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Effective estimations of the measure of the
sets of real numbers in which integer
polynomials take small value

In this paper we obtain the effective estimates in the terms of n and @
for the measure of the sets of real numbers with the given approximation
property by algebraic numbers of degree n and height bounded by ) € N.
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1. Introduction

Let P(z) = a,a™ + a, 12" ' + -+ + a1z + ap be an integer polynomial of degree
deg P = n and height H = H(P) = maxo< <, |a;|. Denote by P<, the class of integer
polynomials P of degree at most n and P,, the class of integer polynomials P of degree n.
Denote by J C R some interval. For convenience, let J = [—1/2,1/2]. Using Minkowski
theorem on linear forms or Dirichlet box principle it is easy to prove that for any x € J
and @ € N5, there exists a polynomial P € P, H(P) < @ satisfying

|P(z)] < 272Q7". (1)
Then it is not difficult to show that for all z € J the inequality
|P(x)] < 27*H(P)™ (2)

has infinitely many solutions in polynomials P € P<,. The inequalities (1) and (2) can
not be improved in principal. It is not difficult to show that for v = "V/2 the inequality
|P()| > e(y)H(P)™™ holds for any P € P<,. However, Khintchine [1] has shown that
for any € > 0 and almost all z € R (in the sence of Lebesgue measure) the inequality

|P(z)| < eH(P)™"
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holds for infinitely many polynomials P € P,,.
Let ¥(x) be a monotonic decreasing function of x € Ry. Denote by L, (V) the set
of real numbers z € J such that the inequality

|P(z)] < W(H(P)) (3)

has infinitely many solutions in polynomials P € P<,. In |2, 3] it was proved that

0 if S HN(H) < oo,
H(La(0)) = = @)
p(J) if HZ_: H" 'W(H) = cc.

=1

Note that for n = 1 the result (4) coincides with Khintchine theorem on approximation
of real numbers by rational numbers [4]. If W(H) = H "¢ then the series in (4)
converges and it is known as a Mahler hypothesis [5] which was been proven by Sprindzuk
[6]. Recently the result in (4) was generalized to the non-degenerate curves |7, 8] and to
simultaneous approximation in the fields of real, complex and p-adic numbers |9, 10].
For the investigation of the distribution of real algebraic integers the following
effective estimate of the measure was used (which is based on the results from [2]).

Proposition 1. [11] Let n > 2 be an integer. Denote by M, (Q) the set of x € J for
which the inequalities
|P(z)| <n'27m5Q™™ and H(P)<Q (5)

have a solution in P € P<,. Then there exists a sufficiently large Qo = Qo(n, J) such
that for all Q > Qo we have (M, (Q)) < 272u(J).

In Proposition 1 the two variables n and () have different nature: the variable n =
deg P is fixed and the variable () must be chosen to be sufficiently large (note that @
is not defined explicitly).

The effective versions of metric theorems have begun to develop in recent years. This
led to estimates for the number of integer polynomials with given distance between the
roots |12, 13, 14, 15], to estimates for discriminants [16] and resultants [17].

Let u(A) be the Lebesgue measure of a measurable set A C R, and |I| be the length
of an interval I C R. In what follows ¢y = co(n), ¢y, o, ... denote positive constants
which depend only on n. Let #S will denote the number of elements in a finite set S.
We will also use the Vinogradov symbol f < ¢ which means that there exists a constant
¢ > 0 such that f < cg. The notation f =< g means that [ < g < f.

We introduce two classes of polynomials

Pan(Q) ={Pn € P<,: H(P) < Q} and Pn(Q) ={P, € P,: H(P) < Q}. (6)

Let I = [0,1] and 6 = d(n, Q). Denote by M, (Q,1,9) the set of x € I for which the
inequality
|P(z)] <6 (7)
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has a solution in polynomials P € P<,(Q). In this paper we are interested on the metric
properties of the set M, (Q, I, ). We are going to prove a few theorems with estimations
of the form
u(M(Q,1,9)) < s(n)Q'du(1), (8)

where s(n) is a function of n. Then we can choose § = §;(s(n)) Q! and conclude that
the inequality (7) holds for P € P<,(Q) only on the set of z € I with the measure
at most d;u(l), 0 < &; < 1, for the rest of x from the set of the measure at least
(1 —61)p(I) the inequality opposite to (7) holds.

First, we are going to prove the theorem which is based on the known inequalities
in the theory of transcendental numbers [18|.

Theorem 1. For any ¢ satisfying
2—3n2+2Q—2n—3 <5< 2—6n2Q—2n—1 (9)
we have
p(Mo(Q,1,8)) < 27 Q™ op().
Note that (9) holds for @ > 937°/2+1 The proof of Theorem 1 is based on Lemma
1. But if instead we will use Lemma 2 then we obtain that

N(Mn(Q7Ia5>> < 610n10g2nQ3n_15,u(])

for sufficiently large () and sufficiently small 9. In the following theorem we are proving
the best possible result for the measure of the set M, (Q, I,6) in the terms of the height
of the polynomials. For this result we require that ¢ > 24n* and instead of 26" in
Theorem 1 we will have 237" +7°p2,

Let 3, > 0 be a constant depending on n and € € R,. Denote by L,(Q, ) the set
of x € I for which the inequality

P(2)] < 6@ (10)
has a solution in polynomials P € P, (Q).

Theorem 2. For any real number €, satisfying 27" < e <1, and B, = 273" " n2e,

for Q > 24" we have that
1(Ln(Q, 1)) < ep(I).

2. Auxiliary statements

By translation and taking the reciprocals (if necessary) each polynomial P € P,
can be transformed into a polynomial R satisfying

lan(R)| = H(R)/n, (11)

and H(R) < H(P). Consider the polynomials P € P, satisfying (11). Let ay, as, ..., ay
be the roots of the polynomial P in C. Define the sets

Sp(a;) ={rx€R: |z —a;| = min |z —ay,l}, 1<i<n.

1<m<n
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Further assume without loss of generality that ¢ = 1. Reorder the other roots of P so
that
log —an] < Jag—az| <...< o — ayl.

For the polynomial P define the real numbers p; by
’041—05]" = H(P)ipja 2§j§na P22 P32 - = Pn

Let € > 0 be sufficiently small, d > 0 be a large fixed number, ¢; = ¢/d and T = [¢; '] +1.
Also, define the integers [;, 2 < j < n, by the relations

l;—1 p
T S
Finally, define the numbers ¢; by ¢; = w, (1 < i < n—1). All irreducible
polynomials P € P,(Q) satisfying (11) and corresponding to the same vector 1 =
(Ia,...,l,) are grouped together into a class P, (Q,1), and the number of such classes is
finite and depends only on n and ey, i.e. is at most C'(n, 1), see [6]. Also, we define the
class P, (1) to consist of all irreducible polynomials P, satisfying (11) and corresponding

to a vector L. In 4.2.4 we fix the vector 1 and will continue the proof for this fixed vector.
A number of lemmas for later use are now given.

loy>1l3>...>10,>0.

Lemma 1. [19] Suppose P(z) € Z[z] is a polynomial without multiple roots of degree n

and height H, and let ay, ..., a, be its roots. Then for any number 0,
‘_nllin 0 — | - e H™ < |P(0)| < Irlun 10 — ;| - n*H(H + 2)" ' max{1,|0|"}.

Denote by L(P) the length of the polynomial P(t) = >"7" ja;t’, i.e. L(P) =Y " |ail.
Obviously, H(P) < L(P) < (n + 1)H(P).

Lemma 2. [18] Suppose P(z) € Z[z] is an irreducible polynomial of degree n, height
H = H(P), length L = L(P), and let oy, ...,y be its roots. Then for any 0,

min |0 — oy| - n 27 H T2 < P(G)|

or
rrllin 0 — oy - 27" I LL(P) 22 < P()).

In Lemma 2 in contrast of Lemma 1, H~2"*2 occurs instead of H~". But instead of

67n2 we have n73n273n — 673n1nn73n1n2‘
Lemma 3. [6, 20] Let « € Sp(c). Then
|P(2)| :
lz —aq] <n for P'(x) #0,
|P'(x)]
| — aa| <2 P(@)||P' ()|t for P'(en) #0, (12)
and

2= aa| < min (27 IP(z)||P' ()| IH\al—ak| for P'(ay) #0.
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The next lemma is proved in [20].

Lemma 4. Let P € P,(l) satisfying (11). Then
|P'(on)] > nH(P)Y"™ " and |PY(ay)| < HP)otba 1 <1<n—1.

Lemma 5. [21] Let J be an interval in R and let B be a measurable subset of J with
w(B) > |J|/v, where v € N. Suppose that |P(z)| < H(P)™™ for all x € B, where u > 0
and deg P < n. Then |P(z)| < (3v)"(n+ 1)"" H(P)™ for all x € J.

Lemma 6. [21] Let 6o > 0 and Q > Qo(do). Further, let P, and Py be two integer
polynomials of degree at most n with no common roots and max(H (P;), H(P)) < Q.
Let J C R be an interval with p(J) = Q~", n > 0. If there exists T > 0 such that for
allx e J

|Pj(z)] <@,
for 7 =1,2, then
T+ 14 2max(7+1—n,0) < 2n+ d. (13)

Lemma 7. [6] Let P(z) = a,a™ + ...ag. If |a,| > H(P) then for any i, 1 <i < n
there exists a constant ¢ > 0 such that |o;| < c.

Lemma 8. [22] Let Pi(x), ..., P.(z) be non-zero complex polynomials of degree nq, ..., n,,
respectively, and set n =ny + ...+ n,.. We then have

2 "H(P)...H(P) < H(P,...P,) <2"H(P)...H(P,).

3. Proof of Theorem 1

For polynomials P of degree deg P > 2 we proceed by mathematical induction with
inductive hypothesis being that for 1 < s < n — 1 we have

p(zel:3P ePy(Q) sit. |Plx)| <ds ) < 205" Q2415 u(1).

Note that the base case for s = 1 follows from (17).

3.1. Polynomials without common roots

Define two classes of polynomials without common roots, so that

Pen(4,T) ={P € P<y, la;|=H(P)=T}, 0<j<n,
PS"(T) = U?zOPSn(ju T)

Obviously, the following estimates

#P<n(), T) < (2T + 1),
#Po(T) < (n+1)(2T + 1)"

hold.
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Denote by (P) the set of solutions = € I of the inequality |P(x)| < ¢ for a fixed
polynomial P € P, (j,T). Let z; € 3(P) N Sp(«;). Then, by Lemma 1, we have
|z — o] < €™ OT™
Summing the last estimate over all roots of polynomial P, we have
1(5(P)) < 2ne™ §T™. (15)

Then sum the estimate (15) over all polynomials P in P<,(7") and obtain

>, Y wap)<

=0 PEP<,(;T) (16)
< 2n(n+ D" T2T + 1)"6u(I) < 2'"n(n + 1)e™ (2T + 1)>*6u(I).
To find an estimate of the measure for all polynomials P in P, (Q) we sum the estimate

(16) over T from 1 to () and approximate the sum over 7" by the integral on 7" from 1
to @ + 1. Thus,

Q
> u@(P) <25 n(n+ e o) Y (2T +1)™ <

PeP<,(Q) T=1
<27n(n+1)(2n + 1)71(2Q + 3)*" e s (1) = (17)
=27"n(n +1)(2n + 1) (2Q)2" 1 (1 +3/(2Q))* e ap(1) <
< 2n+1nQ2n+1€n2+3(2n+1)/(2Q)6M([) < 2n+1nen2+(2n+1)/2Q2n+15M([>

forn>1and Q > 3.

3.2. Reducible polynomials
Let P € P<,(Q) be an reducible polynomial of the form
P(z) = Pi(x)Py(z), degP; =nq, degPy=n—mny, 1 <n; <n-—1,

and the inequality |P(x)| < & holds for z € I. Let 27'Q* < H(P) < Q* where
0 < XA < 1. Then by Lemma 8, H(P;) < 2""'@Q*~*. By the continuity of P there exists
6 such that

plzea(P): [Pi(z)] <0) = pu(@(P))/2. (18)

Then for the complement to (18) we have
plzea(P): [Pi(r)] >0) = p@(P))/2 (19)
p(z€a(P): |Py(x)] <607") = pu(a(P))/2. (20)

Then, according to Lemma 5 and by (18), (20), for all x € 6(P) we have

|Py(2)] < 2™3™ (ny + 1) H0, |Py(z)] < 27™3" ™M (n —ng + 1) M0 (21)
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For § < 207°=2-6ni-nig=ni(p, 4 1)=m-1Q2n+1-A2m+1)§ we apply inductive hypothesis
to polynomials P, and obtain that the measure of x € I for which there is the polynomial
P(z) = Py(z)Py(z) with P; satisfying (21) does not exceed 26%*~2Q?"+15(I).

For § > 267°=2-6ni-nig=n1(p, 4 1)=m-1Q2+1-A2m1+1)§ we apply inductive hypothesis
to polynomials P, and obtain that the measure of x € I for which there is the polynomial
P(x) = Pi(x)Py(x) with P satisfying (21) does not exceed

22n2+4n+12n%—14nn1—2n1+33n(nl + 1)n1+1(n — + 1)n—n1+1Q4n1/\—2n1—2nAM(I) <

< 22n2+4n+12n%—14nn1—2n1+53n n 4ni A—2n1—2n I (22)
< n"Q (1)

since (ny + 1) (n —ny + 1)"™+ < 22n". Define two functions
fl(nl) = 2n2 +4n + 12”% — 1477,TL1 - 2711 + 5, fg()\, n1> = 4711)\ — 2711 — 2nA.

It is readily verified that the function f;(n;) attains its maximum value of 2n? —10n+15

on the domain Dy = {1 < ny <n — 1} for n > 2, and the function fy(\, n;) attains its

maximum value of —2 on the domain Dy = {(A,n1): 0 <A <1 and 1<n; <n-1}.
Therefore, the estimate in (22) does not exceed

22%2_10n+153nan—2u(1> — 22n2_10n+15+n10g2 3+nlogy nQ—Qlu(]) < 23”262_2#(]) (23)

for n > 2. The last estimate does not exceed 20%°~2Q?"15,(1) for § > 273" +2Q 23,
Then, using a trivial estimate for the measure of the set M, (Q, I, ), we obtain (9).

4. Proof of Theorem 2

Let 0 < t < 1 be a sufficiently small number which we will specify later.
First, consider linear polynomials. Let P(z) = axz + b € P1(Q) satistying |P(x)| <
B41Q1. Then |z + b/a| < 81Q'|a|™" and the measure does not exceed

2 4iQ a| Malu(l) =2 ) /1@ ull

a<Q la<Q
<22Q +1)BQ™ (1) < 2°Bip(I) < tu(I)

for B; < 273t. For polynomials P of degree deg P > 2 we proceed by mathematical
induction with the inductive hypothesis being that for 1 < m <n — 1 we have

1 (x €l:3PeP(Q)st ’BP()‘2<3£mQ__;:’ ) < f(m)tu(I)

for Q@ > 24™" where f(m) = 2. The base case for m = 1 follows from the estimate
for the linear polynomials from above.
From now on we assume that n > 2.
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4.1. Connection between the derivative at the root and the deriva-
tive at a point closest to the root
4.1.1. Case 1: |P/(z)| > 2n528) Q"%
Denote by o.(P) the set of solutions x € I of the system
P(2)] < B,Q7", |P'(x)| > n®8)/2Q "
for a fixed polynomial P € P,(Q). Let P € P,(Q) and = € 0.(P)NSp(a;). By Lemma 3
o — o] < nBQ P/ (@) < 27 g,

By the Taylor’s formula

n

Pla) =3 (( - D) PD(ar)(@ — ar)

j=1

Estimating each terms for 2 < j < n and using the fact that x € [0,1] and trivial
estimate |PY)(z)| < n/*1Q, gives

PO (an)(z — an)T~Y| < nd+1Q(2 132 gY/2Q-(n+D/2yi-1 < 2—1n3/2ﬁr1b/2Q—"T—1
since (3, < 1, which implies

ZI (= DY) PP(ar) (@ —ar) | < 27 1n3/251/262_72| (Gj—1H~

7j=2
< 273282 (e — 1)Q T < nP2BL2Q T

and
|P'(2)l/2 < [P'(a1)] < 2| P'(x)].
Therefore, the set o.(P) N Sp(ay) is contained in (P, «;) which is defined by

|z — 1| < 2nB,Q 7" P'(ar)| . (24)

4.1.2. Case 2: |P'(z)| < 2”5/2@1/2@*”771
Denote by o*(P) the set of solutions = € I of the system

P(x)] < B.Q7", |P'(2)] < 20°78)2Q"F
for a fixed polynomial P € P,(Q). Let P € P,(Q) and z € ¢*(P) N Sp(ay). Show that
the value of the derivative of P at the ay, P(ay) = 0, satisfies
[P'(a)| < 2'0°B)2Q7"7 (25)
To show this, assume the opposite of (25). Then develop P’ as a Taylor series in the

neighborhood of o and use the estimate |z —ay| < 2-1n=23Y2Q~"+" from Lemma 3. It

follows that |P'(aq)| < |P'(x)| + iz (G — D)LPD (o) (z — oy )i 7Y < 2"n 2B1/2Q_

n—1
2

for n > 2, which contradicts to the condition that |P'(aq)| > 28y Q="
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4.1.3. Partitioning the roots

Each of the roots of a polynomial P € P, (@) will lie in one of the following sets:

—(k—1) —(k=2)

T de+1Q <|P'(a)| £ dp@Q™ 7, 0<Fk<n,
~(n-1)

Thir: |P'(an)] <dpp1Q 2

where dy = 2n2, d,,.1 = n%/28Y*, d; = 27"/2+1 1 < i < n. These inequalities partitioned
the roots of P € P, (Q) and are labelled A(()k)(P), k=0,1,...,n+ 1, respectively. Note

that in J 7} from the Subsection 4.1.1, |P'(ay)| < |P'(x)| for x € Sp(ay).

The proof of theorem is divided into two cases: the irreducible and reducible polyno-
mials. The proof in the case of irreducible polynomials relies upon the division of | P'(ay )|
which is given above. Note that the Propositions 2-3 hold for all polynomials P € P,(Q)
not only the irreducible.

4.2. Irreducible polynomials

4.2.1. Establishing Case A: |P'(o)| € Tp.

Define the set L, (Q, 1) of x € I N Sp(ay) with a; € Aéo)(P) for which the system

|P(2)] < 5.Q7",  diQ? < |P'(a1)] < 2n%Q, (26)
has a solution in polynomials P € P, (Q).

Proposition 2. For QQ > 375 we have

W@, 1)) < 20u(1).
Proof. For a polynomial P € P,(Q) and oy € A(()O)(P) define the interval
oo(P,ay) i={x €1:|x—ai| < co|P(a)] '}, co < 1, (27)

and
UO(P) = UOA1€A60)(P)O-O(P’ al)’

From (24), (26) and (27) it follows that u(oo(P, 1)) < u(I) for 2cod;'Q~Y2 < pu(I)
and o(P,a1) C 0¢(P, aq) for 2n3,Q~" < ¢. By (24) and (27) we obtain

o (P)) < 2nBucy ' Q" (oo (P)). (28)

Fix the vector by = (ay, ..., a;) which consists of the coefficients of the polynomial

P(t) = Y a;t! € Pn(Q). Let the subclass of polynomials P € P,(Q) with the same
7=0

vector by be denoted by P, (Q, by). The intervals o¢( P, 1) divide into two classes using
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Sprindzuk’s method of essential and inessential domains [6]. The interval oo(P, a;) is
called inessential if there is a polynomial P € P,(Q,by) (with P # P), such that

oo(P,ar) Noo(P)) > 1/2u(o0(P,an)), (29)

and essential otherwise.
First, the essential intervals oo(P, ;) are investigated. By definition

Z Z o(P,a1) < 2nu(I).

PePr(Q,b1) Oé1€A80)( P)

Using the last estimate, (29) and the fact that the number of different vectors by does
not exceed (2Q) + 1)" gives

> 2. 2 oPa)<
b1 PeP,(Q,b1) OélGA(()D)(P)
< 2P BB (D) < tp(l) < 2P0 Bucy () < tu(I)
for 2""3n2B,ct <t and Q > 5.

Second, we consider the inessential intervals oo(P, a). Decompose the polynomial
P into Taylor series on the interval o¢(P, 1) so that

n

P(a) = 30D PO () (@ — ).

j=1
Using (26) and (27), estimate each term of the decomposition
|PY (o) (z — )| < co/n for n?*2d7Q 72 < ¢\, 2<j <,
to obtain
|P(z)] < 2¢o, € 0o(P,a). (30)

Let 0o(P, P) = 0o(P, a1) Noo(P), where P, P € P,(Q,by) and P # P. Then on the
set 0o(P, P) with the measure at least 1/2/(0o(P, 1)) for the polynomials P and P the
inequality (30) holds. Now consider the new polynomial R(z) = P(x) — P(x) = aj, since
the polynomials P and P have the same coefficients ay,, @y_1, ..., a;. Thus, by (30) we
have

|R(z)| < 4co. (31)
Therefore, 1 < |aj| < 4cy which gives a contradiction for ¢y < 272
Since d; = 272t1 and B, = 273" n~2¢t then the choice of ¢y = n™427"2 satisfies
all the conditions for ¢y from above with n > 2 and ¢t < 1. O
4.2.2. Establishing Case B: |P'(a;)| € Ty, 1 <k <n—1.

For fixed k, 1 < k < n — 1 define the set L,x(Q,I) of x € I N Sp(ay) with
a) € A(()k)(P) for which the system

|P(2)] < 8,Q7", |P'(en)| € T, (32)
has a solution in polynomials P € P, (Q).
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Proposition 3. For ) > max <§1;n’;, 244k4’1> we have

WLap(@0T) < (F(R) + Dtu(T).
Proof. For a polynomial P € P,(Q) and «; € A(()k)(P) define the interval
op(Pay) ={zcl:|v—a <aQ*P (o)™}, e <1

Let ox(P) = U  ok(P, ;). From (24), (32) and definition of ox(P,a;), 1 < k <
ar1€AP) (P)
n — 1, it follows that p(oy(P, 1)) < p(I) for 2cpd; Q@ *+D/2 < (1) and o(P,oq) C
or(P, ay) for 2nB,c; ' Q™" < 1. For 1 < k < n—1 fix the vector by, 1 = (an, - - ., api1)-
Let the subclass of polynomials P € P,(Q) with the same vector by 1 be denoted by
P (Q,bri1). The intervals oy (P, ay) divide into two classes of essential and inessential
domains.
First, the essential intervals o4 (P, o) are investigated. By definition

S werPan) < 2mu(D).

PePr(Q,brt1) aleAék) (P)

Using the last estimate and the fact that the number of different vectors by, does not
exceed (2Q + 1)"7*, it follows that

o> wla(P) <2V RPBe () < tu(D) (33)

bit1 PEPR(Q,brt1)

for 2073026, ¢t <t and Q > £=%.

Second, we consider the inessential intervals oy (P, aq). Let oy (P, P) = ox(P,a1) N
or(P), where PP € P,(Q,by,1) and P # P. Develop P and P’ into Taylor series
on o4(P,a;) and oy (P, &;) respectively. Then on the set oy (P, P) with the measure at

least 1/24(0(P, 1)) for the polynomials P and P the following inequality
max(|P(z)], |P(2)]) < 2c,Q 7", (34)

holds for nj”d,;ilQHk_j(kHW < C};% 2<j<n.
By (34) and Lemma 5, the new polynomials R(t) = P(t) — P(t) of deg R < k with
H(R) < 2Q) satisfy

|R(z)] < 2"723F(k + 1), 7" = 227238 (k + 1)"'¢,Q1%, H(R) <2Q=0Q; (35)

for any = € o4(P, ). Applying inductive hypothesis to polynomials R satisfying (35),
we obtain that the measure of the set of x belonging to inessential intervals does not
exceed f(k)tu(I) for Q > 244+ =1 and 2%+23%(k 4 1) 1¢, < B Since dyyq = 27724
and B, = 273 m~2t, 1 < m < n, then the choice of ¢, = 220" +1=k+3;23 gatisfies all
the conditions for ¢ from above with n > 2 and t > 9-2n* Combining the estimates of
measure for essential and inessential intervals, we obtain p(L, £ (@, 1)) < (f(k)+1)tu(I)

—k 4_
for () > max (;‘1112, 244k 1). ]
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n—1

Therefore, for the union L_J L, (Q,I) we have
k=1

—_
3
|
—

n—1

n(J Lua(@: 1)) 37 plLag(Q, 1) < D (L+ f(R))tu(T)

k=1 1 1

with Q > 2411,

S

B
I
T

4.2.3. Establishing Case C: |P'(a;)| € T,.

Define the set Ly, ,(Q,I) of x € I N Sp(ay) with oy € A[()")(P) for which the system
[P(2)] < 8,Q7", n°B,2Q71" V2 < |Pl(an)] < 4, QD)2 (36)
has a solution in polynomials P € P, (Q).
Proposition 4. For Q > 2°" we have (L, ,(Q, 1)) < 2tu(I).

Proof. Divide the interval I into smaller intervals I; with the lengths Q=" where u; > 0
since p(1;) < p(I). We say the polynomial P belongs to the interval I; if there exists
x € I; such that (36) and the corresponding estimates for P(x) hold. If there is at
most one irreducible polynomial P € P,(Q) that belongs to every I; then by (24) the
measure of those x, that satisfy (36), does not exceed

22n—3ﬁi/2QU1*(n+1)/2u(]) < tﬂ([) (37)

for uy = (n+1)/2 and 22n 3887 < t.

If at least two irreducible polynomials P, € P,(Q) of the form P,(z) = k;P(z) for
the same irreducible polynomial P € P, (Q), k; € Z, belong to the interval I; then the
measure in this case coincides with the measure in (37).

The assumption that at least two irreducible polynomials belong to the interval I;
will lead to a contradiction. To show this, suppose that P, and P, belong to I;. Develop
P, as a Taylor series in the neighbourhood I; of a; to obtain

’PI(J:)‘ < (n _ 1)?13627” + 27n/2+1Q7n+1/2 < 27n/2+1nQ7n+1/2’ = Iz‘;

for @ > 2" 2n% and d,, = 27?1, Here each term in the Taylor series for 2 < j < n
has the form

) P (a)lJo = en < n/HIQIIHNZ <p3QT for Q@ > /Y,
Obviously, the same estimate holds for P, on I;. Thus, for 7 = 1,2 we have

Q"2 for n > 8,
P; <
1B3(2) {3@"*1/2 for n < 8.

For Q > 25" and n < 8 we have |P;(z)| < Q"1/2+7/4) 5 — 1 2. Apply Lemma 6 to
polynomials P, and P, with 7 =n—1/2 — g and n = (n+1)/2, where u = 0 for n > 8
and p = 7/(24n) for n < 8. Therefore, the left hand side in (13) has the form

T+ 1+2max(7+1—-n,0) =2n —3u+1/2.
Choose 0y < 1/(8n). Then we will have a contradiction in (13) for n > 2. O
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4.2.4. Establishing Case D: |P'(a;)| € Ty11-

Define the set Ly 1(Q,1) of € I N Sp(ay) with a; € ATV (P) for which the
system

[P@)] < $,Q7" [Pen)] < n°B/2Q 70772 (38)
has a solution in polynomials P € P, (Q).
Proposition 5. For Q > 2" we have ju( Ly n41(Q, 1)) < tu(I).

Proof. Define by o.(P) the set of solutions = € I of (38) for a fixed polynomial P €
P.(Q). Note that the set L, ,41(Q, ) can be written as

Ln,n+1(Q7 I) = LS UL

where L« = U 0.(P) and L. = U o.(P).
PEP, (Qﬁ) PEPL(Q)\Pn (Qn%l)
Next, we are going to establish the following two separate cases.
Case 1: pu(L<) < tu(I)/2.

Let x € 0.(P) N Sp(ay) for some P € P, (Qn%l> Then by (38) and Lemma 3 (for

j =n), we have

2 — | < (BaQ an]™HY™ < (B,Q7™)Y" (39)

since |a,| > 1. Summing the estimate (39) over all polynomials P € P, (Qn%rl>7 we

obtain )
p(L<) < 2nBY"(2Q7T + 1)"HQ < B2 <t (1)/2

for ¢ > 2274588 Note that for 8, = 273" n=2¢ we get that

t> 2—277,2 > n(n—Q)/(n—l)2(2n2+4n—3n3)/(n—1) for n > 9.

Case 2: p(L-) < tu(l)/2.
For k € N, let P} denote the subclass of P, (1) given by

PF={PcP,(): 2 < H(P) < 2k}
Let ko = [=7 log, Q]. Then we have
L [log; Q]
Pa@\P. (@77) =UJ U P
1 k=ko

Now divide the interval I into smaller intervals .J! with u(J!) = 25+ where

I . . . ) . —
w'= min {(-1-n+¢)/j} ¢ =0.

First show that the assumption that at least two irreducible polynomials from PF
without common roots belong to the interval J! will lead to a contradiction. To show
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this, suppose that P, and P, belong to J!. Let |a,| > H(P)/n. Let ¢ > 1+ 1/n then
by Lemma 4 and (38) we have n 'H(P)!=% < |P'(ay)| < 27'n2By2Q~(""D/2 which
implies that ¢ > (n+1)/2 — 1/n for H(P) < Q and Q > 2", Assumption that
¢1 < 1+ 1/n gives a contradiction. Develop Py as a Taylor series in the neighbourhood
J! of a; to obtain

|Py(z)| < n2knt 0 g e gt
for ¢ < ~y/n and sufficiently large k, where

)™ PO (@)l — anf < 2
— 21'%‘(—n-ﬁ-jﬂ-(n—j)el)7 1<j<n.

Obviously, the same estimate holds for P, on J!. Note that for @ > 27" and k < [log, @]
we have that |P,(x)| < 28-n+0+)0+1/(%) s — 1 2 Apply Lemma 6 to polynomials Py
and P, with 7 =n —ny—1/(n®) and n = —u’ — 7. Therefore, the left hand side in (13)
has the form

T+1+2max(t+1—n,0) = 3n+3+2(-1—n+g¢;)/j—vBn—2)—3/(n?

Since ¢; > (n + 1)/2 — 1/n, it is readily seen that 7 + 1 + 2max(r + 1 — n,0) >
2n +2 —v(3n —2) —2/n —3/(n3) for j = 1 and 7 + 1 + 2max(r + 1 — n,0) >
2n+2—~(3n—2)—3/(n?) for 2 < j < n. Let §y < 1/(n®). We will have a contradiction
in (13) for v < (2n® — 2n* — 4)/(n*(3n — 2)). We can choose v = 1/(4n).

Therefore, there is at most one irreducible polynomial P € P{ that belongs to J..
For P € P} denote by v(P, ;) the set of € Sp(a;) satisfying (38). According to
Lemma 3 we have that

(P an)) < 27,

Using the inclusion o.(P) C U v(P,aq) for any polynomial P and the fact
ar1eA"™ (p)
that the number of polynomials P € P} does not exceed the number of intervals J', we

obtain
[log2 Q]

WL <Y S nz ) <
1

k=ko (40)
< 2'nC(n, e )u(I)(Q ™™ — Q) (1 —277)7" <

< 272 C(n, ) QY MY (1)

since 1 — 2710 > p=19-7* for p > 2. Using the fact that C(n,e) < (2nT)" =
(2n(e)™H™ = (2n?/y)" = 230" and €; = y/n, we get

A n2 n — n(n
(L) < mPrizor i/ Unt D)y (1) < (1) /2

for ¢ > on*Fintlp3nt20)=1/(n(ntD) For p > 2. ¢ > 272" and Q > 244" we complete the
proof in the Case 2. O]
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4.3. Reducible polynomials

Let P € P,(Q) be an reducible polynomial of the form
P(f)=Pi(f)P:(f), degPr=mny, degPy=n—mny, 1<n; <n-—1

and the inequality |P(z)| < £,Q~"™ holds for z € I.

For fixed P by A(P) denote the set of x € [ satisfying |P(z)] < £,Q". Now
reducible polynomials P € P,(Q) we split into two classes P/, (Q) and P/ (Q). Reducible
polynomial P belongs to P! (Q) if it has a factor P, satisfying the following property:
let w(A(P)) < 2u(A(Pr)) where (A (P)) = {z € u(A(P)) : |Pi(x)| < B, @™ }. Then
by inductive hypothesis

S W) <23 Flmtu(l)
PeP(Q) ni=1

for Q) > 244(n—1)",
If w(A(P)) > 2u(A(Py)) then on the set A(P) \ A\ (P;) we have

[P (7)] < 5N(5N1)_1Q_n+n1

and the measure of the last set over all P, € P,_,,(Q) does not exceed f(n —nq)tu(l)
for B, < Bn,Bn—n, by inductive hypothesis. In this case p(A(P)) < 2u(A(P) \ Ai(P1))
and

S P <23 fln - mta()

PeP]l(Q) ni1=1

for Q > 2= Note that the inequality 8, < Bn,SBp_n, holds for B, = 273" m~2t
(1<m<n),t>22" andn > 2.

4.4. End of the proof of Theorem 2

Combining the results of the Subsections 4.1-4.4, we get

p(Ln(Q, 1)) < f(n)tu(l)

for Q > 24" where for n > 2 we have

f(n)>5+ ; (1+f(k))+2if(k:)+2if(n—k) :n+4+5if(k:). (41)

Since f(k) is an increasing function, then, clearly, the function f(k) = 2¥ will satisfy
(41) for n > 2.

Choose € = tf(n). Since t > 272" and f(n) = 2% then € = tf(n) > 27", This
concludes the proof of Theorem 2.
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AHHOTAITNS

B nmannoit cratbe mosyueHbl 3¢ heKTUBHBIE OIEHKU B TepMHUHAX N 1 ()
JUTT MePhl MHOXKECTB JIEHCTBUTEIbHBIX YHCEJ C 33/ JaHHBIM CBOWCTBOM
AIMIPOKCUMAIIIN  AJITeOPANIeCKIMU  YUCJIAMH CTEIeHH 7. U BBICOTHI,
orpanndentoi () € N.

KontoueBble  ciioBa:  uesowucaenHvie  MHo20uAeHL,  Mepa  Jlebeza,
NPUOAUIHCEHUA AN2EOPAUNECKUMY YUCAAMU.



