does
not exceed (2Q+ 1)n gives∑

b1

∑
P∈Pn(Q,b1)

∑
α1∈A(0)

0 (P )

σ(P, α1) <

< 2n+1n2en/(2Q)βnc
−1
0 µ(I) ≤ tµ(I) ≤ 2n+3n2βnc

−1
0 µ(I) ≤ tµ(I)

for 2n+3n2βnc
−1
0 ≤ t and Q ≥ n

3 ln 2
.

Second, we consider the inessential intervals σ0(P, α1). Decompose the polynomial
P into Taylor series on the interval σ0(P, α1) so that

P (x) =
n∑

j=1

(j!)−1P (j)(α1)(x− α1)
j.

Using (26) and (27), estimate each term of the decomposition

|P (j)(α1)(x− α1)
j| < c0/n for nj+2d−j

1 Q1−j/2 ≤ c1−j
0 , 2 ≤ j ≤ n,

to obtain
|P (x)| < 2c0, x ∈ σ0(P, α1). (30)

Let σ0(P, P̃ ) = σ0(P, α1)∩ σ0(P̃ ), where P, P̃ ∈ Pn(Q,b1) and P ̸= P̃ . Then on the
set σ0(P, P̃ ) with the measure at least 1/2µ(σ0(P, α1)) for the polynomials P and P̃ the
inequality (30) holds. Now consider the new polynomial R(x) = P (x)− P̄ (x) = a′0 since
the polynomials P and P̃ have the same coefficients an, an−1, . . . , a1. Thus, by (30) we
have

|R(x)| < 4c0. (31)

Therefore, 1 ≤ |a′0| < 4c0 which gives a contradiction for c0 ≤ 2−2.
Since d1 = 2−n/2+1 and βn = 2−3n3

n−2t then the choice of c0 = n−42−n+2 satisfies
all the conditions for c0 from above with n ≥ 2 and t ≤ 1.

4.2.2. Establishing Case B: |P ′(α1)| ∈ Tk, 1 ≤ k ≤ n− 1.

For fixed k, 1 ≤ k ≤ n − 1 define the set Ln,k(Q, I) of x ∈ I ∩ SP (α1) with
α1 ∈ A

(k)
0 (P ) for which the system

|P (x)| < βnQ
−n, |P ′(α1)| ∈ Tk, (32)

has a solution in polynomials P ∈ Pn(Q).
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Proposition 3. For Q ≥ max
(

n−k
3 ln 2

, 244k
4−1

)
we have

µ(Ln,k(Q, I) < (f(k) + 1)tµ(I).

Proof. For a polynomial P ∈ Pn(Q) and α1 ∈ A
(k)
0 (P ) define the interval

σk(P, α1) := {x ∈ I : |x− α1| < ckQ
−k|P ′(α1)|−1}, ck < 1.

Let σk(P ) =
∪

α1∈A(k)
0 (P )

σk(P, α1). From (24), (32) and definition of σk(P, α1), 1 ≤ k ≤

n − 1, it follows that µ(σk(P, α1)) < µ(I) for 2ckd
−1
k+1Q

−(k+1)/2 < µ(I) and σ(P, α1) ⊆
σk(P, α1) for 2nβnc

−1
k Q−n+k ≤ 1. For 1 ≤ k ≤ n−1 fix the vector bk+1 = (an, . . . , ak+1).

Let the subclass of polynomials P ∈ Pn(Q) with the same vector bk+1 be denoted by
Pn(Q,bk+1). The intervals σk(P, α1) divide into two classes of essential and inessential
domains.

First, the essential intervals σk(P, α1) are investigated. By definition∑
P∈Pn(Q,bk+1)

∑
α1∈A(k)

0 (P )

µ(σk(P, α1)) < 2nµ(I).

Using the last estimate and the fact that the number of different vectors bk+1 does not
exceed (2Q+ 1)n−k, it follows that∑

bk+1

∑
P∈Pn(Q,bk+1)

µ(σ(P )) < 2n−k+3n2βnc
−1
k µ(I) ≤ tµ(I) (33)

for 2n−k+3n2βnc
−1
k ≤ t and Q ≥ n−k

3 ln 2
.

Second, we consider the inessential intervals σk(P, α1). Let σk(P, P̄ ) = σk(P, α1) ∩
σk(P̄ ), where P, P̄ ∈ Pn(Q,bk+1) and P ̸= P̄ . Develop P and P ′ into Taylor series
on σk(P, α1) and σk(P̄ , ᾱ1) respectively. Then on the set σk(P, P̄ ) with the measure at
least 1/2µ(σk(P, α1)) for the polynomials P and P̄ the following inequality

max(|P (x)|, |P̄ (x)|) < 2ckQ
−k, (34)

holds for nj+2d−j
k+1Q

1+k−j(k+1)/2 ≤ c1−j
k , 2 ≤ j ≤ n.

By (34) and Lemma 5, the new polynomials R(t) = P (t)− P̄ (t) of degR ≤ k with
H(R) ≤ 2Q satisfy

|R(x)| < 2k+23k(k + 1)k+1ckQ
−k = 22k+23k(k + 1)k+1ckQ

−k
1 , H(R) ≤ 2Q = Q1 (35)

for any x ∈ σk(P, α1). Applying inductive hypothesis to polynomials R satisfying (35),
we obtain that the measure of the set of x belonging to inessential intervals does not
exceed f(k)tµ(I) for Q ≥ 244k

4−1 and 22k+23k(k + 1)k+1ck < βk. Since dk+1 = 2−n/2+1

and βm = 2−3m3
m−2t, 1 ≤ m ≤ n, then the choice of ck = 22n

2+n−k+3n2βn satisfies all
the conditions for ck from above with n ≥ 2 and t ≥ 2−2n2 . Combining the estimates of
measure for essential and inessential intervals, we obtain µ(Ln,k(Q, I)) < (f(k)+1)tµ(I)

for Q ≥ max
(

n−k
3 ln 2

, 244k
4−1

)
.
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Therefore, for the union
n−1∪
k=1

Ln,k(Q, I) we have

µ(
n−1∪
k=1

Ln,k(Q, I)) ≤
n−1∑
k=1

µ(Ln,k(Q, I)) <
n−1∑
k=1

(1 + f(k))tµ(I)

with Q ≥ 244(n−1)4−1.

4.2.3. Establishing Case C: |P ′(α1)| ∈ Tn.

Define the set Ln,n(Q, I) of x ∈ I ∩ SP (α1) with α1 ∈ A
(n)
0 (P ) for which the system

|P (x)| < βnQ
−n, n5β1/2

n Q−(n−1)/2 < |P ′(α1)| ≤ dnQ
−(n−2)/2 (36)

has a solution in polynomials P ∈ Pn(Q).

Proposition 4. For Q ≥ 26n we have µ(Ln,n(Q, I)) < 2tµ(I).

Proof. Divide the interval I into smaller intervals Ii with the lengths Q−u1 where u1 > 0
since µ(Ii) < µ(I). We say the polynomial P belongs to the interval Ii if there exists
x ∈ Ii such that (36) and the corresponding estimates for P (x) hold. If there is at
most one irreducible polynomial P ∈ Pn(Q) that belongs to every Ii then by (24) the
measure of those x, that satisfy (36), does not exceed

22n−3β1/2
n Qu1−(n+1)/2µ(I) ≤ tµ(I) (37)

for u1 = (n+ 1)/2 and 22n−3β
1/2
n ≤ t.

If at least two irreducible polynomials Pi ∈ Pn(Q) of the form Pi(x) = kiP (x) for
the same irreducible polynomial P ∈ Pn(Q), ki ∈ Z, belong to the interval Ii then the
measure in this case coincides with the measure in (37).

The assumption that at least two irreducible polynomials belong to the interval Ii
will lead to a contradiction. To show this, suppose that P1 and P2 belong to Ii. Develop
P1 as a Taylor series in the neighbourhood Ii of α1 to obtain

|P1(x)| ≤ (n− 1)n3Q−n + 2−n/2+1Q−n+1/2 ≤ 2−n/2+1nQ−n+1/2, x ∈ Ii,

for Q ≥ 2n−2n6 and dn = 2−n/2+1. Here each term in the Taylor series for 2 ≤ j ≤ n
has the form

|(j!)−1P
(j)
1 (α1)||x− α1|j < nj+1Q1−j(n+1)/2 ≤ n3Q−n for Q ≥ n2/(n+1).

Obviously, the same estimate holds for P2 on Ii. Thus, for j = 1, 2 we have

|Pj(x)| <

{
Q−n+1/2 for n ≥ 8,

3Q−n+1/2 for n < 8.

For Q ≥ 26n and n < 8 we have |Pj(x)| < Q−n+1/2+7/(24n), j = 1, 2. Apply Lemma 6 to
polynomials P1 and P2 with τ = n− 1/2− µ and η = (n+ 1)/2, where µ = 0 for n ≥ 8
and µ = 7/(24n) for n < 8. Therefore, the left hand side in (13) has the form

τ + 1 + 2max(τ + 1− η, 0) = 2n− 3µ+ 1/2.

Choose δ0 < 1/(8n). Then we will have a contradiction in (13) for n ≥ 2.
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4.2.4. Establishing Case D: |P ′(α1)| ∈ Tn+1.

Define the set Ln,n+1(Q, I) of x ∈ I ∩ SP (α1) with α1 ∈ A
(n+1)
0 (P ) for which the

system
|P (x)| < βnQ

−n, |P ′(α1)| ≤ n5β1/2
n Q−(n−1)/2 (38)

has a solution in polynomials P ∈ Pn(Q).

Proposition 5. For Q ≥ 244n
4 we have µ(Ln,n+1(Q, I)) < tµ(I).

Proof. Define by σ∗(P ) the set of solutions x ∈ I of (38) for a fixed polynomial P ∈
Pn(Q). Note that the set Ln,n+1(Q, I) can be written as

Ln,n+1(Q, I) = L≤ ∪ L>

where L≤ =
∪

P∈Pn

(
Q

1
n+1

) σ∗(P ) and L> =
∪

P∈Pn(Q)\Pn

(
Q

1
n+1

)σ∗(P ).

Next, we are going to establish the following two separate cases.
Case 1: µ(L≤) < tµ(I)/2.
Let x ∈ σ∗(P ) ∩ SP (α1) for some P ∈ Pn

(
Q

1
n+1

)
. Then by (38) and Lemma 3 (for

j = n), we have
|x− α1| ≤ (βnQ

−n|an|−1)1/n ≤ (βnQ
−n)1/n (39)

since |an| ≥ 1. Summing the estimate (39) over all polynomials P ∈ Pn

(
Q

1
n+1

)
, we

obtain
µ(L≤) ≤ 2nβ1/n

n (2Q
1

n+1 + 1)n+1Q−1 ≤ nβ1/n
n 22n+3 ≤ tµ(I)/2

for t ≥ 22n+4nβ
1/n
n . Note that for βn = 2−3n3

n−2t we get that

t ≥ 2−2n2 ≥ n(n−2)/(n−1)2(2n
2+4n−3n3)/(n−1) for n ≥ 2.

Case 2: µ(L>) < tµ(I)/2.
For k ∈ N, let Pk

l denote the subclass of Pn(l) given by

Pk
l = {P ∈ Pn(l) : 2k ≤ H(P ) < 2k+1}.

Let k0 = [ 1
n+1

log2 Q]. Then we have

Pn(Q) \ Pn

(
Q

1
n+1

)
=

∪
l

[log2 Q]∪
k=k0

Pk
l .

Now divide the interval I into smaller intervals J ′
i with µ(J ′

i) = 2k(u
′+γ) where

u′ = min
1≤j≤n

{(−1− n+ qj)/j}, qn = 0.

First show that the assumption that at least two irreducible polynomials from Pk
l

without common roots belong to the interval J ′
i will lead to a contradiction. To show
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this, suppose that P1 and P2 belong to J ′
i . Let |an| ≥ H(P )/n. Let q1 ≥ 1 + 1/n then

by Lemma 4 and (38) we have n−1H(P )1−q1 < |P ′(α1)| ≤ 2−1n5β
1/2
n Q−(n−1)/2, which

implies that q1 ≥ (n + 1)/2 − 1/n for H(P ) ≤ Q and Q ≥ 2n
4 . Assumption that

q1 < 1 + 1/n gives a contradiction. Develop P1 as a Taylor series in the neighbourhood
J ′
i of α1 to obtain

|P1(x)| ≤ n2k(−n+(n+1)γ), x ∈ J ′
i

for ϵ1 ≤ γ/n and sufficiently large k, where

|(j!)−1P
(j)
1 (α1)||x− α1|j ≪ 2k(1−qj+(n−j)ϵ1)2k(jγ+j(

−1−n+qj
j

)) =

= 2k(−n+jγ+(n−j)ϵ1), 1 ≤ j ≤ n.

Obviously, the same estimate holds for P2 on J ′
i . Note that for Q ≥ 2n

4 and k ≤ [log2 Q]
we have that |Ps(x)| < 2k(−n+(n+1)γ)+1/(n3), s = 1, 2. Apply Lemma 6 to polynomials P1

and P2 with τ = n−nγ− 1/(n3) and η = −u′ − γ. Therefore, the left hand side in (13)
has the form

τ + 1 + 2max(τ + 1− η, 0) = 3n+ 3 + 2(−1− n+ qj)/j − γ(3n− 2)− 3/(n3)

Since q1 ≥ (n + 1)/2 − 1/n, it is readily seen that τ + 1 + 2max(τ + 1 − η, 0) >
2n + 2 − γ(3n − 2) − 2/n − 3/(n3) for j = 1 and τ + 1 + 2max(τ + 1 − η, 0) >
2n+2−γ(3n−2)−3/(n3) for 2 ≤ j ≤ n. Let δ0 ≤ 1/(n3). We will have a contradiction
in (13) for γ ≤ (2n3 − 2n2 − 4)/(n3(3n− 2)). We can choose γ = 1/(4n).

Therefore, there is at most one irreducible polynomial P ∈ Pk
l that belongs to J ′

i .
For P ∈ Pk

l denote by ν(P, α1) the set of x ∈ SP (α1) satisfying (38). According to
Lemma 3 we have that

µ(ν(P, α1)) < 2n+ku′
.

Using the inclusion σ∗(P ) ⊆
∪

α1∈A(n+1)
0 (P )

ν(P, α1) for any polynomial P and the fact

that the number of polynomials P ∈ Pk
l does not exceed the number of intervals J ′, we

obtain

µ(L>) ≤
∑
l

[log2 Q]∑
k=k0

n2n+ku′
2k(−u′−γ)µ(I) <

< 2nnC(n, ϵ1)µ(I)(Q
−γ/(n+1) −Q−γ)(1− 2−γ)−1 ≤

≤ 2n
2+nn2C(n, ϵ1)Q

−γ/(n+1)µ(I)

(40)

since 1 − 2−1/(4n) > n−12−n2 for n ≥ 2. Using the fact that C(n, ϵ1) < (2nT )n =
(2n(ϵ1)

−1)n = (2n2/γ)n = 23nn3n and ϵ1 = γ/n, we get

µ(L>) < n3n+22n
2+4nQ−1/(4n(n+1))µ(I) ≤ tµ(I)/2

for t ≥ 2n
2+4n+1n3n+2Q−1/(4n(n+1)). For n ≥ 2, t ≥ 2−2n2 and Q ≥ 244n

4 we complete the
proof in the Case 2.
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4.3. Reducible polynomials

Let P ∈ Pn(Q) be an reducible polynomial of the form

P (f) = P1(f)P2(f), degP1 = n1, degP2 = n− n1, 1 ≤ n1 ≤ n− 1

and the inequality |P (x)| < βnQ
−n holds for x ∈ I.

For fixed P by λ(P ) denote the set of x ∈ I satisfying |P (x)| < βnQ
−n. Now

reducible polynomials P ∈ Pn(Q) we split into two classes P ′
n(Q) and P ′′

n(Q). Reducible
polynomial P belongs to P ′

n(Q) if it has a factor P1 satisfying the following property:
let µ(λ(P )) < 2µ(λ1(P1)) where µ(λ1(P1)) = {x ∈ µ(λ(P )) : |P1(x)| < βn1Q

−n1}. Then
by inductive hypothesis

∑
P∈P ′

n(Q)

µ(λ(P )) < 2
n−1∑
n1=1

f(n1)tµ(I)

for Q ≥ 244(n−1)4 .
If µ(λ(P )) ≥ 2µ(λ1(P1)) then on the set λ(P ) \ λ1(P1) we have

|P2(x)| < βn(βn1)
−1Q−n+n1

and the measure of the last set over all P2 ∈ Pn−n1(Q) does not exceed f(n− n1)tµ(I)
for βn ≤ βn1βn−n1 by inductive hypothesis. In this case µ(λ(P )) ≤ 2µ(λ(P ) \ λ1(P1))
and ∑

P∈P ′′
n(Q)

µ(λ(P )) < 2
n−1∑
n1=1

f(n− n1)tµ(I)

for Q ≥ 244(n−1)4 . Note that the inequality βn ≤ βn1βn−n1 holds for βm = 2−3m3
m−2t

(1 ≤ m ≤ n), t ≥ 2−2n2 and n ≥ 2.

4.4. End of the proof of Theorem 2

Combining the results of the Subsections 4.1–4.4, we get

µ(Ln(Q, I)) < f(n)tµ(I)

for Q ≥ 244n
4 , where for n ≥ 2 we have

f(n) ≥ 5 +
n−1∑
k=1

(1 + f(k)) + 2
n−1∑
k=1

f(k) + 2
n−1∑
k=1

f(n− k) = n+ 4 + 5
n−1∑
k=1

f(k). (41)

Since f(k) is an increasing function, then, clearly, the function f(k) = 2k
2 will satisfy

(41) for n ≥ 2.
Choose ϵ = tf(n). Since t ≥ 2−2n2 and f(n) = 2n

2 then ϵ = tf(n) ≥ 2−n2 . This
concludes the proof of Theorem 2.
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АННОТАЦИЯ

В данной статье получены эффективные оценки в терминах n и Q
для меры множеств действительных чисел с заданным свойством
аппроксимации алгебраическими числами степени n и высоты,
ограниченной Q ∈ N.
Ключевые слова: целочисленные многочлены, мера Лебега,
приближения алгебраическими числами.


