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On regular systems
of algebraic p-adic numbers

of arbitrary degree in small cylinders

In this paper we prove that for any sufficiently large Q ∈ N there exist
cylinders K ⊂ Qp with Haar measure µ(K) ≤ 1

2
Q−1 which do not contain

algebraic p-adic numbers α of degree degα = n and height H(α) ≤ Q. The
main result establishes in any cylinder K, µ(K) > c1Q

−1, c1 > c0(n), the
existence of at least c3Qn+1µ(K) algebraic p-adic numbers α ∈ K of degree
n and H(α) ≤ Q.

Key words: integer polynomials, algebraic p-adic numbers, regular system,
Haar measure.

1 Introduction
The concept of a regular system of points is a convenient tool for the study of the
uniform distribution of algebraic numbers. Regular systems were introduced by Baker
and Schmidt [1] as a technique for obtaining a lower bound for the Hausdorff dimension
of sets of real numbers close to infinitely many points of the set of algebraic numbers
of bounded degree.

Definition 1. Let Γ be a countable set of real numbers and let N : Γ→ R be a positive
function. The pair (Γ, N) is called a regular system of points if there exists a constant
C = C(Γ, N) > 0 such that for any finite interval I there exists a sufficiently large
number T0 = T0(Γ, N, I) such that for any integer T ≥ T0 there exists a collection
γ1, . . . , γt ∈ Γ∩ I such that N(γi) ≤ T (1 ≤ i ≤ t), |γi− γj| ≥ T−1 (1 ≤ i < j ≤ t), and
t ≥ C|I|T .

Regular systems play the key role in the proof of the divergence case in the Khintchine-
Groshev type theorems [2, 3, 4, 5] and obtaining lower bounds for the Hausdorff
dimension of sets of number theoretic interest [1, 6, 7, 8, 9, 10].

1Institute for Applied Mathematics, Khabarovsk Division, Far-Eastern Branch of the Russian
Academy of Sciences, 680000 Khabarovsk, Russia, Dzerzhinsky st., 54; Faculty of Mathematics,
University of Bielefeld, P. O. Box 10 01 31, 33501 Bielefeld, Germany . E-mail: buda77@mail.ru,
goetze@math.uni-bielefeld.de



134 N. Budarina, F. Götze

Y. Bugeaud in [11] stated the problem on finding an explicit dependence of T0 on the
length of the interval I. In [11] it is shown that for a given finite interval I in [−1/2, 1/2]
the value of T0(Γ, N, I) in the definition of regular system is equal to

T0(Q, N, I) = 104|I|−2 log2 100|I|−1

for Γ = Q, and in [12] that

T0(A2, N, I) = 723|I|−3 log3 72|I|−1

for Γ = A2, where An is the set of real algebraic numbers of degree n. Throughout
c1 = c1(n), c2 = c2(n), ... are constants depending only on n. In [13] it is shown that
T0(A3, N, I) = c1|I|−4−ε, 0 < ε < 1. There is a more strong connection between I and
T0(An, N, I), namely T0(An, N, I) = c2|I|−(n+1), see [14]. In this paper, we address the
problem of Bugeaud for the p-adic algebraic numbers of arbitrary degree n.

The Haar measure of a measurable set S ⊂ Qp is denoted by µ(S). Let Ap be the set
of all algebraic numbers and Q∗p be the extension of Qp containing Ap. The cylinder in
Qp of radius r centered at α is the set of solutions of the inequality |w−α|p ≤ r. Denote
by An,p the set of algebraic numbers of degree n lying in Zp. Fix any finite cylinder K0

in Zp. The natural number H(α) denotes the naive height of α ∈ Ap, i.e. the maximum
absolute value of the coefficients of the minimal integer polynomial of α. We will also
use the Vinogradov symbol f � g which means that there exists a constant c > 0 such
that f ≤ cg.

Theorem 1. Let K be a finite cylinder in K0. Then there are positive constants c3, c4
and a positive number T0 = c3µ(K)−(n+1) such that for any T ≥ T0 there exist numbers
α1, . . . , αt ∈ An,p ∩K such that

H(αi) ≤ T 1/(n+1) (1 ≤ i ≤ t),

|αi − αj|p ≥ T−1 (1 ≤ i < j ≤ t),

t ≥ c4Tµ(K).

(1)

Note that from Theorem 1 it follows that the set An,p with the function N(α) =
Hn+1(α) form a regular system in K0.

For Q̄ ∈ R+ define the set of polynomials

Pn(Q̄) = {P ∈ Z[x] : degP = n, H(P ) ≤ Q̄}. (2)

To prove Theorem 1 it is convenient to introduce the following set. Let Q ∈ N and
δ, dn, c5 ∈ R+. We denote by L̄n = L̄n(c6Q

rn , δ,K) the set of w ∈ K for which the
system of the inequalities

|P (w)|p < c5Q
−dn , |P ′(w)|p ≤ δ, (3)

has a solution in polynomials P ∈ Pn(c6Q
rn), where c6 ∈ R+ and 0 ≤ rn ≤ 1. The proof

of Theorem 1 is based on the following metric result which significantly broadens the
scope of potential applications and is of independent interest.
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Theorem 2. For any real number l, where 0 < l < 1, and for any cylinder K in
K0 ⊂ Zp there exists a sufficiently large number Q0 = Q0(K) such that for

µ(K) > c7Q
−1
0 , dn ≥ n+ rn, δ ≤ 2−n−9p−2c−n−16 c−15 l2(s(n))−2

and a sufficiently large constant c7, which does not depend on Q0, and for all Q > Q0

µ(L̄n) < lµ(K) (4)

holds.

Remark 1. The constant s(n) ∈ N is defined recursively in (65) and has the form

s(n) =


2 for n = 1,

14 for n = 2,

2n+ 13 +
n−1∑
k=3

s(k) +
[n/2]∑
k=1

(4s(k) + 3s(n− k)) for n ≥ 3.

From above it follows that the cylinder K with µ(K) > c7Q
−1 for sufficiently large

c7 and sufficiently large Q contains � Qn+1µ(K) algebraic p-adic numbers of degree n
and H(α) ≤ Q. Note that if µ(K) ≤ 1

2
Q−1 then we have the following result which is a

complement of Theorem 1 in some sense.

Theorem 3. For any Q ∈ N there exist the cylinders K with µ(K) ≤ 1
2
Q−1 which do

not contain algebraic numbers α ∈ Qp of degree degα = n, n ≥ 2, and H(α) ≤ Q.

2 Proof of Theorem 3

For the given Q choose s ∈ N satisfying the inequality p−s < 1
2
Q−1. Consider the

cylinder K = K(ps, 1
2
Q−1). Let α ∈ K be an algebraic number of degree degα = n,

n ≥ 2, and H(α) ≤ Q. It means that α ∈ Qp, α 6= 0, is a root of irreducible polynomial
P (x) =

∑n
i=0 aix

i. If we assume that a0 = 0 then from P (α) = 0 it follows that

α(
n∑
i=1

aiα
i−1) = 0. The last equation implies that α is a root of polynomial P1(x) =

n∑
i=1

aix
i−1 of degP1 ≤ n − 1 which contradicts to the fact that degα = n. Therefore,

a0 6= 0 and from

a0 = −α
n∑
i=1

aiα
i−1,

we obtain
Q−1 ≤ |a0|p ≤ |α|p max

1≤i≤n
|aiαi−1|p ≤

1

2
Q−1,

which is a contradiction. This completes the proof of Theorem 3.
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3 Proof of Theorem 2
By translation and taking the reciprocals (if necessary) each polynomial P can be
transformed into a polynomial R satisfying

|an(R)|p > c8, c8 < 1, (5)

and H(R) � H(P ), see [15]. Let α1, α2, . . . , αn be the roots of the polynomial P ∈ Z[x]
of degree n in Q∗p. Define the sets

SP (αi) = {w ∈ Qp : |w − αi|p = min
1≤j≤n

|w − αj|p}, i = 1, . . . , n.

We will consider the sets SP (αi) for a fixed i. For simplicity we assume that i = 1.
Reorder the other roots of P so that

|α1 − α2|p ≤ |α1 − α3|p ≤ . . . ≤ |α1 − αn|p.

For the polynomial P define the real numbers ρj by

|α1 − αj|p = H(P )−ρj , 2 ≤ j ≤ n, ρ2 ≥ ρ3 ≥ . . . ≥ ρn.

Let ε > 0 be sufficiently small, d > 0 be a large fixed number, ε1 = ε/d andM = [ε−11 ]+1.
Also, define the integers lj, 2 ≤ j ≤ n, by the relations

lj − 1

M
≤ ρj <

lj
M
, l2 ≥ l3 ≥ . . . ≥ ln ≥ 0.

Finally, define the numbers qi by qi = li+1+...+ln
M

, (1 ≤ i ≤ n − 1). All irreducible
polynomials P ∈ Pn(c6Q

rn) satisfying (5) and corresponding to the same vector l =
(l2, . . . , ln) are grouped together into a class Pn(c6Q

rn , l), and the number of such classes
is finite and depends only on n and ε1, i.e. is at most C(n, ε1), see [15]. Also, we define
the class Pn(l) to consist of all irreducible polynomials P ∈ Z[x] of degree n satisfying
(5) and corresponding to a vector l. In 3.2 we fix the vector l and will continue the
proof for this fixed vector.

A number of lemmas for later use are now given.

Lemma 1. [5] Let P be a polynomial without multiple zeros and let w ∈ SP (α1), then

|w − α1|p ≤ |P (w)|p|P ′(α1)|−1p , (6)

|w − α1|p ≤ min
2≤j≤n

(
|P (w)|p|P ′(α1)|−1p

j∏
k=2

|α1 − αk|p

) 1
j

. (7)

Lemma 2. [5] Let w ∈ SP (α1) and |P ′(w)|p 6= 0, then |w − α1|p ≤ |P (w)|p|P ′(w)|−1p .

Lemma 3. [5] Let P ∈ Pn(l) satisfying (5). Then

|P ′(α1)|p > c(n)H(P )−q1 and |P (l)(α1)|p ≤ H(P )−ql+(n−l)ε1 , 1 ≤ l ≤ n− 1.
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Lemma 4. [16] Let θ > 0 and Q > Q0(θ). Further, let P1 and P2 be two integer
polynomials of degree at most n with no common roots and max(H(P1), H(P2)) ≤ Q.
Let J ⊂ Qp be a cylinder with µ(J) = Q−η, η > 0. If there exists τ > 0 such that for
all w ∈ J

|Pj(w)|p < Q−τ ,

for j = 1, 2, then
τ + 2 max(τ − η, 0) < 2n+ θ. (8)

Lemma 5. Let K ⊂ Qp be a cylinder and B ⊂ K be a measurable set satisfying
µ(B) ≥ k−1µ(K) > 0, k ∈ N. Assume that for all w ∈ B we have |P (w)|p < H(P )−a,
where a > 0 and degP ≤ n. Then for all w ∈ K we have

|P (w)|p < (pk(n+ 1))n+1H(P )−a.

Proof. Let α = a0 + a1p + . . . + alp
l be center of the cylinder K. Then K = {w ∈

Qp : |w − α|p ≤ p−(l+1)} with µ(K) = p−(l+1) and w = α + al+1p
l+1 + . . .. Choose s

such that
k−1ps > n+ 1. (9)

Consider the cylinders K(wi):

K(wi) = K(al+1, al+2, . . . , al+s) = {w ∈ Qp : |w − (α +
s∑
i=1

al+ip
l+i)|p ≤ p−(l+s+1)}.

It is clear that #K(wi) = ps and K = ∪wiK(wi), where K(wt)∩K(wm) = ∅ for t 6= m.
Let B = K(wi1) ∪K(wi2) ∪ . . . ∪K(wir). Then

k−1µ(K) ≤ µ(B) = rµ(K(wi)) = rp−(l+s+1) = rp−sµ(K)

and r ≥ k−1ps. In the different cylinders K(wiu) and K(wiv), u 6= v, there exists
a coordinate aq of the vector bl,s = (al+1, al+2, . . . , al+s) such that aq(K(wiu)) 6=
aq(K(wiv)), l + 1 ≤ q ≤ l + s. Therefore,

|wu − wv|p ≥ p−(l+1+s),

where wu ∈ K(wiu) and wv ∈ K(wiv). Condition (9) allows us to choose at least n + 1
such points wj.

Rewrite P as the interpolation polynomial in the Lagrange form

P (w) =
n+1∑
l=1

dl
(w − w1) . . . (w − wl−1)(w − wl+1) . . . (w − wn+1)

(wl − w1) . . . (wl − wl−1)(wl − wl+1) . . . (wl − wn+1)

where dl = P (wl). Since |w − wi|p ≤ µ(K) for all w ∈ K and |P (wl)|p < H(P )−a then

|P (w)|p < ps(n+1)H(P )−a.

Take s = logp k(n + 1) + 1 = logp pk(n + 1) then |P (w)|p < (pk(n + 1))n+1H(P )−a for
all w ∈ K. �

Let t ∈ (0, 1) be a sufficiently small number which we will specify later.
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Lemma 6. Denote by L = L(c9Q
r1 , K) the set of w ∈ K, µ(K) > c7Q

−1, for which
the system of the inequalities

|aw − b|p < c10Q
−d1 , max(|a|, |b|) < c9Q

r1 , |a|p ≤ c11Q
−v, (10)

has a solution in linear polynomials aw − b ∈ P1(c9Q
r1), where the parameters d1 ≥ 1,

0 ≤ r1 ≤ 1, v ≥ 0 and constants ci > 0 satisfy one of the conditions:

i) d1 > 1 + r1, v ≥ r1 − 1,

ii) d1 = 2, r1 = 1, v = 0, c7 ≥ 22c9c10t
−1, 23c10c

2
9c11 ≤ t,

iii) d1 = 1 + r1, v > r1 − 1, c7 ≥ 22c9c10t
−1.

Then µ(L) < 2tµ(K) for Q sufficiently large.

Proof. Let a = pβa1 and b = pβb1, where (a1, p) = 1, p−β ≤ c11Q
−v, b1 ∈ Z. Thus,

we can rewrite (10) in the form

|a1w − b1|p < pβc10Q
−d1 , |a1| < c9p

−βQr1 . (11)

Now the measure of w ∈ K for which the system (11) holds is estimated. For fixed a1
and b1 the first inequality in (11) holds for points w ∈ K from the cylinder

|w − b1/a1|p < pβ|a1|−1p c10Q
−d1 = pβc10Q

−d1 . (12)

Then we need to sum the last estimate over all a1 and b1 such that b1/a1 ∈ K, where
|a1| < c9p

−βQr1 . For a fixed a1 denote by MK(a1) the number of such points b1. For
MK(a1) the following formula holds:

MK(a1) ≤

{
|a1|µ(K) + 1 ≤ 2|a1|µ(K) if |a1| ≥ µ(K)−1,

1 if |a1| < µ(K)−1.
(13)

Let |a1| ≥ µ(K)−1 and we use the first estimate in (13). Using p−β ≤ c11Q
−v, we

obtain ∑
|a1|<c9p−βQr1

∑
b1:b1/a1∈K

pβc10Q
−d1 < 23p−βc10c

2
9Q

2r1−d1µ(K) ≤

≤ 23c10c
2
9c11Q

2r1−d1−vµ(K) ≤ tµ(K)

(14)

for 2r1 − d1 − v < 0 and Q > Q0 or 2r1 − d1 − v = 0 and 23c10c
2
9c11 ≤ t.

Let |a1| < µ(K)−1 and we use the second estimate in (13). Summing over a1 and b1
we get ∑

|a1|<c9p−βQr1

∑
b1:b1/a1∈K

pβc10Q
−d1 < 4c10c9Q

r1−d1 <

< 4c10c9c
−1
7 Q1+r1−d1µ(K) ≤ tµ(K)

(15)

for 1 + r1 − d1 < 0 and Q > Q0 or 1 + r1 − d1 = 0 and c7 ≥ 22t−1c9c10. �
Now consider the special case when rn = 0. Denote by L0 = L0(c6, K) the set of

w ∈ K, µ(K) > c7Q
−1, for which the system

|P (w)|p < c5Q
−dn , dn ≥ n (16)
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has a solution in P ∈ Pn(c6). Let σ′(P ) denote the set of w of (16) for a fixed polynomial
P ∈ Pn(c6). Let w ∈ σ′(P )∩ SP (α1) for some P ∈ Pn(c6). Then by (16) and Lemma 1,
we have

|w − α1|p < (c5c
−1
8 Q−dn)1/n.

Summing the last estimate over all polynomials P ∈ Pn(c6), we get

µ(L0) < nc
1/n
5 (2c6 + 1)n+1c

−1/n
8 Q−dn/n ≤ tµ(K)

for c7 ≥ c
1/n
5 (2c6 + 1)n+1c

−1/n
8 t−1n. From now on assume that rn > 0.

Note that we will prove Theorem 2 by strong induction with the following induction
hypothesis: assume that for 1 ≤ m ≤ n− 1 the following

µ

w ∈ K : ∃P ∈ Pm(m2Q
rm)s.t.

|P (w)|p < m1Q
−dm ,

|P ′(w)|p ≤ δ,
dm ≥ m+ rm,

δ ≤ 2−m−9p−2m−11 m
−(m+1)
2 t2

 < s(m)tµ(K)

holds for sufficiently large c7 and sufficiently largeQ, where µ(K) > c7Q
−1 and s(m) ∈ N

is constant depending on the degree m of a polynomial. The base case for m = 1 with
s(1) = 2 follows from Lemma 6.

3.1 Case of large derivative

Define the subset L̃n of the set L̄n containing w ∈ K for which there exists polynomial
P ∈ Pn(c6Q

rn) such that the system

|P (w)|p < c5Q
−dn , pc

1/2
5 Q−dn/2 < |P ′(w)|p ≤ δ (17)

holds.
Denote by σ0(P ) the set of solutions w of the system (17) for a fixed polynomial

P ∈ Pn(c6Q
rn). Then we have L̃n =

⋃
P∈Pn(c6Qrn )

σ0(P ). Let P ∈ Pn(c6Q
rn) and w ∈

σ0(P ) ∩ SP (α1) where P (α1) = 0. By the Taylor’s formula

P ′(w) =
n∑
i=1

((i− 1)!)−1P (i)(α1)(w − α1)
i−1.

Using |w − α1|p < c5Q
−dn|P ′(w)|−1p from Lemma 1 and estimating each term gives

|P ′(α1)|p = |P ′(w)|p.

Therefore, the set σ0(P ) ∩ SP (α1) is contained in σ(P ) which is defined by

|w − α1|p < c5Q
−dn|P ′(α1)|−1p . (18)

Further to obtain the measure of L̃n it is necessary to consider several cases which
depend on the value of |P ′(α1)|p in the range (pc

1/2
5 Q−dn/2, δ].
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3.1.1 Case A: 2(n+1)/2pc
(n−2)/2
6 c

1/2
5 t−1/2Q−(2+rn)/2 < |P ′(α1)|p ≤ δ

Define the subset Ln1 of the set L̃n for which there exists at least one polynomial
P ∈ Pn(c6Q

rn) satisfying (17) and the inequality

Q−rn/2 < |P ′(α1)|p ≤ δ, (19)

where α1 is the closest root to w of P .

Proposition 1. For δ ≤ 2−n−5c−n−16 c−15 t2 and sufficiently large constant c7 and sufficiently
large Q we have

µ(Ln1) < 3tµ(K).

Proof. For a polynomial P ∈ Pn(c6Q
rn) define the cylinder

σ1,1(P ) := {w ∈ SP (α1) ∩K : |w − α1|p < c12Q
−(1+rn)|P ′(α1)|−1p }. (20)

From (18) and (20) we get

µ(σ(P )) < c5c
−1
12 Q

−dn+1+rnµ(σ1,1(P )). (21)

Note that from (19) it follows that µ(σ1,1(P )) < c12Q
−1−rn/2 and µ(σ1,1(P )) < µ(K)

for c7 ≥ c12.
Decompose the polynomial P into Taylor series on the cylinder σ1,1(P ) so that

P (w) =
n∑
i=1

(i!)−1P (i)(α1)(w − α1)
i.

Using (19) and (20), estimate each term of the decomposition to obtain

|P (w)|p < c12Q
−1−rn for Q > Q0. (22)

Let w ∈ σ1,1(P ). By Taylor’s formula,

|P ′(w)|p ≤ δ for Q > Q0. (23)

Fix the vector b1 = (an, . . . , a2) which consists of the coefficients of the polynomial

P (x) =
n∑
i=0

aix
i ∈ Pn(c6Q

rn). Let the subclass of polynomials P ∈ Pn(c6Q
rn) with

the same vector b1 be denoted by Pn(c6Q
rn ,b1). The cylinders σ1,1(P ) divide into two

classes using Sprindzuk’s method of essential and inessential domains [15]. The cylinders
σ1,1(P ) are called inessential if there is a polynomial P̄ ∈ Pn(c6Q

rn ,b1) (with P 6= P̄ ),
such that

µ(σ1,1(P ) ∩ σ1,1(P̄ )) ≥ 1/2µ(σ1,1(P )), (24)

and essential otherwise. According to this classification, we have Ln1 ⊆ Vess ∪ Viness.
First, the essential cylinders σ1,1(P ) are investigated. By definition∑

P∈Pn(c6Qrn ,b1)

µ(σ1,1(P )) ≤ µ(K).
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Using the last estimate, (21) and the fact that the number of different vectors b1 does
not exceed (2c6Q

rn + 1)n−1, it follows that

µ(Vess) =
∑
b1

∑
P∈Pn(c6Q

rn,b1)

σ1,1(P ) essential

µ(σ(P )) < 2ncn−16 c5c
−1
12 Q

−dn+1+nrnµ(K) ≤ tµ(K) (25)

for c12 ≥ 2ncn−16 c5t
−1 and Q > Q0.

Second, we consider the inessential cylinders σ1,1(P ). Let σ1,1(P, P̄ ) = σ1,1(P ) ∩
σ1,1(P̄ ), where P, P̄ ∈ Pn(c6Q

rn ,b1) and P 6= P̄ . Then on the set σ1,1(P, P̄ ) with the
measure at least 1/2µ(σ1,1(P )) for the polynomials P and P̄ the inequality (22) holds.
Now consider the new polynomial R(w) = P (w) − P̄ (w) which is a linear polynomial
since the polynomials P and P̄ have the same coefficients an, an−1, . . . , a2. Thus, by
Lemma 5, (22) and (23) for w ∈ σ1,1(P ) we have

|R(w)|p = |aw − b|p < 24p2c12Q
−1−rn , max(|a|, |b|) < 2c6Q

rn , |a|p ≤ δ. (26)

Denote by L1(2c6Q
rn , K) the set of w ∈ K for which the system (26) has a solution in

polynomials P ∈ P1(2c6Q
rn). By Lemma 6(ii, iii), we have µ(L1(2c6Q

rn , K)) < 2tµ(K)
for c7 ≥ 27p2c6c12t

−1 and δ ≤ 2−9p−2c−26 c−112 t. Obviously Viness ⊆ L1(2c6Q
rn , K).

Choose c12 = 2nc5t
−1cn−16 . Therefore, for the measure of the set Ln1(c6Qrn) the

bounds, obtained for both essential and inessential cylinders, can be rewritten as

µ(Ln1) < 3tµ(K) (27)

for δ ≤ 2−n−9p−2c5t
−1c−n−16 t2 and c7 ≥ max{2n+7p2c5c

n
6 t
−2, 2nc5t

−1cn−16 }. This completes
the proof of Proposition 1. �

For some c13 > 0 define the subset Ln2 of the set L̃n, containing the w ∈ K, for which
there exists at least one polynomial P ∈ Pn(c6Q

rn) satisfying (17) and the inequality

c13Q
−rn < |P ′(α1)|p ≤ Q−rn/2,

where α1 is the closest root to w of P .

Proposition 2. For c13 = 2n/2+1pc
1/2
5 c

(n−1)/2
6 t−1/2 and sufficiently large constant c7 and

sufficiently large Q we have µ(Ln2) < 3tµ(K).

Proof. The proof of the Proposition 2 is closely related to the proof of Proposition
1. As before, for P ∈ Pn(c6Q

rn) and some positive constant c14 (which will be specified
later) we consider the cylinder σ(P ) and define the cylinder

σ1,2(P ) := {w ∈ SP (α1) ∩K : |w − α1|p < c14Q
−1−rn |P ′(α1)|−1p }. (28)

It is clear that
µ(σ(P )) < c−114 Q

−dn+1+rnµ(σ1,2(P )). (29)

The definition of Ln2 gives us that µ(σ1,2(P )) < µ(K) for c7 ≥ c−113 c14. Develop P and
P ′ as a Taylor series on σ1,2(P ) to obtain

|P (w)|p < c14Q
−1−rn , |P ′(w)|p = |P ′(α1)|p (30)
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for c14 < p−2c213. Further consider the essential and inessential cylinders σ1,2(P ). In the
case of the essential cylinders we have∑

P∈Pn(c6Qrn ,b1)

µ(σ1,2(P )) ≤ µ(K),

∑
b1

∑
P∈Pn(c6Qrn ,b1)

µ(σ(P )) < 2ncn−16 c5c
−1
14 Q

−dn+1+nrnµ(K) ≤ tµ(K) (31)

for c14 ≥ 2ncn−16 c5t
−1 and Q > Q0.

It follows from (30) that in the case of the inessential cylinders for the polynomial
T (w) = P (w) − P̄ (w) = kw − d, where P, P̄ ∈ Pn(c6Q

rn), and P 6= P̄ . By (30) and
Lemma 5, for w ∈ σ1,2(P ) we have

|kw − d|p < 24p2c14Q
−1−rn , max(|k|, |d|) < 2c6Q

rn , |k|p ≤ Q−rn/2. (32)

Denote by L2(2c6Q
rn , K) the set of w ∈ K for which the system (32) has a solution

in polynomials P ∈ P1(2c6Q
rn). By Lemma 6(iii), we obtain that µ(L2(2c6Q

rn , K)) <
2tµ(K) for c7 ≥ 27p2c6c14t

−1.
Choose c14 = 2ncn−16 c5t

−1 and c13 = 2n/2+1pc
(n−1)/2
6 c

1/2
5 t−1/2. The upshot is that

µ(Ln2) < 3tµ(K) (33)

for c7 ≥ max(2n/2−1p−1c
(n−1)/2
6 c

1/2
5 t−1/2, 2n+7p2cn6c5t

−2). This completes the proof of
Proposition 2. �

In the case if c(n+1)/2
6 c

1/2
5 > 2−(n+10)/2p−1t1/2 we need to consider the following set.

Denote by Ln3 ⊂ L̃n the set of w ∈ K, for which there exists at least one polynomial
P ∈ Pn(c6Q

rn) satisfying (17) and the inequality

2−4c−16 Q−rn < |P ′(α1)|p ≤ 2n/2+1pc
(n−1)/2
6 c

1/2
5 t−1/2Q−rn ,

where α1 is the closest root to w of P .

Proposition 3. For sufficiently large constant c7 and sufficiently large Q we have
µ(Ln3) < 3tµ(K).

Proof. For P ∈ Pn(c6Q
rn ,b1) and some c15 > 0 define the cylinder

σ1,3(P ) := {w ∈ SP (α1) ∩K : |w − α1|p < c15Q
−(1+rn)|P ′(α1)|−1p }.

The definition of Ln3 gives us that µ(σ1,3(P )) < µ(K) for c7 ≥ 24c6c15. Develop P and
P ′ as a Taylor series on σ1,3(P ) to obtain

|P (w)|p ≤ c16Q
−1−rn , |P ′(w)|p ≤ c17Q

−rn

for c16 = max(c15, 2
8p2c26c

2
15) and c17 = max(2n/2+1pc

(n−1)/2
6 c

1/2
5 t−1/2, 24pc6c15).

Then consider the essential and inessential cylinders σ1,3(P ) for P ∈ Pn(c6Q
rn ,b1).

In the case of the essential cylinders we obtain that the measure does not exceed tµ(K)
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for c15 ≥ 2nc5c
n−1
6 t−1. In the case of the inessential cylinders we need to find the measure

of w ∈ K for which there exists at least one polynomial P ∈ P1(2c6Q
rn) satisfying

|aw − b|p < 24p2c16Q
−1−rn , |a|p < c17Q

−rn (34)

for any w ∈ σ1,3(P ). By Lemma 6(iii), the measure in the case of inessential domains
is at most 2tµ(K) for c7 ≥ 27p2c6c16t

−1. Choose c15 = 2ncn−16 c5t
−1. Then we get c7 ≥

max(2n+4cn6c5t
−1, 27p2c6c16t

−1). �
For some constant c18 > 0 we denote by Ln4 ⊂ L̃n the set of w ∈ K, for which there

exists at least one polynomial P ∈ Pn(c6Q
rn) satisfying (17) and the inequality

c18Q
−(2+rn)/2 < |P ′(α1)|p ≤ 2−4c−16 Q−rn ,

where α1 is the closest root to w of P .

Proposition 4. For c18 = 2(n+1)/2pc
1/2
5 c

(n−2)/2
6 t−1/2 and sufficiently large constant c7

and sufficiently large Q we have µ(Ln4) < 3tµ(K).

Proof. For P ∈ Pn(c6Q
rn) and some c19 > 1 define the cylinder

σ2(P ) := {w ∈ SP (α1) ∩K : |w − α1|p < c19Q
−(2+rn)|P ′(α1)|−1p }.

Clearly, that
µ(σ(P )) < c5c

−1
19 Q

−dn+2+rnµ(σ2(P )). (35)

The definition of Ln4 gives us that µ(σ2(P )) < µ(K) for c7 ≥ c−118 c19.
Fix b2 = (an, . . . , a3). Let the subclass of polynomials P ∈ Pn(c6Q

rn) with the same
vector b2 be denoted by Pn(c6Q

rn ,b2). Consider again essential and inessential domains
σ2(P ) for P ∈ Pn(c6Q

rn ,b2).
By the definition of the essential domains, it follows that∑

P∈Pn(c6Qrn ,b2)

µ(σ2(P )) ≤ µ(K).

Since the number of b2 does not exceed (2c6Q
rn + 1)n−2 then, summing over all b2 and

using (35) and dn ≥ n+ rn, we have∑
b2

∑
P∈Pn(c6Qrn ,b2)

µ(σ(P )) < 2n−1cn−26 c5c
−1
19 Q

rn(n−1)−dn+2µ(K) ≤

≤ 2n−1cn−26 c5c
−1
19 Q

(rn−1)(n−2)µ(K) ≤ tµ(K)

for c19 ≥ 2n−1cn−26 c5t
−1, n ≥ 2 and Q > Q0.

Now consider the inessential domains. By the Taylor expansion of Pi(w) and P ′i (w)
on σ2(Pi1 , Pi2) = σ2(Pi1) ∩ σ2(Pi2), Pi1 , Pi2 ∈ Pn(c6Q

rn ,b2) Pi1 6= Pi2 , find the upper
bound of |Pi(w)|p and |P ′i (w)|p, so that

|Pi(w)|p < c19Q
−2−rn , |P ′i (w)|p = |P ′(α1)|p for c18 > pc

1/2
19 . (36)
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Since the leading coefficients of Pi1 and Pi2 are equal then W (w) = Pi1(w)− Pi2(w) =
f2w

2 + f1w + f0 and, by (36),

|W (w)|p < c19Q
−2−rn , |W ′(w)|p < |P ′(α1)|p, |fi| ≤ 2c6Q

rn , 0 ≤ i ≤ 2. (37)

Then we need to consider the discriminant D(W ) of W and distinguish two cases:
D(W ) 6= 0 and D(W ) = 0. It is easy to verify that the representation of D(P ) for
P ∈ Pn(2c6Q

rn) as a determinant leads to the upper bound

|D(P )| ≤ 2n2n−1(2n− 2)!(2c6Q
rn)2n−2.

Case 1:D(W ) 6= 0. Let β1, β2 ∈ Q∗p denote the roots ofW (w). Since the discriminant
D(W ) of W satisfies

|D(W )|p = |W ′(β1)|2p < |P ′(α1)|2p ≤ 2−8c−26 Q−2rn ,

|D(W )|p ≥ |D(W )|−1 ≥ 2−7c−26 Q−2rn

then we have a contradiction.
Case 2: D(W ) = 0. This implies that the polynomial W has a multiple root and

has a form
W (w) = W 2

1 (w) = (l1w − l0)2,

where by Gelfond’s Lemma [11] we have max(|l1|, |l0|) ≤ 2(n+1)/2c
1/2
6 Qrn/2. By (37) and

Lemma 5, we have
|l1w − l0|p < 24p2c

1/2
19 Q

−(2+rn)/2 (38)

for any w ∈ σ2(Pi1). Denote by L3(2
(n+1)/2c

1/2
6 Qrn/2, K) the set of w ∈ K for which

the inequality (38) has a solution in polynomials P ∈ P1(2
(n+1)/2c

1/2
6 Qrn/2). By Lemma

6(iii), we have µ(L3(2
(n+1)/2c

1/2
6 Qrn/2, K))) < 2tµ(K) for c7 ≥ 2(n+13)/2p2c

1/2
6 c

1/2
19 t

−1.
Choose c19 = 2n−1cn−26 c5t

−1 and c18 = 2(n+1)/2pc
(n−2)/2
6 c

1/2
5 t−1/2. Then sum the

estimates for the measure of the essential and inessential cases. For

c7 ≥ max(2(n−3)/2p−1c
(n−2)/2
6 c

1/2
5 t−1/2, 2n+6p2c

(n−1)/2
6 c

1/2
5 t−3/2)

this concludes the proof of Proposition 4. �

Remark 2. For n = 2 after Proposition 4 we need to use the following argument to
finish the proof of theorem. It is easy to show that we left with the case when |P ′(α1)|p ≤
c18Q

−(2+r2)/2. Similar as in Proposition 4 we obtain that D(P ) = 0. Therefore, we
have P (w) = (aw + b)2 which implies that |aw + b|p < c

1/2
5 Q−d2/2 and max(|a|, |b|) <

2c
1/2
6 Qr2/2. By Lemma 6(i,iii) we have that the measure of w ∈ K, for which there exists

at least one linear polynomial P ∈ P1(2c
1/2
6 Qr2/2) satisfying the last inequalities, does

not exceed 2tµ(K) for d2 > r2 + 2 or d2 = r2 + 2 and c7 ≥ 23c
1/2
6 c

1/2
5 t−1.

Further, we assume that n ≥ 3.
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3.1.2 Case B: c20Q−(n−1+rn)/2 < |P ′(α1)|p ≤ c18Q
−(2+rn)/2

Here c20 is a sufficiently small constant which will be specified in Subsection 3.3.
Let 3 ≤ k ≤ n− 1. Consider the following ranges for the value of first derivative:

vkQ
−(k+rn)/2 < |P ′(α1)|p ≤ v′kQ

−(k−1+rn)/2, (39)

where v3 = v′n−1 = 1, v′3 = c18, vn−1 = c20 and vk = v′k = 1 for 4 ≤ k ≤ n− 2.
For 3 ≤ k ≤ n− 1 denote by Ln,k ⊂ L̃n the set of w ∈ K, for which there exists at

least one polynomial P ∈ Pn(c6Q
rn) satisfying (17) and (39).

Proposition 5. For sufficiently large constant c7 and sufficiently large Q we have
µ(Ln,k) < (s(k) + 1)tµ(K).

Proof. For a polynomial P ∈ Pn(c6Q
rn) define the cylinder

σk(P ) := {w ∈ SP (α1) ∩K : |w − α1|p < c21Q
−(k+rn)|P ′(α1)|−1p }, 3 ≤ k ≤ n.

For 3 ≤ k ≤ n − 1 fix the vector bk = (an, . . . , ak+1). Let the subclass of polynomials
P ∈ Pn(c6Q

rn) with the same vector bk be denoted by Pn(c6Q
rn ,bk). The cylinders

σk(P ) divide into two classes of essential and inessential domains. For Q > Q0 we will
use the estimate #{bk} < 2n−k+1cn−k6 Qrn(n−k).

First, the essential cylinders σk(P ) are investigated. By definition∑
P∈Pn(c6Qrn ,bk)

µ(σk(P )) ≤ µ(K).

Using the last estimate, (18) and the fact that the number of different vectors bk does
not exceed 2n−k+1cn−k6 Qrn(n−k), it follows that∑

bk

∑
P∈Pn(c6Qrn ,bk)

µ(σ(P )) < 2n+1−kcn−k6 c5c
−1
21 Q

rn(n−k+1)−dn+kµ(K) ≤

≤ 2n+1−kcn−k6 c5c
−1
21 Q

(n−k)(rn−1)µ(K) ≤ tµ(K)

(40)

for c21 ≥ 2n+1−kcn−k6 c5t
−1.

Second, we consider the inessential cylinders σk(P ). Let σk(P, P̄ ) = σk(P ) ∩ σk(P̄ ),
where P, P̄ ∈ Pn(c6Q

rn ,bk) and P 6= P̄ . Then on the set σk(P, P̄ ) with the measure at
least 1/2µ(σk(P )) for the polynomials P and P̄ the following system holds:

|P (w)|p < c22Q
−k−rn , |P ′(w)|p ≤ v′kQ

−(k−1+rn)/2, (41)

where c22 = max{c21, p2c221v−2k }. According to Lemma 5 and (41), for the new polynomials
R(w) = P (w)− P̄ (w) of degR ≤ k with H(R) ≤ 2c6Q

rn on σk(P ) we have

|R(w)|p < (2p(k + 1))k+1c22Q
−k−rn , |R′(w)|p ≤ (2pk)kv′kQ

−(k−1+rn)/2. (42)

By applying inductive hypothesis to polynomials R and using (40), we obtain µ(Ln,k) <
(s(k) + 1)tµ(K) for 3 ≤ k ≤ n− 1, sufficiently large c7 and sufficiently large Q. �

It now follows via Proposition 5, that µ(
n−1⋃
k=3

µ(Ln,k)) < (
n−1∑
k=3

s(k) + n− 3)tµ(K) for

Q > Q0 and sufficiently large c7.
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3.1.3 Case C: pc1/25 Q−dn/2 < |P ′(α1)|p ≤ c20Q
−(n−1+rn)/2 and irreducible polynomials

Consider the set Ln,n which is the set of w ∈ K, for which there exists at least one
irreducible polynomial P ∈ Pn(c6Q

rn) satisfying

|P (w)|p < c5Q
−dn , pc

1/2
5 Q−dn/2 < |P ′(α1)|p ≤ c20Q

−(n−1+rn)/2. (43)

Proposition 6. For sufficiently large Q we have µ(Ln,n) < 2tµ(K).

Proof. Divide the cylinder K into smaller cylinders Ji with µ(Ji) = Q−u where
u > 1. We say the polynomial P belongs to the cylinder Ji if there exists w ∈ Ji such
that (3) and (43) hold. If there is at most one irreducible polynomial P ∈ Pn(c6Q

rn)
that belongs to every Ji then by Lemma 1 the measure of those w, that satisfy (43),
does not exceed

np−1c
1/2
5 Q−dn/2+uµ(K) < tµ(K) (44)

for u < dn/2 and sufficiently large Q.
If at least two irreducible polynomials Pi ∈ Pn(c6Q

rn) of the form Pi(w) = kiP (w)
for the same irreducible polynomial P ∈ Pn(c6Q

rn), ki ∈ Z, belong to the cylinder Ji
then the measure in this case coincides with the measure in (44).

The assumption that at least two irreducible polynomials without common roots
belong to the cylinder Ji will lead to a contradiction. To show this, suppose that P1 and
P2 belong to Ji. Develop P1 as a Taylor series in the neighbourhood Ji of α1 to obtain

|P (w)|p ≤ max{c20Q−(n−1+rn)/2−u, p2Q−2u} = c20Q
−(n−1+rn)/2−u, w ∈ Ji,

for u > (n− 1 + rn)/2. Obviously, the same estimate holds for P2 on Ji.
Applying Lemma 4 to polynomials P1 and P2 with τ = ((n− 1 + rn)/2 + u− ε′1)/rn

and η = (u+ ε′2)/rn, where ε′i > 0 is sufficiently small, leads to a contradiction in (8) for
u > (n−1+rn)/2+2θ and ε′1+ε′2 ≤ θ. Choose u, satisfying (n−1+rn)/2+2θ < u < dn/2.
�

3.2 Case of small derivative and irreducible polynomials

Define the subset Ľn of the set L̄n containing w ∈ K for which there exists irreducible
polynomial P ∈ Pn(c6Q

rn) such that

|P (w)|p < c5Q
−dn , |P ′(w)|p ≤ pc

1/2
5 Q−dn/2. (45)

Proposition 7. For sufficiently large constant c7 and sufficiently large Q we have
µ(Ľn) < 3tµ(K).

Proof. Define by σ∗(P ) the set of solutions of the system (45) for a fixed polynomial
P ∈ Pn(c6Q

rn). Let w ∈ σ∗(P ) ∩ SP (α1). First, it is shown that the value of the
derivative of P at α1, P (α1) = 0, satisfies

|P ′(α1)|p ≤ pc
1/2
5 Q−dn/2. (46)
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To show this, assume the opposite of (46). Then develop P ′ as a Taylor series in the
neighborhood of α1 and use the estimate |w − α1|p < c

1/2
5 p−1Q−dn/2 from Lemma 1.

Since

max{max
2≤j≤n

{|((j − 1)!)−1P (j)(α1)|p|w − α1|j−1p }, |P ′(w)|p} ≤ c
1/2
5 p−1Q−dn/2

forQ > Q0, it follows that |P ′(α1)|p ≤ c
1/2
5 p−1Q−dn/2 which contradicts to the condition

that |P ′(α1)|p > pc
1/2
5 Q−dn/2.

Note that the set Ľn can be written as

Ľn =

{
L≤ if dn > n+ n(n+ 1)rn,

L≤ ∪ L> if dn ≤ n+ n(n+ 1)rn,

where L≤ =
⋃

P∈Pn

(
Q

dn−n
n(n+1)

)σ∗(P ) and L> =
⋃

P∈Pn(c6Qrn )\Pn

(
Q

dn−n
n(n+1)

)σ∗(P ).

Next, we are going to establish the following two separate cases.
Case 1: µ(L≤) < tµ(K) for sufficiently large constant c7 and sufficiently large Q.
Let w ∈ σ∗(P ) ∩ SP (α1) for some P ∈ Pn

(
Q

dn−n
n(n+1)

)
. Then by (45) and Lemma 1

(for j = n), we have
|w − α1|p ≤ (c5c

−1
8 Q−dn)1/n. (47)

Summing the estimate (47) over all polynomials P ∈ Pn
(
Q

dn−n
n(n+1)

)
, we obtain

µ(L≤) ≤ (2Q
dn−n
n(n+1) + 1)n+1c

1/n
5 c

−1/n
8 Q−dn/nn ≤ tµ(K)

for c7 ≥ 2n+2nc
1/n
5 c

−1/n
8 t−1 and Q > Q0.

Case 2: µ(L>) < 2tµ(K) for sufficiently large Q.
For every irreducible polynomial P ∈ Pn(c6Q

rn) \ Pn
(
Q

dn−n
n(n+1)

)
we define the set

A(P ) = {α1 : P (α1) = 0 and |P ′(α1)|p ≤ pc
1/2
5 Q−dn/2}.

For k ∈ N, let Pkl denote the subclass of Pn(l) given by

Pkl = {P ∈ Pn(l) : 2k−1 < H(P ) ≤ 2k}.

Then we have

Pn(c6Q
rn) \ Pn

(
Q

dn−n
n(n+1)

)
=
⋃
l

[(rn+ε) log2Q]⋃
k=[ dn−n

n(n+1)
log2Q]+1

Pkl

for ε > 0 and Q > Q0.
Now divide the cylinder K into smaller cylinders J ′i with µ(J ′i) = c232

k(u′+γ) where
c23 > c24, c24 = max1≤j≤n(c−18 c

dn/rn
6 c5)

1/j, γ ≥ nε1, rn(u′ + γ) ≤ −1 and

u′ = min
1≤j≤n

{(−dn/rn + qj)/j}, qn = 0.
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Note for j = n from the last estimate we have u′ = −dn/(nrn). Then from inequality
rn(u′ + γ) ≤ −1 we obtain that γ ≤ (dn − n)/(nrn). Choose γ = 1/(2n).

First show that the assumption that at least two irreducible polynomials from Pkl
without common roots belong to the cylinder J ′i will lead to a contradiction. To show
this, suppose that P1 and P2 belong to J ′i . By Lemma 3 and (46) we have c(n)H(P )−q1 <

|P ′(α1)|p ≤ pc
1/2
5 Q−dn/2, which implies that q1 > dn/(2rn) for H(P ) ≤ c6Q

rn and
sufficiently large Q. Develop P1 as a Taylor series in the neighbourhood J ′i of α1 to
obtain

|P (w)|p < 2k(−dn/rn+(n+1)γ), w ∈ J ′i

for sufficiently large k, where

|(j!)−1P (j)(α1)|p|w − α1|jp < pj2(k−1)(−qj+(n−j)ε1)cj232
k(jγ+j(

−dn/rn+qj
j

)) =

= pjcj232
qj−(n−j)ε12k(jγ−dn/rn+(n−j)ε1), 1 ≤ j ≤ n.

Obviously, the same estimate holds for P2 on J ′i . Apply Lemma 4 to polynomials P1

and P2 with τ = dn/rn − (n+ 1)γ and η = −u′ − γ − ε1. Therefore

τ + 2 max(τ − η, 0) = 3dn/rn + 2(−dn/rn + qj)/j − γ(3n+ 1) + 2ε1 ≥

≥

{
2dn/rn − γ(3n+ 1) + 2ε1, 2 ≤ j ≤ n,

dn/rn + 2q1 − γ(3n+ 1) + 2ε1, j = 1.

Since q1 > dn/(2rn), dn ≥ n+rn and rn ≤ 1, it is readily seen that τ+2 max(τ−η, 0) >
2n + 2 − γ(3n + 1) + 2ε1 in both cases. Since γ = 1/(2n) the last inequality gives a
contradiction in (8) for θ ≤ (n− 1)/(2n).

Therefore, there is at most one irreducible polynomial P ∈ Pkl that belongs to J ′i
or there are two irreducible polynomials Pi ∈ Pkl , of the form Pi(w) = ±P (w) for
some irreducible polynomial P ∈ Pkl , belong to the cylinder J ′i . This will divide the
polynomials P into two classes with respect to the cylinder J ′ : class I and class II
respectively. According to this classification, it follows that

L> ⊆ LI ∪ LII

where Lj =
⋃
l

[(rn+ε) log2Q]⋃
k=[ dn−n

n(n+1)
log2Q]+1

⋃
P∈Pk

l
P of class j

σ∗(P ) for j = I, II.

For P ∈ Pkl denote by ν(P, α1) the set of w ∈ SP (α1) satisfying (45) and (46).
According to Lemma 1 and Lemma 3 we have that

µ(ν(P, α1)) < c242
ku′ .

Using the inclusion σ∗(P ) ⊆
⋃

α1∈A(P )

ν(P, α1) for any polynomial P and the fact that

the number of polynomials P ∈ Pkl of class I does not exceed the number of cylinders
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J ′, we obtain

µ(LI) ≤
∑
l

[(rn+ε) log2Q]∑
k=[ dn−n

n(n+1)
log2Q]+1

nc−123 c242
ku′2k(−u

′−γ)µ(K) <

< nC(n, ε1)c
−1
23 c24µ(K)

∞∑
k=0

2−k/(2n)< nC(n, ε1)c
−1
23 c242

1/(2n)(21/(2n)− 1)−1µ(K) <

< 4n2C(n, ε1)c
−1
23 c24µ(K) ≤ tµ(K)

(48)

for c23 ≥ 4n2t−1c24C(n, ε1) and sufficiently large Q.
It is easy to see that the measure µ(LII) coincides with the measure µ(LI). �

3.3 Reducible polynomials

Let n ≥ 3. Now we need to consider the case

|P (w)|p < c5Q
−dn , |P ′(w)|p ≤ c20Q

−(n−1+rn)/2, |P ′(α1)|p ≤ c20Q
−(n−1+rn)/2. (49)

Define the subset Lred of the set L̄n containing w ∈ K for which there exists reducible
polynomial P ∈ Pn(c6Q

rn) satisfying (49).

Proposition 8. For sufficiently large constant c7 and sufficiently large Q we have

µ(Lred) <

(
[n/2]∑
k=1

(4s(k) + 3s(n− k)) + n− 1

)
tµ(K).

Proof. Let P ∈ Pn(c6Q
rn) be a reducible polynomial which belongs to K. Let P

have the form

P (w) = P1(w)P2(w), degP1 = n1, degP2 = n− n1.

Assume without loss of generality that 1 ≤ n1 ≤ n/2.

3.3.1 Polynomials of the form P (w) = (P1(w))s

Let n = n1s and P (w) = (P1(w))s where 2 ≤ s ≤ n. Therefore, H(P1) < 2n1c
1/s
6 Qrn/s

and
|P1(w)|p < c

n1/n
5 Q−dn/s. (50)

Let n1 = 1. Therefore, |P1(w)|p = |aw + b|p < c
1/n
5 Q−dn/n and H(P1) < 2c

1/n
6 Qrn/n.

By Lemma 6(iii) we have that the measure of such w ∈ K does not exceed 2tµ(K) for
c7 ≥ 23c

1/n
6 c

1/n
5 t−1.

Let 2 ≤ n1 ≤ n/2. If |P ′1(w)|p < δ1 with δ1 = 2−n
2
1−2n1−9p−2c

−(n1+1)n1/n
6 c

−n1/n
5 t2,

then by inductive hypothesis the measure of w ∈ K satisfying (50) does not exceed
s(n1)tµ(K) for sufficiently large Q. If |P ′1(w)|p ≥ δ1 then by Lemma 1 we have

|w − α1|p < c
n1/n
5 δ−11 Q−dn/s, w ∈ SP (α1).



150 N. Budarina, F. Götze

Summing the last estimate over all polynomials P1 ∈ Pn1(2
n1c

n1/n
6 Qrn/s), we obtain that

the measure of w ∈ K satisfying (50) does not exceed ncn1/n
5 Q−dn/sδ−11 (2n1+1c

n1/n
6 Qrn/s+

1)n1+1, which is less or equal to

2(n1+2)(n1+1)nδ−11 c
n1(n1+1)/n
6 c

n1/n
5 Q(−n+rnn1)n1/n ≤ tµ(K)

for n1 ≥ 2, sufficiently large c7 and sufficiently large Q.
Therefore, further we can assume that P (w) = P1(w)P2(w) where P1 and P2 does

not have common roots.

3.3.2 Polynomials P (w) = P1(w)P2(w) where P1 and P2 without common
roots

For P the set of w ∈ K ∩ SP (α1) such that |P (w)|p < c5Q
−dn we denote by λ(P ). By

Gelfond’s lemma [11],

2−nH(P1)H(P2) < H(P ) < 2nH(P1)H(P2).

Let c25Qrn1 < H(P1) ≤ Qrn1 , c25 < 1. Therefore, H(P2) < 2nc6c
−1
25 Q

rn−rn1 . By the
continuity of P there exists a ∈ R such that

µ
(
w ∈ λ(P ) : |P1(w)|p < c5Q

−a) = µ(λ(P ))/2. (51)

Then for the complement to (51) we have

µ
(
w ∈ λ(P ) : |P1(w)|p ≥ c5Q

−a) = µ(λ(P ))/2 (52)

or
µ
(
w ∈ λ(P ) : |P2(w)|p < Q−dn+a

)
= µ(λ(P ))/2. (53)

Then according to Lemma 5 and by (51), (53) for all w ∈ λ(P ) we have

|P1(w)|p < (2p(n1 + 1))n1+1c5Q
−a, |P2(w)|p < (2p(n− n1 + 1))n−n1+1Q−dn+a. (54)

For a > n1 + rn1 we have

|P1(w)|p < (2p(n1 + 1))n1+1c5Q
−a, c25Q

rn1 < H(P1) ≤ Qrn1 . (55)

Then by inductive hypothesis, we obtain that the measure of w ∈ K for which there is
the polynomial P (w) = P1(w)P2(w) with P1 satisfying (55) does not exceed s(n1)tµ(K)
for sufficiently large Q.

For a < n1 + rn1 we have

|P2(w)|p < (2p(n− n1 + 1))n−n1+1Q−dn+a, H(P2) < 2nc6c
−1
25 Q

rn−rn1 . (56)

Then by inductive hypothesis, we obtain that the measure of w ∈ K for which there is
the polynomial P = P1P2 with P2 satisfying (56) does not exceed s(n − n1)tµ(K) for
sufficiently large Q.
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Further we consider the case when a = n1+rn1 . By (49) we have that |P ′(α1)|p takes
the small value. Therefore, there exist l, 2 ≤ l ≤ n, roots of P which are close to each
other. Let δ2 ∈ R+ which we specify later. Since α1 is the nearest root to w ∈ λ(P ),
reorder the other roots of P so that

|α1 − α2|p ≤ . . . ≤ |α1 − αl|p < δ2 ≤ |α1 − αl+1|p ≤ . . . ≤ |α1 − αn|p, 2 ≤ l ≤ n.

From P ′(α1) = an(α1 − α2) . . . (α1 − αn) and (49) we have

|α1 − α2|p|α1 − α3|p . . . |α1 − αl|p < c−18 c20Q
−(n−1+rn)/2δ

−(n−l).
2 (57)

Case 1. If l ≥ 3 then there exist at least two roots of the polynomial P which
belong to one of the polynomials P1 or P2; say that α2 and α3 are the roots of P1. From
(5) it follows that the roots of P are bounded, i.e. |αi|p < c26, 1 ≤ i ≤ n. Then

|P ′1(α2)|p = |an1(P1)(α2 − α3)
∏

3≤s≤n1

(α2 − α′s)|p < δ2c
n1−2
26 , (58)

where P1(α
′
s) = 0. Since w ∈ SP (α1) then, using Lemma 1, we have

|w − α2|p ≤ max(|w − α1|p, |α1 − α2|p) = max((c5Q
−dn)1/n, δ2) = δ2 (59)

for Q > Q0. By (58) and (59), we get |P ′1(w)|p =

∣∣∣∣ n1∑
i=1

((i− 1)!)−1P
(i)
1 (α2)(w − α2)

i−1
∣∣∣∣
p

<

δ2 max(1, cn1−2
26 ). Thus, we have

|P1(w)|p < (2p(n1 + 1))n1+1c5Q
−(n1+rn1 ), c25Q

rn1 < H(P1) ≤ Qrn1 ,

|P ′1(w)|p < δ2 max(1, cn1−2
26 ).

(60)

Choose δ2 ≤ 2−2n1−10p−n1−3(n1 + 1)−(n1+1)c−15 (max(1, cn1−2
26 ))−1t2. Then by inductive

hypothesis, we obtain that the measure of w ∈ K for which there is the polynomial
P = P1P2 with P1 satisfying (60) does not exceed s(n1)tµ(K) for sufficiently large c7
and sufficiently large Q.

If at least two roots of P belong to P2 then similarly we obtain that the measure of
w ∈ K does not exceed s(n− n1)tµ(K) for Q > Q0 and sufficiently large c7.

Case 2. Let l = 2. If α1 and α2 belong to one polynomial P1 or P2 then the proof
is coincided with the Case 1. Now assume without loss of generality that α1 is a root of
P1 and α2 is a root of P2. In this case for any distinct roots of the polynomials P1 and
P2 we have |αi1(Pj)− αi2(Pj)|p ≥ δ2. Thus,

|P ′1(α1)|p > c27δ
(n1−1)
2 , |P ′2(α2)|p > c28δ

(n−n1−1)
2 . (61)

Consider the resultant of the polynomials P1 and P2 which have no common roots:

R(P1, P2) = an−n1
n1

(P1)a
n1
n−n1

(P2)(α1 − α2)
∏

1≤i≤n1, 1≤j≤n−n1,
α′i 6=α1, α′′j 6=α2

(α′i − α′′j ),
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where P1(α
′
i) = 0 and P2(α

′′
j ) = 0. From (57) we have

|α1 − α2|p < c−18 c20Q
−(n−1+rn)/2δ

−(n−2)
2 .

Using the fact that the roots of P are bounded and the estimate

|an−n1
n1

(P1)a
n1
n−n1

(P2)| < Qrn1 (n−n1)(2nc6c
−1
25 Q

rn−rn1 )n1 ,

we get
2−nn1c−n1

6 cn1
25Q

−rn1 (n−n1)+n1(−rn+rn1 ) ≤ |R(P1, P2)|p,
|R(P1, P2)|p < c−18 c20c

n1(n−n1)−1
26 δ

−(n−2)
2 Q−(n−1+rn)/2.

(62)

We have a contradiction in (62) for sufficiently small c20 and rn ≤ 1 if n = 2n1 and
rn1 ≤ n−1+rn−2n1rn

2(n−2n1)
if n > 2n1.

Now we are left with the case when

rn1 >
n− 1 + rn − 2n1rn

2(n− 2n1)
(63)

with 1 ≤ n1 < n/2. For P2 we have

|P2(w)|p < (2p(n− n1 + 1))n−n1+1Q−dn+n1+rn1 , P2 ∈ Pn−n1(2
nc6c

−1
25 Q

rn−rn1 ). (64)

By (54), (61) and Lemma 1, we have that

|w − α2|p < (2p(n− n1 + 1))n−n1+1c−128 δ
−(n−n1−1)
2 Q−dn+n1+rn1+(rn−rn1 )

for w ∈ SP2(α2). Summing the last estimate over all polynomials

P2 ∈ Pn−n1(2
nc6c

−1
25 Q

rn−rn1 )

and using (63), we obtain that the measure of w ∈ K for which there is the polynomial
P = P1P2 with P2 satisfying (64) does not exceed

c29Q
−n+n1+rn(n−n1)−rn1 (n−n1) < tµ(K)

for sufficiently large Q. �
Combining all estimates, starting from Proposition 1, we obtain that the measure

of L̄n does not exceed s(n)tµ(K) with

s(n) = 2n+ 13 +
n−1∑
k=3

s(k) +

[n/2]∑
k=1

(4s(k) + 3s(n− k)) for n ≥ 3, (65)

s(1) = 2 and s(2) = 14. Choose t = l · (s(n))−1.
Finally, we turn to the proof of Theorem 1.
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4 Proof of Theorem 1
Let δ0 ∈ R+. Consider the set L̄n(Q, δ0, K) with dn = n + 1. By Theorem 2 there
exists a constant δ0, which satisfies the following property: for any cylinder K in K0

there exists a sufficiently large number Q0 = Q0(K) such that for µ(K) > c7Q
−1
0 and

sufficiently large constant c7, which does not depend on Q0, and for all Q > Q0 we have
µ(L̄n(Q, δ0, K)) < lµ(K). For the rest of the proof we may assume that c7 is a constant
which is greater or equal to 2·3n

(1−l)δ0 and for which Theorem 2 is valid.
Denote by L0(Q,K) the set of w ∈ K, for which the inequality |P (w)|p < Q−(n+1) is

satisfied for some P ∈ Pn(Q). It can be readily verified using Dirichlet’s box principle
that L0(Q,K) = K. By Theorem 2 there exists a set Ln(Q, δ0, K) = K \L̄n(Q, δ0, K) ⊂
K such that µ(Ln(Q, δ0, K)) ≥ (1− l)µ(K) for all Q > Q0, where Q0 > c7µ(K)−1.

Denote by L≤(n−1)(Q, δ0, K) the union of the cylinders σ(α) = {w ∈ K : |w−α|p <
δ−10 Q−(n+1)} over all algebraic numbers in Zp of degree at most n−1 and height at most
Q. The number of different cylinders in this union is at most (2Q+1)n and every cylinder
has a measure at most δ−10 Q−(n+1), therefore we conclude that µ(L≤(n−1)(Q, δ0, K)) ≤
(1− l)µ(K)/2 for c7 ≥ 2·3n

(1−l)δ0 .
Let L′n(Q, δ0, K) be defined by

L′n(Q, δ0, K) = Ln(Q, δ0, K) \ L≤(n−1)(Q, δ0, K).

Let w ∈ L′n(Q, δ0, K). Then by Hensel’s Lemma [17] there is a root α ∈ Zp of P such
that

|w − α|p < δ−10 Q−(n+1). (66)

If Q is sufficiently large then α ∈ K. Since w 6∈ L≤(n−1)(Q, δ0, K) then we conclude that
the degree of α is exactly n.

Choose the maximal collection {α1, . . . , αt} of algebraic numbers inK∩An,p satisfying

H(αi) ≤ Q, |αi − αj|p ≥ Q−(n+1), 1 ≤ i < j ≤ t.

Since the collection {α1, . . . , αt} is maximal then there exists αi in this collection such
that |α− αi|p ≤ Q−(n+1). From this and (66) it follows that |w− αi|p < δ−10 Q−(n+1). As
w is an arbitrary point of L′n(Q, δ0, K) then

L′n(Q, δ0, K) ⊂
t⋃
i=1

{w ∈ K : |w − αi|p < δ−10 Q−(n+1)}.

Since µ(L′n(Q, δ0, K)) ≥ (1 − l)µ(K)/2, we have t � Qn+1µ(K). Let T = Qn+1 then
for any T ≥ T0, where T0 = (c7 +1)n+1µ(K)−(n+1), there exists a collection α1, . . . , αt ∈
K ∩ An,p satisfying (1) which completes the proof of the theorem.
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АННОТАЦИЯ

В данной статье мы доказываем, что для достаточно больших чисел
Q ∈ N существуют цилиндры K ⊂ Qp с мерой Хаара µ(K) ≤ 1

2
Q−1,

которые не содержат алгебраических p-адических чисел α степени
degα = n и высоты H(α) ≤ Q. Основной результат показывает, что
в любом цилиндре K, µ(K) > c1Q

−1, c1 > c0(n), существует не менее
c3Q

n+1µ(K) алгебраических p-адических чисел α ∈ K степени n и
H(α) ≤ Q.
Ключевые слова: целочисленные многочлены, алгебраические p-
адические числа, регулярная система, мера Хаара.
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