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On regular systems
of algebraic p-adic numbers
of arbitrary degree in small cylinders

In this paper we prove that for any sufficiently large () € N there exist
cylinders K C Q, with Haar measure p(K) < Q' which do not contain
algebraic p-adic numbers « of degree deg w = n and height H(a) < Q. The
main result establishes in any cylinder K, u(K) > c;Q7', ¢; > ¢y(n), the
existence of at least c3Q" ™ u(K) algebraic p-adic numbers o € K of degree
n and H(a) < Q.

Key words: integer polynomials, algebraic p-adic numbers, reqular system,
Haar measure.

1 Introduction

The concept of a regular system of points is a convenient tool for the study of the
uniform distribution of algebraic numbers. Regular systems were introduced by Baker
and Schmidt [I] as a technique for obtaining a lower bound for the Hausdorff dimension
of sets of real numbers close to infinitely many points of the set of algebraic numbers
of bounded degree.

Definition 1. Let I' be a countable set of real numbers and let N : I' — R be a positive
function. The pair (I'y N) is called a regqular system of points if there exists a constant
C = C(I',N) > 0 such that for any finite interval I there exists a sufficiently large
number Ty = To(I', N, I) such that for any integer T > Ty there exists a collection
Yy €ECNT such that N(v) <T(1<i<t), |[vi—v|>T'1(1<i<j<t), and
t>C|I|T.

Regular systems play the key role in the proof of the divergence case in the Khintchine-
Groshev type theorems [2, [3] 4, 5] and obtaining lower bounds for the Hausdorff
dimension of sets of number theoretic interest [T, [6, [7, [8, 9] [10].
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Y. Bugeaud in [11] stated the problem on finding an explicit dependence of T, on the
length of the interval I. In [T1] it is shown that for a given finite interval I in [—1/2,1/2]
the value of To(I', N, I) in the definition of regular system is equal to

To(Q, N, I) = 10*|1| % log® 100|1|
for T'=Q, and in [12] that
To(Ag, N, I) = 723|113 log® 72|1|7!

for I' = As, where A, is the set of real algebraic numbers of degree n. Throughout
¢ = c1(n), ca = ca(n), ... are constants depending only on n. In [I3] it is shown that
To(Az, N, I) = ¢;|I|7*7¢, 0 < € < 1. There is a more strong connection between I and
Ty(A,, N, I), namely Ty(A,, N, I) = co|I|~™*1) see [14]. In this paper, we address the
problem of Bugeaud for the p-adic algebraic numbers of arbitrary degree n.

The Haar measure of a measurable set S C Q, is denoted by p(5). Let A, be the set
of all algebraic numbers and @Q; be the extension of Q, containing .A,. The cylinder in
Q, of radius r centered at « is the set of solutions of the inequality |w —«|, < r. Denote
by A, , the set of algebraic numbers of degree n lying in Z,,. Fix any finite cylinder K
in Z,. The natural number H(«) denotes the naive height of a € A,, i.e. the maximum
absolute value of the coefficients of the minimal integer polynomial of . We will also
use the Vinogradov symbol f < g which means that there exists a constant ¢ > 0 such
that f < cg.

Theorem 1. Let K be a finite cylinder in Ky. Then there are positive constants cs, ¢y
and a positive number Ty = cspu(K)~" Y such that for any T > Ty there exist numbers
ay,...,oq € Ay, N K such that

H(a;) <TYD (1 <i<t),
i —ayl, >T7H (1< i< j <), (1)
t > e Tp(K).

Note that from Theorem (1| it follows that the set A, , with the function N(a) =
H" () form a regular system in K.
For ) € R* define the set of polynomials

P.(Q) ={P € Z[x] : degP =n, H(P)<Q}. (2)

To prove Theorem [l it is convenient to introduce the following set. Let () € N and

§,d,,c5 € RTY. We denote by £, = L,(csQ™, 5, K) the set of w € K for which the
system of the inequalities

[Pw)], < Q™" [P'(w)], <6, (3)

has a solution in polynomials P € P,,(cs@Q™ ), where ¢g € RT and 0 < r,, < 1. The proof
of Theorem (1] is based on the following metric result which significantly broadens the
scope of potential applications and is of independent interest.
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Theorem 2. For any real number [, where 0 < | < 1, and for any cylinder K in
Ky C Z, there exists a sufficiently large number Qo = Qo(K) such that for

WK) > c:Qpt, dy>n+r,, 627" p 2" es P (s(n)) 2
and a sufficiently large constant c;, which does not depend on @y, and for all Q) > Qg
p(Ln) < Ip(K) (4)
holds.

Remark 1. The constant s(n) € N is defined recursively in @ and has the form

2 forn =1,
)14 forn =2,
s(n) = ne1 n/2
2n+ 13+ > s(k) + > (4s(k) +3s(n—k))  forn > 3.
k=3 k=1

From above it follows that the cylinder K with p(K) > ¢;Q~! for sufficiently large
c7 and sufficiently large @ contains > Q" u(K) algebraic p-adic numbers of degree n
and H (o) < Q. Note that if 4(K) < Q" then we have the following result which is a
complement of Theorem [1}in some sense.

Theorem 3. For any QQ € N there ezist the cylinders K with pu(K) < %Qil which do
not contain algebraic numbers o € Q, of degree dega =n, n > 2, and H(a) < Q.

2 Proof of Theorem [3l

For the given ) choose s € N satisfying the inequality p™° < %Qil. Consider the
cylinder K = K (ps,% 1. Let @ € K be an algebraic number of degree dega = n,
n > 2, and H(a) < Q. It means that o € Q,, a # 0, is a root of irreducible polynomial
P(z) = > " ja;x’. If we assume that ap = 0 then from P(a) = 0 it follows that

a(d>> a;a’t) = 0. The last equation implies that a is a root of polynomial P;(x) =
i=1
S~ a;x™t of deg Py < n — 1 which contradicts to the fact that dega = n. Therefore,

=1
ap # 0 and from

n
ag = — E a;a "t
i=1

we obtain

) 1
-1 -1 -1
Q< |a0|p < |04|p g%}% |’ |p < §Q )

which is a contradiction. This completes the proof of Theorem [3]
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3 Proof of Theorem 2

By translation and taking the reciprocals (if necessary) each polynomial P can be
transformed into a polynomial R satisfying

|an(R)]p > cs, s <1, (5)

and H(R) < H(P), see [15]. Let ay, ag, ..., ay, be the roots of the polynomial P € Z[z]
of degree n in Q5. Define the sets

Sp(ay) ={weQ,: |w—a|, = min |w—ayl,}, i=1,...,n.
1<j<n

We will consider the sets Sp(«;) for a fixed i. For simplicity we assume that ¢ = 1.
Reorder the other roots of P so that

o —aal, < log—as], <...< Jog —aplp

For the polynomial P define the real numbers p; by
|051_04j|p = H(P)ipja QS]STL, P2ZP3ZZPn

Let € > 0 be sufficiently small, d > 0 be a large fixed number, €; = ¢/d and M = [¢;*]+1.
Also, define the integers [;, 2 < j < n, by the relations

l;—1 l;

] <pi <L L>l3>...>1,>0.

M= Py M 2 Z U3 =2 Zn 2
Finally, define the numbers ¢; by ¢ = W, (1 < i < n—1). All irreducible
polynomials P € P,(csQ™) satisfying and corresponding to the same vector 1 =

(la,...,l,) are grouped together into a class P, (cs@™, 1), and the number of such classes
is finite and depends only on n and €y, i.e. is at most C'(n, €;), see [15]. Also, we define
the class P, (1) to consist of all irreducible polynomials P € Z[z] of degree n satisfying
(5) and corresponding to a vector 1. In 3.2 we fix the vector 1 and will continue the
proof for this fixed vector.

A number of lemmas for later use are now given.

Lemma 1. [J] Let P be a polynomial without multiple zeros and let w € Sp(ay), then

w — aulp < [P(w)]p| P (en)],” (6)

p

[w = ayfp < min <|P(w)|p|P'(041)|;1 [Tl - O%Ip> : (7)

2<j<n
k=2
Lemma 2. [5] Let w € Sp(ay) and |P'(w)], # 0, then |[w — oul, < [P(w)[p|P'(w)], "
Lemma 3. [3] Let P € P,(l) satisfying (5). Then

|P'(o)|, > c(n)H(P)™ and |PY(ay)|, < H(P) #t(=Da 1 <1 <n—1.
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Lemma 4. [16] Let 8 > 0 and Q > Qo(0). Further, let P, and P, be two integer
polynomials of degree at most n with no common roots and max(H(P;), H(P,)) < Q.
Let J C Q, be a cylinder with p(J) = Q~", n > 0. If there exists T > 0 such that for
allwe J
|Pj(w)lp < Q7
for j =1,2, then
T+ 2max(T —1n,0) < 2n + 0. (8)

Lemma 5. Let K C Q, be a cylinder and B C K be a measurable set satisfying
w(B) > k7 'u(K) > 0, k € N. Assume that for all w € B we have |P(w)|, < H(P)™,
where a > 0 and deg P < n. Then for all w € K we have

|P(w)l, < (pk(n+ 1)) H(P)™.

Proof. Let a = ag + aip + ... + a;p' be center of the cylinder K. Then K = {w €
Q,: |w—al, < p UV} with u(K) = p~ @Y and w = a + a;1p™* + .. .. Choose s
such that

E'pf > n+ 1 9)

Consider the cylinders K (w;):

K(w;) = K(ap, arra, - ags) = {w € Qp t [w — (a4 Y arp™)], < p 01
i=1
It is clear that #K (w;) = p® and K = U, K (w;), where K (w;) N K (w,,) = 0 for t # m.
Let B = K(w;,) U K(w;,) U... U K(w,, ). Then

F u(K) < u(B) = rp(K (wy)) = rp~ 4D = rp™*u(K)

and r > k71p*. In the different cylinders K(w;,) and K(w;, ), u # v, there exists
a coordinate a, of the vector b,y = (a1, a142,...,a1s) such that a,(K(w;,)) #
aq(K(w;,)), I +1 < q <1+ s. Therefore,

|,wu o wv‘p > p—(l-l—l-i-s)7
where w, € K(w;,) and w, € K(w;,). Condition (9) allows us to choose at least n + 1
such points w;.
Rewrite P as the interpolation polynomial in the Lagrange form

B s (w—w).
Pw) = Zdl (w; —wy) ..

=1

c(w—w)(w—wigq) . (W — W)
wp —wig)(wp — wigq) - (W — wpgr)

where d; = P(w;). Since |w — w;|, < p(K) for all w € K and |P(w;)|, < H(P)™* then
|P(w)], < p "V H(P)™".

Take s = log, k(n + 1) + 1 = log, pk(n + 1) then |P(w)|, < (pk(n + 1))"*' H(P)~* for
allwe K. O
Let ¢t € (0,1) be a sufficiently small number which we will specify later.
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Lemma 6. Denote by L = L(coQ™, K) the set of w € K, u(K) > ¢;Q~', for which

the system of the inequalities
|CLU} - b|p < CIOQ_d17 max(|a|, ‘b|> < C9QT17 ’a|p S CHQ_U7 (10)

has a solution in linear polynomials aw — b € P1(cg@Q™), where the parameters dy > 1,
0<ry <1, v >0 and constants c¢; > 0 satisfy one of the conditions:

Z) d1>1+7”17 UZT’l—l,

’lZ) d1 = 2, = 1, v = 0, cr > 2269010t71, 2361063011 < t,

iii) di=1+r, v>r —1, c;> 2%t
Then u(L) < 2tu(K) for Q sufficiently large.
Proof. Let a = pPa; and b = p°b;, where (a1,p) = 1, p7? < ¢1Q7, by € Z. Thus,
we can rewrite in the form
lajw — bi], < pPero@™™, |ai| < cop™P Q™. (11)
Now the measure of w € K for which the system holds is estimated. For fixed a;
and by the first inequality in holds for points w € K from the cylinder
|w — b1 /a1, < P6|a1‘;1010Q_d1 = pPelo@ M. (12)

Then we need to sum the last estimate over all a; and b; such that b;/a; € K, where
lay| < cop™PQ™. For a fixed a; denote by Mg (a;) the number of such points b;. For
Mk (aq) the following formula holds:

Jax|p(K) + 1 < 2Jaa|w(K) if  aa] > p(K)7

I if sl < u(K) (13)

Mg (ar) < {

Let |ai| > p(K)™' and we use the first estimate in (13). Using p™@ < ¢1Q7, we

obtain
Z Z PPern@Q™ M < 2%pPeppQP M u(K) <
la1|<cop=BQT1 bi:bi/a1€K (14)

< 20106511 Q7N T u(K) < tu(K)

for 2r1 —dy —v < 0and @ > Qg or 2ry —d; — v =0 and 2301003011 <t.
Let |a;| < u(K)~* and we use the second estimate in (13). Summing over a; and b

we get
Z Z PPen@ " < deypeoQm M <

la1|<cop=BQ™1 b1:b1/a1€K (15)
< deypcoc; TQMTT A (K < tu(K)

for 1+7m —di<0and Q > Qpor 1 +7 —d; =0 and ¢; > 2% Legeyo. O
Now consider the special case when r, = 0. Denote by Ly = Lo(cg, K) the set of
w e K, p(K) > c;Q7!, for which the system

|P(w)|, < Q™" dy>mn (16)
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has a solution in P € P,(cg). Let ¢’(P) denote the set of w of for a fixed polynomial
P € P,(cs). Let w € o'(P) N Sp(a) for some P € Py(cg). Then by and Lemma [1]
we have

w = aulp < (csc5' Q™)™

Summing the last estimate over all polynomials P € P, (cs), we get
1(Lo) < nex/™(2c6 + 1) ey QT < tu(K)

for c¢; > cé/n(Qc(; + 1)"+lcg1/nt_1n. From now on assume that r,, > 0.
Note that we will prove Theorem [2| by strong induction with the following induction
hypothesis: assume that for 1 < m < n — 1 the following

|[P(w)lp < mi Q™.
" [P (w)lp <6,
Bl weE K :3P e Pm(m2Q m)S.t. dm > 77§+Tm7
5 < 27 0p 2y, g2

< s(m)tu(K)

holds for sufficiently large c; and sufficiently large @, where u(K) > ¢;Q~' and s(m) € N
is constant depending on the degree m of a polynomial. The base case for m = 1 with
s(1) = 2 follows from Lemma [6]

3.1 Case of large derivative

Define the subset £, of the set £,, containing w € K for which there exists polynomial
P € P,(cgQ™) such that the system
P@)l, < sQ ™", pes* Q™" < |P(w)], < 6 (17)

holds.
Denote by oo(P) the set of solutions w of the system for a fixed polynomial

P € P,(csQ™). Then we have L, = U oo(P). Let P € P,(csQ™) and w €
PEPn(CGQT’ﬂ)
oo(P) N Sp(ay) where P(ay) = 0. By the Taylor’s formula

n

P'(w) =Y (i = 1)) PD(ay)(w — ay)"".
i=1
Using |w — a1, < ¢sQ~%|P'(w)|; ! from Lemma (1} and estimating each term gives
[P ()lp = [P(w)lp.
Therefore, the set og(P) N Sp(ay) is contained in o(P) which is defined by

w = ai, < esQ™™ P’ (a)[, " (18)

Further to obtain the measure of £, it is necessary to consider several cases which
depend on the value of |P’(aq)|, in the range (pCé/2Q_dn/2’ d].
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3.1.1 Case A: 2(”+1)/2pcén72)/20é/2t_1/262_(2””)/2 < |P'(on)]p, <0

Define the subset £,; of the set £, for which there exists at least one polynomial
P € P,(cs@Q™) satisfying and the inequality

Q% < |P'(an)lp <6, (19)
where «; is the closest root to w of P.

Proposition 1. For§ < 27" 5¢;" e 12 and sufficiently large constant c¢; and sufficiently
large Q) we have
(L) < 3tp(K).

Proof. For a polynomial P € P, (csQ™) define the cylinder

o11(P) ={w € Sp(a)) N K : |w— o], < 612Q_(1+T")|P’(041)|;1}. (20)
From and we get
o (P)) < esey Q@ p(o1,1(P)). (21)

Note that from it follows that p(oy1(P)) < c12Q7"/2 and p(oy1(P)) < u(K)
for ¢; > ¢19.
Decompose the polynomial P into Taylor series on the cylinder oy ;(P) so that

n

P(w) =Y (i)' P ar)(w — o).

i=1
Using and 7 estimate each term of the decomposition to obtain
|P(w)|, < c12Q7 "™ for Q > Q. (22)

Let w € 011(P). By Taylor’s formula,
|P'(w)|, <d for @ > Q. (23)

Fix the vector by = (ay, ..., as) which consists of the coefficients of the polynomial
P(z) = Y aix’ € P,(cs@Q™). Let the subclass of polynomials P € P,(csQ™) with
i=0

the same vector by be denoted by P, (csQ™, by). The cylinders oy 1(P) divide into two
classes using Sprindzuk’s method of essential and inessential domains [15]. The cylinders
011(P) are called inessential if there is a polynomial P € P,(csQ™, by) (with P # P),
such that

(o1 (P) Moy (P)) > 1/2u(011(P)), (24)

and essential otherwise. According to this classification, we have L1 C Vess U Viness-
First, the essential cylinders oy 1(P) are investigated. By definition

S (P < plK).

PePr(c6Qm ,b1)
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Using the last estimate, and the fact that the number of different vectors b; does
not exceed (2cQ™ + 1)1, it follows that

pVess) =Y > plo(P) < 27 esey QT u(K) < tu(K) - (25)
b1 PePn(cgQ™ ,by)
o1,1(P) essential

for c1p > 2"chest™ and Q > Q.

Second, we consider the inessential cylinders oy 1(P). Let o1(P, P) = o11(P) N
o11(P), where P, P € P,(csQ",b;y) and P # P. Then on the set oy (P, P) with the
measure at least 1/2u(oy 1 (P)) for the polynomials P and P the inequality holds.
Now consider the new polynomial R(w) = P(w) — P(w) which is a linear polynomial

since the polynomials P and P have the same coefficients a,,a,_1,...,as. Thus, by
Lemma 5] and for w € o1 1(P) we have
|R(w)]|, = |aw —b|, < 24p%c15Q 1™, max(|al, |b]) < 2¢6Q™, lal, < 6. (26)

Denote by L (2c6@™, K) the set of w € K for which the system has a solution in

for c¢; > 27p?ceeiot ™! and § < 27%p~2c; %), t. Obviously Viness € L1(2¢6Q™, K).
Choose c19 = 2"cst~'ci~ . Therefore, for the measure of the set £,;(cs@Q™) the
bounds, obtained for both essential and inessential cylinders, can be rewritten as

(L) < 3tp(K) (27)

for § < 27 9p~2est ey "2 and ¢ > max {2t pPescpt =2, 2" st 1 e}, This completes
the proof of Proposition [I. O

For some ¢35 > 0 define the subset L£,,5 of the set £~n, containing the w € K, for which
there exists at least one polynomial P € P, (csQ™) satisfying and the inequality

CI3Q_Tn < |P,(a1)|p S Q_Tn/27

where «; is the closest root to w of P.

Proposition 2. For cyy = 2"/ pel/ 2o D/24=1/2

sufficiently large Q) we have p(Ly2) < 3tu(K).

and sufficiently large constant c; and

Proof. The proof of the Proposition [2] is closely related to the proof of Proposition
. As before, for P € P,(csQQ™) and some positive constant ¢4 (which will be specified
later) we consider the cylinder o(P) and define the cylinder

o12(P) :={w € Sp(ar) NK : |w—aul, < cs@ [P ()], '} (28)

It is clear that

wlo(P)) < e Q" u(o1(P)). (29)
The definition of £, gives us that u(o;2(P)) < u(K) for ¢; > ¢i3 c14. Develop P and
P’ as a Taylor series on oy 5(P) to obtain

[Pw)l, < cl@ 7, [P'(w)l, = P(aa)ly (30)
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for c14 < p~2cl;. Further consider the essential and inessential cylinders oy »(P). In the
case of the essential cylinders we have

S ulora(P) < p(K),

PeP, (CG Q™ ,bl)

S elP) <2 eal@ I u(K) < w(K) (31)
b1 PePn(c6Q"n ,b1)
for ¢y > 2"citest™! and Q > Q.
It follows from ( . ) that in the case of the inessential cylinders for the polynomlal
T(w) = P(w) — P(w) = kw — d, where P,P € P,(csQ™), and P # P. By (30) and
Lemma [, for w € o5(P) we have

lkw — d|, < 2*p%c1uQ~ 1, max(|k|, |d]) < 2¢sQ™, |k|, < Q2. (32)

Denote by L(2¢4Q™, K) the set of w € K for which the system has a solution
in polynomials P € P;(2¢6Q™). By Lemma [6[iii), we obtain that u(La(2¢6Q™, K)) <
2tu(K) for c; > 27p206014t_1

Choose c14 = 2"cy est™! and ¢13 = 2”/2+1pc(" /2 1/2 —1/2 The upshot is that

1(Lna) < 3tp(K) (33)

for ¢; > max(2"/2~ 1p_1c(" /2 1/225 /2 on+Tp2erest=2). This completes the proof of
Proposition 2| O

In the case if ¢ > 27 (+10)/29=141/2 e need to consider the following set.
Denote by L3 C E the set of w € K, for which there exists at least one polynomial

P € P,(cg@Q™) satisfying and the inequality

(n+1)/2 1/2

2’4067162’” < |P’(a1)]p < 2n/2+1pc(” 1)/2 1/2 1/2Q s
where «; is the closest root to w of P.

Proposition 3. For sufficiently large constant c¢; and sufficiently large () we have
:U’('Cn3> < 3tM(K>

Proof. For P € P,(csQ™,by) and some c15 > 0 define the cylinder
0'173(P) = {w S Sp(ozl) NK: |w — &1|p < 015Q_(1+r")|P/((11)|;1}.

The definition of £,3 gives us that p(o13(P)) < pu(K) for ¢; > 2*cscr5. Develop P and
P" as a Taylor series on oy 3(P) to obtain

[P(w)], < c16Q@ 7™, |[P/(w)], < c17Q7"™

for ¢16 = max(cy5, 28p?cicis) and ¢y7 = max(2n/2“pc(n /2 1/2 ~1/2 2%cgers).
Then consider the essential and inessential cylinders 0173(P) for P € P,(csQ™, by).
In the case of the essential cylinders we obtain that the measure does not exceed tu(K)
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for ¢15 > 2"c5cg’1t_1. In the case of the inessential cylinders we need to find the measure
of w € K for which there exists at least one polynomial P € P;(2¢6QQ™) satisfying

law — b|, < 24p2¢16Q 1, lal, < c17Q™"™ (34)

for any w € oy3(P). By Lemma [{iii), the measure in the case of inessential domains
is at most 2tu(K) for c; > 27p?ceeipt ™t Choose c15 = 2ch 'est™!. Then we get ¢; >
max (2" clest ™, 2T p2cgerpt ). O

For some constant c;g > 0 we denote by L4 C L, the set of w € K , for which there
exists at least one polynomial P € P, (cs@Q™) satisfying and the inequality

018Q7(2+rn)/2 < ‘P,(Oél)|p S 2746(;1@71””’

where «; is the closest root to w of P.

Proposition 4. For ;g = 20+0/2pcl/?cn=2)/24-1/2

and sufficiently large Q@ we have pu(L,4) < 3tp(K).

and sufficiently large constant c;

Proof. For P € P,(cs@™) and some c19 > 1 define the cylinder
o3(P) :={w e Splan) N K : |w— oy, < cng_(2+’"")|P’(a1)|gl}.

Clearly, that
wo(P)) < escig Q™7 u(oa(P)). (35)
The definition of £, gives us that p(oo(P)) < p(K) for c; > cigcro.

Fix by = (ay, . .., a3). Let the subclass of polynomials P € P,(cg@Q™) with the same
vector by be denoted by P, (cs@™, by). Consider again essential and inessential domains

oo(P) for P € P,(csQ™, bs).
By the definition of the essential domains, it follows that

Y. woa(P) < p(K).

PEPn(csQmm,b2)

Since the number of by does not exceed (2c6Q™ + 1)"~2 then, summing over all by and

using and d,, > n +r,, we have

S ulo(P) < 2 e QT ()

bz P€ePy(csQ™ ,ba)
< 2"l Peserg QU VA u(K) < tu(K)

IN

for ¢;9 > 2”*102_20575*1, n > 2 and Q > Q.

Now consider the inessential domains. By the Taylor expansion of P;(w) and P/ (w)
on 03( Py, P,) = 02(Py;,) Noa(Pyy,), Piy, Py € Pa(cs@Q™,ba) By # P, find the upper
bound of |P;(w)|, and |P/(w)],, so that

P(w)l, < e10Q 7™, [Pl ()], = [P'(a)l, for eis > pery’, (36)
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Since the leading coefficients of P, and P;, are equal then W (w) = P, (w) — P, (w) =
fow® + fiw + fo and, by 7

(W(w)lp <cw@ 7™, [W(w)lp < [P'(an)lp, il €266Q™, 0<i<2.  (37)

Then we need to consider the discriminant D(WW) of W and distinguish two cases:
D(W) # 0 and D(W) = 0. It is easy to verify that the representation of D(P) for
P € P,(2c6Q™) as a determinant leads to the upper bound

|D(P)| < 2n*"1(2n — 2)!(2¢6Q™)*" 2.

Case 1: D(W) # 0. Let 31, B2 € Q, denote the roots of W (w). Since the discriminant
D(W) of W satisfies

[DW)|p, = W' (Bl < [P (an)ly < 2755 *Q ",
[DW)], > [DW)[™! > 27T e5*Q ™"

then we have a contradiction.
Case 2: D(W) = 0. This implies that the polynomial W has a multiple root and
has a form

W (w) = Wi(w) = (Lhw — ly)?,

where by Gelfond’s Lemma [I1] we have max(|l1], |lo]) < 2("+1)/2cé/2QT"/2. By and
Lemma [5] we have

lhw — lol, < 24 pPeyy Q=+ (38)

for any w € 09(P;,). Denote by L3(2(”+1)/2cé/2Q”"/2,K) the set of w € K for which
the inequality has a solution in polynomials P € P (2"+1/ 20(15/ 2Q’""/ 2). By Lemma
(iii), we have ,u(L3(2(”“)/20é/QQ””/2, K))) < 2tu(K) for ¢; > 2("“3)/2]920%/20%225*1.
Choose ¢ = 2" tcg 25t and cj5 = 2(”+1)/2pcén72)/20é/2t_1/2. Then sum the
estimates for the measure of the essential and inessential cases. For

cr > maX(Q("_3)/2p_1cén_Q)/Qcé/Qt_l/Q, 2”+6p20én_1)/20é/2t_3/2)

this concludes the proof of Proposition [4. OJ

Remark 2. For n = 2 after Proposition []] we need to use the following argument to
finish the proof of theorem. It is easy to show that we left with the case when |P'(ay)l, <
c18Q~72)/2 . Similar as in Proposition |{| we obtain that D(P) = 0. Therefore, we
have P(w) = (aw + b)* which implies that |aw + b, < céﬂQ*d?/2 and max(|al, |b]) <
2061;/2@”’/2. By Lemma|6)(1,1ii) we have that the measure of w € K, for which there exists
at least one linear polynomial P € 771(20é/ QQ”/ %) satisfying the last inequalities, does
not exceed 2tj(K) for do >ro+2 ordy =19+ 2 and ¢y > 236(15/26;/275_1.

Further, we assume that n > 3.
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312 Case B: exnQ 07/ < |P/(0n), < Q400

Here ¢y is a sufficiently small constant which will be specified in Subsection 3.3.
Let 3 < k <n — 1. Consider the following ranges for the value of first derivative:

QI < Pl < Qe (39)

where v3 =v], | =1, v} =18, V1 = cyo and v = v, =1 for 4 <k <n —2.
For 3 <k <n —1 denote by L, C L, the set of w € K, for which there exists at
least one polynomial P € P,(csQ™) satisfying and (39).
Proposition 5. For sufficiently large constant c; and sufficiently large ) we have
(L) < (s(k) + 1)tp(K).
Proof. For a polynomial P € P, (csQ™) define the cylinder
ok(P) =={w € Sp(a1) N K : |w—ay|, < 021Q_(k+T")|P/(a1)\;1}, 3<k<n.

For 3 < k < n —1 fix the vector by, = (a,...,ars1). Let the subclass of polynomials
P € P,(cs@Q™) with the same vector by be denoted by P,(cs@™,by). The cylinders
o(P) divide into two classes of essential and inessential domains. For @ > @y we will
use the estimate #{b;} < 2n=F+1cakQm—k),

First, the essential cylinders o (P) are investigated. By definition

Y. ulon(P)) < u(K).

PePp(c6Q™ ,by)

Using the last estimate, and the fact that the number of different vectors by does
not exceed 2" F+1ca=FQr(n=F) it follows that

SY ule(P)) < 2 e eyl Qe Iy (K) <
bk PGPH(CGQTnvbk) (40)

< 2" R esep QU (K < tpu(K)

for coy > 2”*1*kcg_kc5t*1.

Second, we consider the inessential cylinders oy (P). Let o4 (P, P) = o (P) N oy (P),
where P, P € P,(csQ™,by) and P # P. Then on the set o4(P, P) with the measure at
least 1/2u (o (P)) for the polynomials P and P the following system holds:

[P(w)ly < Q™ ™, [P(w)], < vQ R, (41)

where cqp = max{_021, pAci vy 2}, According to Lemma and , for the new polynomials
R(w) = P(w) — P(w) of deg R < k with H(R) < 2¢6Q™ on oy(P) we have

[R(w)lp < 2p(k + 1) enQ™ ™, [R(w)], < (2pk) 0@ 720 (42)

By applying inductive hypothesis to polynomials R and using (40]), we obtain p(L, ) <
(s(k) + Dtp(K) for 3 < k <n — 1, sufficiently large ¢; and sufficiently large @). O

n—1 n—1
It now follows via Proposition , that pu(UJ p(Lnk)) < (D s(k) +n — 3)tu(K) for
k=3 k=3

Q@ > Qo and sufficiently large c;.
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3.1.3 CaseC: pcé/QQ_‘i"/2 < |P'(a1)], < Q@ ~1*7)/2 and irreducible polynomials

Consider the set £, , which is the set of w € K, for which there exists at least one
irreducible polynomial P € P,(cs@Q™) satisfying

|P(w)‘P < C5Qidn7 pcé/2Qidn/2 < |Pl(a1)’p < CQon(nflJrrn)/?_ (43)
Proposition 6. For sufficiently large Q we have u(Ly,,) < 2tp(K).

Proof. Divide the cylinder K into smaller cylinders J; with u(J;) = Q™" where

u > 1. We say the polynomial P belongs to the cylinder J; if there exists w € J; such

that and hold. If there is at most one irreducible polynomial P € P, (csQ™)

that belongs to every J; then by Lemma [I] the measure of those w, that satisfy (43),
does not exceed

np~ e 2QTI (K < tu(K) (44)

for u < d, /2 and sufficiently large Q.

If at least two irreducible polynomials P; € P, (csQ™) of the form P;(w) = k;P(w)
for the same irreducible polynomial P € P,(csQ™), k; € Z, belong to the cylinder J;
then the measure in this case coincides with the measure in (44)).

The assumption that at least two irreducible polynomials without common roots
belong to the cylinder J; will lead to a contradiction. To show this, suppose that P, and
P, belong to J;. Develop P; as a Taylor series in the neighbourhood J; of a; to obtain

|P(w)], < maX{@oQ_(n_HT")/Q_u,pQQ_2u} = QT2 €

for u > (n — 14 r,)/2. Obviously, the same estimate holds for P, on J;.

Applying Lemma {4 to polynomials P; and P, with 7= (n—1+17,)/2+u—¢€})/r,
and n = (u+¢€,)/r,, where €, > 0 is sufficiently small, leads to a contradiction in (8] for
u > (n—1+r,)/2+260 and €| +¢€, < 0. Choose u, satisfying (n—14r,)/24+20 < u < d,, /2.
O

3.2 Case of small derivative and irreducible polynomials

Define the subset £, of the set £, containing w € K for which there exists irreducible
polynomial P € P,(cs@"™) such that

|P(w)], < esQ ™%, |P'(w)], < pes Q%2 (45)

Proposition 7. For sufficiently large constant c; and sufficiently large ) we have

p(Ln) < 3tu(K).

Proof. Define by o.(P) the set of solutions of the system for a fixed polynomial
P € Pu(csQ™). Let w € 0,(P) N Sp(ay). First, it is shown that the value of the
derivative of P at ay, P(ay) = 0, satisfies

[P’ ()], < pes/* Q42 (46)
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To show this, assume the opposite of . Then develop P’ as a Taylor series in the

neighborhood of a; and use the estimate |w — a4, < cémp_lQ_d"/2 from Lemma .
Since

mac{ax {1((G — D)~ PO () — on 1), [Py} < bp QP
for Q > Qo, it follows that | P'(ay)|, < céﬂgle*d”/2 which contradicts to the condition
that |P'(cq)], > pcé/zQ_d"/Q.
Note that the set £, can be written as

;o L if d,>n+n(n+1)r,,

" lL<ULs if d, <n+4n(n+1)r,

where L« = U o«(P)and L. = U o.(P).
PeP, (Qm> PEP(csQ7)\Pn (Qrm)

Next, we are going to establish the following two separate cases.
Case 1: u(L<) < tu(K) for sufficiently large constant ¢; and sufficiently large Q.

Let w € 0.(P) N Sp(ay) for some P € P, (Qﬁéﬁ))' Then by and Lemma

(for j =n), we have
w —anl, < (ese5 ' Q™)™ (47)

dn—n
Summing the estimate over all polynomials P € P, (Q"<"+1> ), we obtain

N(Ls) < (2@77{1&1?) + 1)n+1cé/ncg1/nQ—dn/nn < t,u(K)

for ¢; > 2”+2ncé/n08_1/nt*1 and Q > Q.
Case 2: u(L~) < 2tp(K) for sufficiently large Q.

For every irreducible polynomial P € P, (csQ™) \ Pp (Qn(i(ﬂ%) we define the set

A(P)={ai: P(a;) =0 and |P'(ay)], < pcé/QQ—dn/Q}.
For k € N, let P} denote the subclass of P,(1) given by
Pf={PeP,(): 28 < H(P) < 2*}.

Then we have

o () log, Q)
Pule@)\Pu (@) =) U A

U k=[fn77 log, Q] +1

for € > 0 and @) > Q.

Now divide the cylinder K into smaller cylinders J! with u(J!) = c2325®+7) where

—1 dn/T 1/ /
Co3 > Coa, Co4 = MaAX1<j<n(Cq 06”/ "es)'9 vy > ney, (v + ) < —1 and

u' = min {<_dn/rn + Qj)/j}7 ¢n = 0.

1<j<n
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Note for j = n from the last estimate we have v’ = —d, /(nr,). Then from inequality
r(u 4 7y) < —1 we obtain that v < (d, — n)/(nry,). Choose v = 1/(2n).

First show that the assumption that at least two irreducible polynomials from P}
without common roots belong to the cylinder J! will lead to a contradiction. To show
this, suppose that P; and P belong to J/. By Lemma[3|and we have ¢(n)H (P)™" <
|P' ()], < pcé/gQ*d”/Q, which implies that ¢ > d,,/(2r,) for H(P) < ¢sQ™ and
sufficiently large Q). Develop P, as a Taylor series in the neighbourhood J! of ay to
obtain

|P(w)], < gk(=dn/rat(n+1)7) w e J]
for sufficiently large k, where

—dn/rn+q;

|(j!)‘1P(j)(oz1)|p|w _ Oé1|g; < piz(k—l)(—qfr(n—j)el)6332k(j7+j(f)) —
— pjcé?)qu—(n—j)q2k(jw—dn/rn+(n—j)61)7 1<j<n.
Obviously, the same estimate holds for P, on J!. Apply Lemma [4] to polynomials P,
and P, with 7 =d,,/r, — (n + 1)y and n = —u' — v — €;. Therefore
T+ 2max(t —n,0) = 3d,, /1, + 2(—d, /T +q;) /] — Y(Bn + 1) + 2¢; >

2d,, /1 — (30 + 1) + 2¢y, 2<j<n,
dp/rn + 21 —v(Bn+1) +2¢;, j=1.

>

Since 1 > d,,/(2ry), d, > n+r, and r, < 1, it is readily seen that 7+2 max (7 —n,0) >
2n + 2 — y(3n + 1) + 2¢; in both cases. Since v = 1/(2n) the last inequality gives a
contradiction in (8) for § < (n —1)/(2n).

Therefore, there is at most one irreducible polynomial P € Pf that belongs to J!
or there are two irreducible polynomials P; € Pf, of the form Pj(w) = +P(w) for
some irreducible polynomial P € Pf, belong to the cylinder J/. This will divide the
polynomials P into two classes with respect to the cylinder J’ : class I and class II
respectively. According to this classification, it follows that

L. CLiUL
[(rn+e) log, Q]
where L; = | U U o.(P)forj=11II.
1 k:[% log, Q41  PePf
P of class j

For P € PF denote by v(P,a;) the set of w € Sp(a;) satisfying and .
According to Lemma [I] and Lemma [3] we have that

w(v(Pon)) < 242"

Using the inclusion o,(P) € |J v(P, ) for any polynomial P and the fact that
Oé1€A(P)

the number of polynomials P € PF of class I does not exceed the number of cylinders
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J', we obtain

[(rnte) log, Q]
u(Lr) < Z Z NCgy Coa 2 2KV (K <

U k= 4n 71 log, Q1+1

0 (48)
< nC(n, e)cyy caat(K) Z 27K < nC(n, er)eqa 242" @M (2Y0CM — 171 (K) <

k=0

< 4n’C(n, e1)cyy coapt(K) < tp(K)

for co3 > 4n*t~1coyC(n, €1) and sufficiently large Q.
It is easy to see that the measure p(L;s) coincides with the measure p(L;). O

3.3 Reducible polynomials

Let n > 3. Now we need to consider the case
|P(w)], < esQ ", [P/ (w)l, < caoQ "2 P ()], < 0@ IR (49)

Define the subset L,.q of the set £, containing w € K for which there exists reducible
polynomial P € P,(csQ™) satisfying (49).

Proposition 8. For sufficiently large constant c¢; and sufficiently large () we have
[n/2]

t(Lrea) < (1;1(48(1{:) +3s(n—k))+n— 1) tu(K).

Proof. Let P € P,(c¢@Q™) be a reducible polynomial which belongs to K. Let P
have the form

P(w) = Py(w)Py(w), degP, =ny, degPy=n—n,.

Assume without loss of generality that 1 < n; <n/2.

3.3.1 Polynomials of the form P(w) = (P;(w))*

Let n = nys and P(w) = (P;(w))® where 2 < s < n. Therefore, H(P;) < 2"10%)./8@7""/3
and
P(w)], < Q. (50)

Let ny = 1. Therefore, | Py (w)|, = |aw + b|, < cé/nQ*d”/" and H(P,) < QCé/nQr"/”.
By Lemma [[(iii) we have that the measure of such w € K does not exceed 2tu(K) for
cr > 23cé/ncé/nt*1.

Let 2 < ny < n/2. If |P{(w)], < & with 6; = 2_”%_2”1_9p_20g(n1+1)n1/”cgn1/nt2,
then by inductive hypothesis the measure of w € K satisfying does not exceed
s(nq)tp(K) for sufficiently large Q. If |P](w)|, > 61 then by Lemma [I] we have

lw— ], < "0TIQ™E, w e Splay).
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Summing the last estimate over all polynomials P, € P, (2”1621/71@“/ %), we obtain that
the measure of w € K satisfying (50) does not exceed ncgl/nQ_dn/s(Sfl(2"1“021/”62’"”/5%-
1)™*! which is less or equal to

2(n1+2)(n1+1)n51—1621(n1+1)/ncgl1/nQ(—n+rnn1)n1/n S tﬂ(K)

for n; > 2, sufficiently large c; and sufficiently large Q.
Therefore, further we can assume that P(w) = P;(w)Py(w) where P; and P, does
not have common roots.

3.3.2 Polynomials P(w) = Pi(w)Py(w) where P, and P, without common
roots

For P the set of w € K N Sp(ay) such that |P(w)], < csQ ™% we denote by A\(P). By
Gelfond’s lemma [11],

2 "H(P)H(Py) < H(P) < 2"H(P)H(P).

Let cp5Q™ < H(P) < Q™ , co5 < 1. Therefore, H(P;) < 2"cgcyy Q™ ™. By the
continuity of P there exists a € R such that

p(w e MP): [Piw)l, < cxQ™) = pn(M(P))/2. (51)
Then for the complement to (51)) we have
p(w € AP) : [Pi(w)ly 2 Q™) = pu(M(P)),2 (52

or
p(w e MP): [Py(w)l, < Q") = u(A(P))/2. (53)
Then according to Lemma [5] and by (51)), for all w € A\(P) we have

[Pr(w)ly < (2p(ny + 1) esQ77 [Pa(w)lp < (2p(n —na + 1))" Q™ (54)
For a > ny 4 r,, we have
[Pr(w)lp < 2p(n1 +1)"HesQ7", Q™ < H(Py) < Q. (55)

Then by inductive hypothesis, we obtain that the measure of w € K for which there is
the polynomial P(w) = P;(w)Py(w) with P; satisfying does not exceed s(nq)tu(K)
for sufficiently large Q.

For a < ny 4 r,, we have

|Py(w)|, < (2p(n —ny + 1))rmtlQ=deta  H(P) < 2”c602’51Q7""_7""1. (56)

Then by inductive hypothesis, we obtain that the measure of w € K for which there is
the polynomial P = P, P, with P, satisfying does not exceed s(n — ny)tu(K) for
sufficiently large Q.



On regular systems of algebraic p-adic numbers in small cylinders 151

Further we consider the case when a = ny+r,,. By we have that |P'(a)|, takes
the small value. Therefore, there exist [, 2 < [ < n, roots of P which are close to each
other. Let 6o € R™ which we specify later. Since «; is the nearest root to w € A(P),
reorder the other roots of P so that

lag —asl, <. oo <og —aylp < 0a < g —apqalp < oo < ag —aglp, 2<1<n.
From P'(a;) = ap(a; — a3) ... (1 — ) and we have
a1 — aglplar —aslp ... Jon —ayf, < cgl020Q_(”_1+T”)/252_(n_l)' (57)

Case 1. If [ > 3 then there exist at least two roots of the polynomial P which
belong to one of the polynomials P, or Ps; say that ap and az are the roots of P;. From
it follows that the roots of P are bounded, i.e. ||, < ca6, 1 <7 < n. Then

[Pl(az)lp = lan, (P)(az —as) ] (a2 —a)l, < daci ™, (58)

3<s<n1

where P;(c,) = 0. Since w € Sp(ay) then, using Lemma [l we have

lw — s, < max(|w — aylp, |on — asl,) = max((c;Q~ d")l/" da) = 09 (59)
for Q > Q. By and , we get | P/(w)|, = Zl((z — 1)!)*1P1(i)(a2)(w — ) <
p
5y max(1, cia™?) Thus we have
|Pr(w)], < 2p(ny + 1)o@~ Q™ < H(P) < Q™™ (60)

| P (w)], < 02 max(1, chi™?).

Choose 8y < 272m=10p=m=3(pp; 4 )=+ (max(1, ¢hi ™))~ '#2. Then by inductive
hypothesis, we obtain that the measure of w € K for which there is the polynomial
P = PP, with P; satisfying does not exceed s(nq)tu(K) for sufficiently large c;
and sufficiently large Q.

If at least two roots of P belong to P, then similarly we obtain that the measure of
w € K does not exceed s(n —nq)tu(K) for Q > Qp and sufficiently large c;.

Case 2. Let [ = 2. If a; and «y belong to one polynomial P; or P, then the proof
is coincided with the Case 1. Now assume without loss of generality that a; is a root of

P, and as is a root of P,. In this case for any distinct roots of the polynomials P, and
P, we have |a;, (Pj) — oy (Pj)|, > 62. Thus,

[Pl(a)ly > cxdy™ ™, |Bylan)ly > ety Y. (61)
Consider the resultant of the polynomials P, and P, which have no common roots:

R(Py, Py) = a™(P)a™,, (Py)(an — ) 11 (of — ),
1<i<ng, 1<j<n—nq,
~ oo, ol b
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where Py(a) =0 and P(}) = 0. From we have

— —(n— —(n—2
|Oé1 - O./Q|p < Cg 1020@ (n 1+7’n)/252 (n )

Using the fact that the roots of P are bounded and the estimate
|a1’;;n1 (Pl)CLZLm (PQ)‘ < anl (n—n1) (2n066551 QT‘n*Tnl )m :
we get
27 e ™M QT T < | R(Py, Py, (62)
[R(P1, o)l < ¢ canch ") 18y TR Q 2,

We have a contradiction in for sufficiently small ¢y and r, < 1 if n = 2n; and
Ty < % if n > 2n;.
Now we are left with the case when

- n—1+r,—2nr,
Ty
2(n —2n,)

(63)

with 1 < mn; < n/2. For P, we have
|Py(w)|, < (2p(n — ny + 1)) Q™0 Fmtrm - Py e P, (205 Q). (64)
By , and Lemma , we have that
0 = aaly < (2p(n — my + 1)) gl Q)
for w € Sp,(ay). Summing the last estimate over all polynomials
Py € Py, (2"coc3 Q™)

and using , we obtain that the measure of w € K for which there is the polynomial
P = PP, with P, satisfying does not exceed

ngQ—n—i-nl—i—rn(n—nl)—rnl (n—n1) < t,u(K)
for sufficiently large ). [J

Combining all estimates, starting from Proposition [ we obtain that the measure
of L,, does not exceed s(n)tu(K) with

n—1 [n/2]
s(n)=2n+13+Y s(k)+ Y _(4s(k) +3s(n—k)) forn >3, (65)

s(1) =2 and s(2) = 14. Choose t = [ - (s(n))~*.
Finally, we turn to the proof of Theorem [I}
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4 Proof of Theorem [1]

Let 6o € R*. Consider the set £,(Q,d, K) with d, = n + 1. By Theorem [2] there
exists a constant dy, which satisfies the following property: for any cylinder K in K
there exists a sufficiently large number Qy = Qo(K) such that for u(K) > ¢;Q;" and
sufficiently large constant c¢7, which does not depend on @)y, and for all Q > Qg we have
w(Ln(Q, 00, K)) < lu(K). For the rest of the proof we may assume that c; is a constant
which is greater or equal to % and for which Theorem [2|is valid.

Denote by Ly(Q, K) the set of w € K, for which the inequality |P(w)], < Q=Y is
satisfied for some P € P,(Q). It can be readily verified using Dirichlet’s box principle
that £o(Q, K) = K. By Theoremthere exists a set £,,(Q, b, K) = K\ L,(Q, 6, K) C
K such that u(L£,(Q,d, K)) > (1 — )u(K) for all Q > Qq, where Qg > cru(K)™!.

Denote by L<(,—1)(Q, 0o, K) the union of the cylinders o(a) = {w € K : |[w—a, <
65 Q™D over all algebraic numbers in Z, of degree at most n— 1 and height at most
@. The number of different cylinders in this union is at most (2QQ+1)" and every cylinder
has a measure at most §;'Q~"*V therefore we conclude that 1i(L<(,—1)(Q,d, K)) <
(1—-0p(K)/2 for ¢7 > %.

Let £ (Q, by, K) be defined by

‘Cfn(Qv 607 K) = £n<Q7 507 K) \ ‘Cﬁ(nfl)(Qa 50a K)

Let w € £],(Q, 09, IX). Then by Hensel’'s Lemma [I7] there is a root o € Z,, of P such
that
w —al, < &'Q™"Y. (66)

If @ is sufficiently large then o € K. Since w € L<(,—1)(Q, do, K) then we conclude that
the degree of « is exactly n.
Choose the maximal collection {a, ..., az} of algebraic numbers in KNA,, , satisfying

H() <Q, |ay—ay,>Q " 1<i<j<t.

Since the collection {ay, ..., a4} is maximal then there exists a; in this collection such
that |o — a;], < Q=Y. From this and it follows that |w — a;l, < 6, Q- "+Y. As
w is an arbitrary point of £ (Q, o, K) then

t
£;L(Q7507K) C U{w c K: |w — ai|p < 50_162—(714-1)}'

i=1

Since (L (Q, 6, K)) > (1 — Du(K)/2, we have t > Q"™ u(K). Let T = Q™! then
for any T > Ty, where Ty = (c7 +1)" 1 u(K) =D there exists a collection ay, . .., a4 €
K N A, satisfying which completes the proof of the theorem.
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AHHOTAINS

B JlaHHO# CTaThe MbI JIOKA3bIBAEM, UTO JJIsi JOCTATOYHO OOJIBIIIX TUCEIT
@ € N cymecrsyor mummapsr K C Q, ¢ mepoii Xaapa u(K) < 1Q7,
KOTOPBIC HE COJEPIKAT aJreOpanvecKuxX pP-au<deCcKuX THCET ( CTCICHH
dega = n u BeicoTbl H (o) < ). OCHOBHOI pe3yJIbTaT IOKA3BIBALT, UTO
B mobom mumaape K, u(K) > Q7Y ¢; > ¢o(n), cymectsyer ne Menee
c3Q" T u(K) anrebpamdeckux p-ajudeckux umcesq o € K crenenu n u
H(a) < Q.

KitoueBbie  ClI0Ba:  4eAONUCACHHDIE MHO20UAEHL, AA2E0PAUYECKUE D-
adUMECKUE YUCAA, PE2YAAPHAA cucmeMma, mepa Xaapa.
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