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Modeling and simulation of cerebral blood

flow autoregulation considered as an output

regulation control problem

A mathematical model of cerebral blood flow in the form of a system of nonlinear
ordinary differential equations is studied. The cerebral blood flow autoregulation
modeling problem is formulated as an output regulation automatic control prob-
lem. The nonlinear dynamics inversion based approach is applied to reveal the con-
trollability properties of the model and construct the feedback control laws which
describe mathematics behind the cerebrovascular autoregulation mechanism.
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Introduction and problem statement

In recent years, cerebral blood circulation and autoregulation modeling has become very
popular (see, e.g. [1–4]). Understanding mathematics behind the cerebral autoregulation
is of great clinical importance. It could help us prevent various brain disorders, e.g.
intracranial hemorrhages in preterm newborns [2], by reproducing the autoregulation
mechanisms of healthy humans, for instance, using medicaments which dilate or constrict
the blood vessels.

In this paper, we study the cerebral hemodynamics model suggested in [1] and written
in the form [4]:

V̇a =
1

1 + kEPicCa

(
−kEPicCa

(
Pc − Pic

Rf
− Pic − Pvs

Ro
+ Ii

)
+ (Pa − Pic)Ċa

)
,

Ṗic =
kEPic

1 + kEPicCa

(
Pc − Pic

Rf
− Pic − Pvs

Ro
+ Ii + (Pa − Pic)Ċa

)
,

(1)

where Va is the arterial-arteriolar blood volume variable, Pic stands for the intracranial
pressure variable, Ca is the arterial-arteriolar compliance variable, Pa denotes the sys-
temic arterial pressure, Pc is the capillary pressure variable, the constant values Pvs, Rf ,
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Ro, Ii, kE stand for the venous sinus pressure, the cerebrospinal fluid production and
reabsorption hydraulic resistances, the rate of possible mock cerebrospinal fluid injection
and the craniospinal compartment elastance coefficient, respectively. The capillary pres-
sure Pc and the arterial-arteriolar compliance Ca quantities in the right-hand side of the
system (1) can be represented as functions of the system state variables Va and Pic [4].

The cerebral blood flow autoregulation mechanism is described in terms of the arterial-
arteriolar compliance Ca time behavior. Vasodilation or vasoconstriction of the arterioles
are modeled through positive or negative values of the compliance rate Ċa, respectively.
In the current work, we consider the arterial-arteriolar compliance rate Ċa as a control
input u, i.e. Ċa = u.

Further in the paper, let us suppose that the arterial blood pressure dynamics are in
a steady state, i.e. Ṗa ≡ 0, and the arterial pressure Pa has a constant value which is
possibly different from the basal one of a healthy human.

The arterial-arteriolar blood flow rate q is considered as a system output function
and is written as the following function of the system state variables Va and Pic [4]:

q = q(Va, Pic) =
(Rpv + Rf )(Pa − Pic)V

2
a

k′R(Rpv + Rf ) + RfRpvV 2
a

, (2)

where k′R is a coefficient of the arterial-arteriolar hydraulic resistance Ra inverse propor-
tionality to the square of the Va variable.

The cerebral blood flow autoregulation modeling problem is formulated as an asymp-
totic output regulation control problem for the nonlinear dynamical system (1), i.e. it is
required to find a feedback control law u = u(Va, Pic) such that

|q(Va(t), Pic(t))− qn| → 0 as t→ +∞ (3)

for all reasonable initial values Va(0) = Va0, Pic(0) = Pic0 of the system state variables.
Here, qn denotes a basal value of the cerebral blood flow required for tissue metabolism.

In this paper, we analyze controllability properties of the cerebral blood flow model
(1). It is shown that the control singularity set doesn’t have any considerable influence on
the controllability of the dynamical system (1). Then, the nonlinear dynamics inversion
based approach is applied to construct the feedback control laws which model the cerebral
autoregulation performance.

1 Controllability of cerebral hemodynamics

The change of the state variables [4]

z1 = ϕ1(Va, Pic) = kEVa − lnPic,

z2 = ϕ2(Va, Pic) =
−kERpv

Rpv + Rf
q +

kE
Ro

Pic − kE

(
Pvs

Ro
+ Ii

)
(4)

transforms the system (1) into the form

ż1 = z2, ż2 = f̃(z1, z2) + g̃(z1, z2)u, (5)

where f̃(·) and g̃(·) are corresponding functions of their arguments [4].
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One can check that the relations (4) can be considered as a diffeomorphism
z = Φ(Va, Pic), where z = (z1, z2)T, Φ(Va, Pic) = (ϕ1(Va, Pic), ϕ2(Va, Pic))

T, defined for
all values of the variables Va and Pic such that the inequality
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/
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4
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2
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2) (6)

is satisfied. Then, it can be shown that the condition g̃(z1, z2) 6= 0 at a point
z1 = ϕ1(Va, Pic), z2 = ϕ2(Va, Pic) is equivalent to the condition (6) which is an out-
come of a general theory of nonlinear state space transformations of dynamical systems
presented in [5].

It is well-known that controllability properties of a dynamical system of the form (5)
drastically depend on the system trajectories behavior in the control singularity set

N =
{

(z1, z2)T ∈ R2
∣∣ g̃(z1, z2) = 0

}
which in its turn is determined by the unforced system dynamics vector field

(
z2, f̃(z1, z2)

)T
orientation on N .

Notice that the medically plausible intervals for the system (1) state variables are
Va(t) ∈ [9, 20] ml and Pic(t) ∈ [5, 15] mmHg for all t ≥ 0 [1, 6]. Hence, the admissible
state set of the system (1) is as below

Ω =
{

(Va, Pic)
T ∈ R2

∣∣ 9 ≤ Va ≤ 20, 5 ≤ Pic ≤ 15
}
.

Figure 1 shows the curves g̃(z1, z2) = 0 on the phase plane (Va, Pic) for different values
of the arterial pressure Pa within the autoregulatory range Pa ∈ [60, 160] mmHg and the
model parameter values taken from [1]. From figure 1 follows that for the arterial pressure
values lower than the approximate value Pa = 125 mmHg the set of admissible states
Ω doesn’t contain any control singularities, i.e. points (Va, Pic) such that g̃(z1, z2) = 0
holds.

Figure 2 demonstrates the set of admissible states Φ(Ω) and the control singularity
set N on the phase plane (z1, z2) for model parameter values taken from [1]. Then, in

view of the vector field (z2, f̃(z1, z2))T orientation on N and the position of the set N on
the phase plane (z1, z2) one can conclude that the control singularity set N doesn’t have
any considerable influence on the controllability [5] of the system (5) in the set Φ(Ω).
Let us recall that due to the relation z2 = ż1 the motion in the upper (z2 > 0) and
lower (z2 < 0) parts of the phase plane (z1, z2) is possible from the left-hand side to the
right-hand side and from the right-hand side to the left-hand side, respectively.

2 Cerebral blood flow autoregulation control design

To guarantee the cerebral blood flow autoregulation (3) let us first find constant reference
values Va = Var = const and Pic = Picr = const such that the condition q(Var, Picr) = qn
holds [4]. Then, the control strategy will be to force the differences Va(t)− Var and
Pic(t)− Picr to zero as t → +∞ in a controllable way by the choice of a state feedback
u = u(Va, Pic).
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Fig. 1: The control singularity set N on the phase plane (Va, Pic) for different values of

the arterial pressure Pa within the autoregulatory range Pa ∈ [60, 160] mmHg. The lower

curve corresponds to Pa = 60 mmHg. The upper curve stands for Pa = 160 mmHg. The

intermediate curves correspond to Pa values consistently increased with a step size of 10

mmHg, respectively.

Next, due to the relationships (4) one takes

z1r = kEVar − lnPicr, z2r =
−kERpv

Rpv + Rf
qn +

kE
Ro

Picr − kE

(
Pvs

Ro
+ Ii

)
as reference values of the z1 and z2 state variables, respectively. To guarantee that the
transient from an admissible initial state z1(0) = z10, z2(0) = z20 to the desired final
state z1(T ) = z1r, z2(T ) = z2r lies entirely in the admissible state set Φ(Ω), we use the
considerations suggested in [7]. To connect the points (z10, z20) and (z1r, z2r) on the phase
plane (z1, z2), we employ phase graphic p̄(t) = (p(t), ṗ(t)), t ∈ [0, T ], of the polynomial

p(t) = z10 + z20t + c1t
2 + c2t

3, (7)

with the coefficients c1, c2 being found from the conditions p(T ) = z1r, ṗ(T ) = z2r and
written as (see, e.g., [7])

c1 = −
(
(2z20 + z2r)T + 3(z10 − z1r)

)
/T 2, c2 =

(
(z20 + z2r)T + 2(z10 − z1r)

)
/T 3.

Notice that one way to guarantee the boundedness property |p(t)| ≤M1, |ṗ(t)| ≤M2

for all t ∈ [0, T ] with some relevant bounds M1, M2 is to provide the monotonicity
property of the functions p(t) and ṗ(t) on the interval t ∈ [0, T ]. One can show that the
final time value selection

T = min

{
3(z1r − z10)

2z20 + z2r
,

3(z1r − z10)

z20 + 2z2r

}
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results in the monotonicity property of the polynomial (7) and its time derivative on the
interval t ∈ [0, T ] (see [7]).

Introduce the tracking error variables ez1 = z1− p(t), ez2 = z2 − ṗ(t) and rewrite the
system (5) as

ėz1 = ez2, ėz2 = f̃(z1, z2) + g̃(z1, z2)u− p̈(t).

Then, the nonlinear dynamics inversion based control

u =
1

g̃(z1, z2)

(
−f̃(z1, z2) + p̈(t)− c1ez1 − c2ez2

)
(8)

yields the tracking error dynamics

ėz1 = ez2, ėz2 = −c1ez1 − c2ez2. (9)

Moreover, for any positive gain coefficients c1 > 0 and c2 > 0 the equilibrium point
ez1 = 0, ez2 = 0 of the system (9) is (globally) asymptotically stable. Notice that the
control law (8) and, hence, the resultant closed-loop dynamics (9) are defined whenever
the control coefficient g̃(z1, z2) in (5) is not zero.

Figure 2 suggests that one can always choose the reference values Va = Var, Pic = Picr

of the arterial-arteriolar blood volume and intracranial pressure variables, respectively,
such that the condition g̃(z1r, z2r) 6= 0 holds for the autoregulatory range
Pa ∈ [60, 160] mmHg. Hence, due to the continuity property of the function g̃(·) the
inequality g̃(z1, z2) 6= 0 is satisfied at least in some neighborhood of the point z1 = z1r,
z2 = z2r of the phase plane (z1, z2).

Fig. 2: The autoregulation response (trajectory of the system (5) under control (8))

(dashed line), the admissible state set Φ(Ω) (dotted lines indicate the set boundaries) and

the control singularity set N (solid line) on the phase plane (z1, z2) for Pa = 130 mmHg.

The arrows show the vector field (z2, f̃(z1, z2))T orientation on N .
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Simulation results, namely, a trajectory of the system (5) under control (8) on the

phase plane (z1, z2), are shown in figure 2 for Va(0) = 18.085 ml, Pic(0) = 9.432 mmHg,

Va(T ) = 11.33 ml, Pic(T ) = 7 mmHg, T = 646 s, c1 = 4, c2 = 4 under model parameter

values taken from [1].
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АННОТАЦИЯ

Исследуется математическая модель мозгового кровообращения, имею-
щая вид системы обыкновенных дифференциальных уравнений. Задача
моделирования механизма авторегулирования мозгового кровотока рас-
сматривается как задача автоматического управления, заключающаяся
в отслеживании заданного выходного сигнала. Для синтеза стабили-
зирующих законов управления и исследования свойств управляемости
модели кровотока используется метод обратных задач динамики.

Ключевые слова: биомеханическая система, мозговое кровообращение,
авторегулирование, нелинейное управление, стабилизация.
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