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We consider the energy operator of five-electron systems in the Hubbard model and
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Introduction

In the early 1970s, three papers [1–3], where a simple model of a metal was proposed that

has become a fundamental model in the theory of strongly correlated electron systems,

appeared almost simultaneously and independently. In that model, a single nondegenerate

electron band with a local Coulomb interaction is considered. The model Hamiltonian

contains only two parameters: the matrix element t of electron hopping from a lattice

site to a neighboring site and the parameter U of the one-site Coulomb repulsion of two-

electrons. In the secondary quantization representation, the Hamiltonian can be written

as
H = t

∑
m,τ,γ

a+m,γam+τ,γ + U
∑
m

a+m,↑am,↑a
+
m,↓am,↓,

where a+m,γ and am,γ denote Fermi operators of creation and annihilation of an electron

with spin γ on a site m and the summation over τ means summation over the nearest

neighbors on the lattice.
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The model proposed in [1–3] was called the Hubbard model after John Hubbard, who

made a fundamental contribution to studying the statistical mechanics of that system,

although the local form of Coulomb interaction was first introduced for an impurity

model in a metal by Anderson [4]. We also recall that the Hubbard model is a particular

case of the Shubin-Wonsowsky polaron model [5], which had appeared 30 years before

[1–3]. In the Shubin-Wonsowsky model, along with the on-site Coulomb interaction, the

interaction of electrons on neighboring sites is also taken into account.

The Hubbard model is an approximation used in solid state physics to describe the

transition between conducting and insulating states. It is the simplest model describing

particle interaction on a lattice. Particles can be fermions, as in Hubbard’s original work,

and also bosons. The simplicity and sufficiency of Hubbard Hamiltonian have made the

Hubbard model very popular and effective for describing strongly correlated electron

systems.

The Hubbard model well describes the behavior of particles in a periodic potential

at sufficiently low temperatures such that all particles are in the lower Bloch band and

long-range interactions can be neglected. If the interaction between particles at different

sites is taken into account, then the model is often called the extended Hubbard model.

It was proposed for describing electrons in solids, and it remains especially interesting

since then for studying high-temperature superconductivity. Later, the extended Hubbard

model also found applications in describing the behavior of ultracold atoms in optical

lattices.

In considering electrons in solids, the Hubbard model can be considered a sophis-

ticated version of the model of strongly bound electrons, involving only the electron

hopping term in the Hamiltonian. In the case of strong interactions, these two models

can give essentially different results. The Hubbard model exactly predicts the existence of

so-called Mott insulators, where conductance is absent due to strong repulsion between

particles.

The Hubbard model is based on the approximation of strongly coupled electrons. In

the strongcoupling approximation, electrons initially occupy orbital’s in atoms (lattice

sites) and then hop over to other atoms, thus conducting the current. Mathematically,

this is represented by the so-called hopping integral. This process can be considered

the physical phenomenon underlying the occurrence of electron bands in crystal ma-

terials. But the interaction between electrons is not considered in more general band

theories. In addition to the hopping integral, which explains the conductance of the ma-

terial, the Hubbard model contains the so-called on-site repulsion, corresponding to the

Coulomb repulsion between electrons. This leads to a competition between the hopping

integral, which depends on the mutual position of lattice sites, and the on-site repulsion,

which is independent of the atom positions. As a result, the Hubbard model explains

the metal–insulator transition in oxides of some transition metals. When such a mate-

rial is heated, the distance between nearest-neighbor sites increases, the hopping integral

decreases, and on-site repulsion becomes dominant.

The Hubbard model is currently one of the most extensively studied multielectron

models of metals [6–10]. But little is known about exact results for the spectrum and wave

functions of the crystal described by the Hubbard model, and obtaining the corresponding
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statements is therefore of great interest. The spectrum and wave functions of the system

of two electrons in a crystal described by the Hubbard Hamiltonian were studied in [7].

It is known that two-electron systems can be in two states, triplet and singlet [6–10].

It was proved in [7] that the spectrum of the system Hamiltonian Ht in the triplet

state is purely continuous and coincides with a segment [m,M ], and the operator Hs

of the system in the singlet state, in addition to the continuous spectrum [m,M ], has

a unique antibound state for some values of the quasimomentum. For the antibound

state, correlated motion of the electrons is realized under which the contribution of

binary states is large. Because the system is closed, the energy must remain constant

and large. This prevents the electrons from being separated by long distances. Next, an

essential point is that bound states (sometimes called scattering-type states) do not form

below the continuous spectrum. This can be easily understood because the interaction is

repulsive. We note that a converse situation is realized for U < 0 : below the continuous

spectrum, there is a bound state (antibound states are absent) because the electrons are

then attracted to one another.

For the first band, the spectrum is independent of the parameter U of the on-site

Coulomb interaction of two electrons and corresponds to the energy of two noninteracting

electrons, being exactly equal to the triplet band. The second band is determined by

Coulomb interaction to a much greater degree: both the amplitudes and the energy of

two electrons depend on U, and the band itself disappears as U → 0 and increases without

bound as U → ∞. The second band largely corresponds to a one-particle state, namely,

the motion of the doublet, i.e., two-electron bound states.

The spectrum and wave functions of the system of three electrons in a crystal de-

scribed by the Hubbard Hamiltonian were studied in [11]. In the three-electron systems

are exists quartet state, and two type doublet states. In the work [11] proved that the

essential spectrum of the system in a quartet state consists of a single segment and the

three-electron bound state is absent. It is also shown that the essential spectrum of the

system in doublet states is the union of at most three segments, and it is proved that

three-electron bound states exist in doublet states. In addition, the spectra of this doublet

states are the different.

The spectrum and wave functions of the system of four electrons in a crystal described

by the Hubbard Hamiltonian were studied in [12, 13]. In the four-electron systems are

exists a six states: quintet state, three type triplet state, and two type singlet states. In

the work [12] investigated the spectrum and wave functions of four-electron systems in

a Hubbard model in triplet states. In the work [13] considered the spectrum and wave

functions of four-electron systems in a Hubbard model in a quintet and singlet states.

1 Energy operator of five-electron systems in the Hubbard Model.
Fourth quartet state

Here, we consider the energy operator of five-electron systems in the Hubbard model and

investigate the structure of the essential spectrum and discrete spectra of the system for
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fourth quartet state. The Hamiltonian of the considered model has the form

H = A
∑
m,γ

a+m,γam,γ +B
∑
m,τ,γ

a+m,γam+τ,γ + U
∑
m

a+m,↑am,↑a
+
m,↓am,↓. (1)

Here, A is the electron energy at a lattice site, B is the transfer integral between neigh-

boring sites (we assume that B > 0 for convenience), τ = ±ej , j = 1, 2, ..., ν, where ej are

unit mutually orthogonal vectors, which means that summation is taken over the nearest

neighbors, U is the parameter of the on-site Coulomb interaction of two electrons, γ is

the spin index,γ =↑ or γ =↓, ↑ or ↓ denote the spin values 1
2 or − 1

2 , and a
+
m,γ and am,γ

are the respective electron creation and annihilation operators at a site m ∈ Zν .

The energy of the system depends on its total spin S. Along with the Hamilto-

nian, the Ne electron system is characterized by the total spin S, S = Smax, Smax −
1, . . . , Smin, Smax = Ne

2 , Smin = 0, 12 . Hamiltonian (1) commutes with all components

of the total spin operator S = (S+, S−, Sz), and the structure of eigenfunctions and

eigenvalues of the system therefore depends on S.

The Hamiltonian H acts in the antisymmetric Fock space H̃as. Below we give the

constructions of the Fock space F(H).

Let H be a Hilbert space and denote by Hn the n− fold tensor product Hn =

H
⊗

H
⊗
...
⊗

H. We set H0 = C and F(H) =
⊕∞

n=0 Hn. The F(H) is called the Fock

space over H; it will be separably, if H is. For example, if H = L2(R), then an element

ψ ∈ F(H) is a sequence of functions

ψ =
{
ψ0, ψ1(x1), ψ2(x1, x2), ψ3(x1, x2, x3), . . .

}
,

so that ∣∣ψ0

∣∣2 + ∞∑
n=1

∫
Rn

∣∣ψn(x1, x2, . . . , xn)
∣∣2dx1dx2 . . . dxn <∞.

Actually, it is not F(H), itself, but two of its subspaces which are used most frequently

in quantum field theory. These two subspaces are constructed as follows: Let Pn be the

permutation group on n elements, and let {ψn} be a basis for space H. For each σ ∈ Pn,

we define an operator (which we also denote by σ) on basis elements Hn, by

σ
(
φk1

⊗
φk2

⊗
· · ·
⊗

φkn

)
= φkσ(1)

⊗
φkσ(2)

⊗
· · ·
⊗

φkσ(n)
.

The operator σ extends by linearity to a bounded operator (of norm one) on space Hn,

so we can define Sn = 1
n!

∑
σ∈Pn

σ. That the operator Sn is the operator of orthogonal

projection: S2
n = Sn, and S

∗
n = Sn. The range of Sn is called n− fold symmetric tensor

product of H. In the case, where H = L2(R) and

Hn = L2(R)
⊗

L2(R)
⊗

· · ·
⊗

L2(R) = L2(R
n),

SnHn is just the subspace of L2(R
n), of all functions, left invariant under any permutation

of the variables. We now define Fs(H) =
⊕∞

n=0 SnHn. The space Fs(H) is called the

symmetrical Fock space over H, or Boson Fock space over H.



116 S.M. Tashpulatov

Let ε(.) is function from Pn to {1,−1}, which is one on even permutations and

minus one on odd permutations. Define An = 1
n!

∑
σ∈Pn

ε(σ)σ; then An is an orthogonal

projector on Hn. AnHn is called the n− fold antisymmetrical tensor product of H. In
the case where H = L2(R), AnHn is just the subspace of L2(R

n), consisting of those

functions odd under interchange of two coordinates. The subspace Fa(H)=
⊕∞

n=0AnHn

is called the antisymmetrical Fock space over H, or the Fermion Fock space over H.
Let φ0 be the vacuum vector in the space H̃as.

The fourth quartet state corresponds to the free motion of five electrons over the

lattice, and their interactions with the basis functions:

4q
3/2
m,n,r,t,l∈Zν = a+m,↑a

+
n,↑a

+
r,↑a

+
t,↓a

+
l,↑φ0.

The subspace 4H̃q
3/2, corresponding to the fourth quartet state is the set of all vectors

of the form
ψ =

∑
m,n,r,t,l∈Zν

f̃(m,n, r, t, l)4q
3/2
m,n,r,t,l, f̃ ∈ las2 ,

where las2 is the subspace of antisymmetric functions in the space l2((Z
ν)5). We denote

by 4Hq
3/2 the restriction of the operator H to the space 4H̃q

3/2.We call the operator 4Hq
3/2

the five-electron fourth quartet state operator.

Theorem 1. The subspace 4H̃q
3/2 is invariant under the operator H, and the operator

4Hq
3/2 is a bounded self-adjoint operator. It generates a bounded self-adjoint operator

4H
q

3/2, acting in the space las2 as

4H
q

3/2ψ =

= 5Af(m,n, r, t, l)+B
∑
τ

[
f(m+τ, n, r, t, l)+f(m,n+τ, r, t, l)+f(m,n, r+ τ, t, l)+

+f(m,n, r, t+ τ, l) + f(m,n, r, t, l + τ)
]
+ U(δm,t + δn,t + δr,t + δl,t)f(m,n, r, t, l),

(2)

where δk,j is the Kronecker symbol. The operator 4Hq
3/2, acts on a vector ψ ∈4 H̃q

3/2 as

4Hq
3/2ψ =

∑
m,n,r,t,l

(4H
q

3/2f)(m,n, r, t, l)
4q

3/2
m,n,r,t,l.

P r o o f. We act with the Hamiltonian H on vectors ψ ∈ 4H̃q
3/2 using the standard

anticommutation relations between electron creation and annihilation operators at lattice

sites, {am,γ , a
+
n,β} = δm,nδγ,β , {am,γ , an,β} = {a+m,γ , a

+
n,β} = θ, and also take into account

that am,γφ0 = θ, where θ is the zero element of 4H̃q
3/2. This yields the statement of the

theorem. 2
Lemma 1. The spectra of the operators 4Hq

3/2 and 4H
d

3/2 coincide.

P r o o f. Because 4Hq
3/2 and 4H

d

3/2 are bounded self-adjoint operators, it follows that if

λ ∈ σ(4Hq
3/2), then the Weyl criterion (see [14], chapter VII, paragraph 3, pp. 262- 263)
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implies that there is a sequence {ψi}∞i=1 such that ψi =
∑

m,n,r,t,l

fi(m,n, r, t, l)
4q

3/2
m,n,r,t,l,

||ψi|| = 1, and

lim
i→∞

||(4Hq
3/2 − λ)ψi|| = 0. (3)

On the other hand,

∥∥∥(4Hq
3/2 − λ

)
ψi

∥∥∥2 =
((

4Hq
3/2 − λ

)
ψi,
(
4Hq

3/2 − λ
)
ψi

)
=

=
∑

m,n,r,t,l

∥∥∥(4Hq

3/2 − λ
)
fi(m,n, r, t, l)

∥∥∥2(a+m,↑a
+
n,↑a

+
r,↑a

+
t,↓a

+
l,↑φ0, a

+
m,↑a

+
n,↑a

+
r,↑a

+
t,↓a

+
l,↑φ0

)
=

=
∑

m,n,r,t,l

∥∥∥(4Hq

3/2 − λ
)
fi(m,n, r, t, l)

∥∥∥2(al,↑at,↓ar,↑an,↑am,↑a
+
m,↑a

+
n,↑a

+
r,↑a

+
t,↓a

+
l,↑φ0, φ0

)
=

=
∑

m,n,r,t,l

∥∥∥(4Hq

3/2 − λ
)
fi(m,n, r, t, l)

∥∥∥2 (φ0, φ0) =
∥∥∥(4Hq

3/2 − λ
)
Fi

∥∥∥2 ,
and

||Fi||2 =
∑

m,n,r,t,l

|fi(m,n, r, t, l)|2 = ||ψi||2 = 1.

From this and formulas (2), we find that ||4Hq

3/2Fi − λFi|| → 0, as i → ∞, and Fi =

=
∑

m,n,r,t,l

fi(m,n, r, t, l). This implies that λ ∈ σ(4H
q

3/2). Consequently, σ(
4H

q
3/2)⊂σ(4H

q

3/2).

Conversely, let λ ∈ σ(4H
q

3/2). Again by the Weyl criterion, there then exists a sequence

{Fi}∞i=1 such that ||Fi|| = 1 and lim
i→∞

||(4Hq

3/2 − λ)ψi|| = 0.

Setting Fi =
∑

m,n,r,t,l

fi(m,n, r, t, l), we have ||Fi|| =

( ∑
m,n,r,t,l

|fi(m,n, r, t, l)|2
) 1

2

, we

conclude that ||ψi|| = ||Fi|| = 1 and ||(4Hq

3/2 − λ)Fi|| = ||(4Hq

3/2 − λ)ψi|| → 0 as i→ ∞.

This means that λ ∈ σ(4Hq
3/2) and hence σ(4H

q

3/2) ⊂ σ(4Hq
3/2). These two relations

imply σ(4Hq
3/2) = σ(4H

q

3/2). 2
We let F denote the Fourier transform:

F : l2((Z
ν)5) → L2((T

ν)5) ≡ 4H̃q
3/2,

where T ν is the ν− dimensional torus endowed with the normalized Lebesgue measure

dλ, λ(T ν) = 1.

We set 4H̃q
3/2 = F 4H

q

3/2F−1. In the quasimomentum representation, the operator
4H

q

3/2 acts in the Hilbert space Las
2 ((T ν)5), where Las

2 is the subspace of antisymmetric

functions in L2((T
ν)5).

Theorem 2. The Fourier transform of operator 4H
q

3/2 is an bounded self-adjoint oper-
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ator 4H̃q
3/2 = F 4H

q

3/2 F−1, acting in the space 4H̃q
3/2 by the formula

(
4H̃q

3/2f̃
)
(λ, µ, γ, θ, η)=

{
5A+ 2B

ν∑
i=1

[
cosλi+cosµi+cos γi+cos θi+cos ηi

]}
×

×f̃(λ, µ, γ, θ, η) + U

∫
T ν

f̃(s, µ, γ, λ+ θ − s, η)ds+ U

∫
T ν

f̃(λ, s, γ, µ+ θ − s, η)ds+

+U

∫
T ν

f̃(λ, µ, s, γ + θ − s, η)ds+ U

∫
T ν

f̃(λ, µ, γ, s, θ + η − s)ds.

(4)

The prove Theorem 2, the Fourier transform of (2) should be considered directly.

Using tensor products of Hilbert spaces and tensor products of operators in Hilbert

spaces [14], we can verify that the operator 4H̃q
3/2 can be represented in the form

4H̃q
3/2 = H̃1

2

⊗
I
⊗

I + I
⊗

H̃2
2

⊗
I + I

⊗
I
⊗

H̃3
2 , (5)

where(
H̃1

2 f̃
)
(λ, γ) = −

{
2A+ 2B

ν∑
i=1

[
cosλi + cos γi

]}
f̃(λ, γ) + U

∫
T ν

f̃(s, λ+ θ − s)ds,

(
H̃2

2 f̃
)
(µ, θ) =

{
A+ 2B

ν∑
i=1

cosµi

}
f̃(µ, θ)− U

∫
T ν

f̃(s, µ+ θ − s)ds,

and(
H̃3

2 f̃
)
(θ, η)=

{
2A+2B

ν∑
i=1

[
cos θi+cos ηi

]}
f̃(θ, η)+U

∫
T ν

f̃(s, θ+η−s)ds+U
∫
T ν

f̃(s,γ+η−s)ds,

and I is the unit operator in space of two-electron states H̃2.

Therefore, we must investigate the spectrum of the operators H̃1
2 , H̃

2
2 , and H̃

3
2 .

Let the total quasimomentum of the system Λ1 = λ + γ be fixed. We let L2(ΓΛ1
)

denote the space of functions that are square integrable on the manifold ΓΛ1
= {(λ, γ) :

λ+γ = Λ1}. It is known [15] that the operator H̃1
2 and the space H̃as

2 ≡ Las
2 ((T ν)2), where

Las
2 ((T ν)2) is the subspace of antisymmetric functions in L2((T

ν)2), can be decomposed

into a direct integrals

H̃1
2 =

∫
T ν

⊕
H̃1

2Λ1
dΛ1, H̃as

2 =

∫
T ν

⊕
H̃as

2Λ1
dΛ1

of operators H̃1
2Λ1

and spaces H̃as
2Λ1

such that the spaces H̃as
2Λ1

are invariant under the

operators H̃1
2Λ1

, and each operator H̃1
2Λ1

acts in space H̃as
2Λ1

as

(
H̃1

2Λ1
fΛ1

)
(λ) = −

{
2A+ 4B

ν∑
i=1

cos
Λi
1

2
cos

(
Λi
1

2
− λ

)}
fΛ1(λ) + U

∫
T ν

fΛ1(s)ds,
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here fΛ1
(s) = f(s,Λ1 − s).

It is known that the continuous spectrum of operator H̃1
2Λ1

is independent of the

parameter U and consists of the segments

Gν
Λ1

=
[
mν

Λ1
,Mν

Λ1

]
=

[
−2A− 4B

ν∑
i=1

cos
Λi
1

2
,−2A+ 4B

ν∑
i=1

cos
Λi
1

2

]
.

Definition 1. The eigenfunction φΛ1 ∈ Las
2 ((T ν)2) of the operator H̃1

2Λ1
correspond-

ing to an eigenvalue zΛ1
/∈ Gν

Λ1
is called a at U > 0 antibound state ( at U < 0 bound

state) of operator H̃1
2Λ1

with the quasimomentum Λ1, and the quantity zΛ1
is called the

energy of this state.

We set

∆ν(z) = 1 + U

∫
T ν

ds1ds2 . . . dsν

−2A− 4B
∑ν

i=1 cos
Λi

1

2 cos(
Λi

1

2 − si)− z
.

Lemma 2. A number z = z0 /∈ σcont(H̃
1
2Λ1

) is an eigenvalue of operator H̃1
2Λ1

if and

only if it is a zero of the function ∆ν(z), i.e., ∆ν(z0) = 0.

P r o o f. Let the number z = z0 /∈ [mν
Λ1
,Mν

Λ1
] be an eigenvalue of the operator H̃1

2Λ1
,

and φΛ1(x) be the corresponding eigenfunction, i.e.

−

{
2A+ 4B

ν∑
i=1

cos
Λi
1

2
cos

(
Λi
1

2
− λ

)}
φΛ1(λ) + U

∫
T ν

φΛ1(s)ds = z0φΛ1(x).

Let

ψΛ1
(x) =

[
−

[
2A+ 4B

ν∑
i=1

cos
Λi
1

2
cos

(
Λi
1

2
− λi

)]
− z

]
φΛ1

(x).

Then

ψΛ1(x) +

∫
T ν

U

−
[
2A+ 4B

∑ν
i=1 cos

Λi
1

2 cos
(

Λi
1

2 − ti

)]
− z

ψΛ1(t)dt = 0,

i.e. the number µ = 1 is a eigenvalue of the operator KΛ1
(z), where(

KΛ1(z)fΛ1

)
(x) =

∫
T ν

U

−
[
2A+ 4B

∑ν
i=1 cos

Λi
1

2 cos
(

Λi
1

2 − ti

)]
− z

fΛ1(t)dt.

It then follows that ∆ν(z0) = 0.

Now let z = z0 a zero of the function ∆ν(z), i.e. ∆ν(z0) = 0. It follows from the

Fredholm theorem that the homogeneous equation

ψΛ1
(x) + U

∫
T ν

ψΛ1
(s)ds1ds2...dsν

−2A− 4B
∑ν

i=1 cos
Λi

1

2 cos
(

Λi
1

2 − si

)
− z

= 0

has a nontrivial solution. This means that the number z = z0 is an eigenvalue of the

operator H̃1
2Λ1

. 2
We consider the one-dimensional case.
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Theorem 3. At ν = 1 and U < 0 (U > 0), and for all values of parameters of the Hamil-

tonian, the operator H̃1
2Λ1

has a unique two-electron bound state (antibound state) φ with

the energy value z1 = −2A−
√
U2 + 16B2 cos2 Λ1

2

(
z̃1 = −2A+

√
U2 + 16B2 cos2 Λ1

2

)
,

that is below (above) the continuous spectrum of the operator H̃1
2Λ1

, i.e., z1 < m1
Λ1(

z̃1 > M1
Λ1

)
.

P r o o f. Let ν = 1 and U < 0. Then the continuous spectrum of operator H̃1
2Λ1

consists

in segment
[
−2A− 4B cos Λ1

2 ,−2A+ 4B cos Λ1

2

]
. In the one-dimensional case, if U < 0,

then the function ∆ν(z) are monotonically decreasing function of z the outside of con-

tinuous spectrum of operator H̃1
2Λ1

, i.e., in (−∞,m1
Λ1
) and in (M1

Λ1
,+∞). For z < m1

Λ1

the function ∆1(z) decreasing from 1 to −∞, ∆1(z) → 1 as z → −∞, ∆1(z) → −∞ as

z → m1
Λ1

− 0. Therefore, below the value m1
Λ1

the function ∆ν(z) has a single zero at

the point z1 = −2A−
√
U2 + 16B2 cos2 Λ1

2 . For z > M1
Λ1

the function ∆1(z) decreasing

from +∞ to 1, ∆1(z) → +∞ as z →M1
Λ1

+ 0, ∆1(z) → 1 as z → +∞. Therefore, above

the value M1
Λ1

the function ∆ν(z) cannot vanish.

If ν = 1 and U > 0, then the function ∆ν(z) increases monotonically outside the

continuous spectrum domain of the operator H̃1
2Λ1

. For z < m1
Λ1

the function ∆1(z)

increases from 1 to +∞, ∆1(z) → 1 as z → −∞, ∆1(z) → +∞ as z → m1
Λ1

− 0.

Therefore, below the value m1
Λ1

the function ∆ν(z) cannot vanish. For z > M1
Λ1

and

U > 0, the function ∆1(z) increases from −∞ to 1, ∆1(z) → −∞ as z → M1
Λ1

+ 0,

∆1(z) → 1 as z → +∞. Therefore, above the value M1
Λ1

the function ∆ν(z) has a single

zero at the point z̃1 = −2A+
√
U2 + 16B2 cos2 Λ1

2 . 2
In the two-dimensional case, we have similar results.

Theorem 4. At ν = 2 and U < 0 (U > 0), and for all values of parameters of the

Hamiltonian, the operator H̃1
2Λ1

has a unique two-electron bound state (antibound state)

φ with the energy value ẑ1 (z
′

1), that is below (above) the continuous spectrum of the

operator H̃1
2Λ1

, i.e., ẑ1 < m2
Λ1

(z
′

1 > M2
Λ1
).

P r o o f. Let ν = 2 and U < 0. Then the continuous spectrum of operator H̃1
2Λ1

consists

in segment

[
−2A− 4B

2∑
i=1

cos
Λi

1

2 ,−2A+ 4B
2∑

i=1

cos
Λi

1

2

]
. In the two-dimensional case, if

U < 0, then the function ∆ν(z) are monotonically decreasing function of z the outside

of continuous spectrum of operator H̃1
2Λ1

, i.e., in (−∞,m2
Λ1
) and in (M2

Λ1
,+∞). For z <

m2
Λ1

the function ∆2(z) decreasing from 1 to −∞, ∆2(z) → 1 as z → −∞, ∆2(z) → −∞
as z → m2

Λ1
− 0. Therefore, below the value m2

Λ1
the function ∆ν(z) has a single zero at

the point ẑ1. For z > M2
Λ1

the function ∆2(z) decreasing from +∞ to 1, ∆2(z) → +∞
as z → M2

Λ1
+ 0, ∆2(z) → 1 as z → +∞. Therefore, above the value M2

Λ1
the function

∆ν(z) cannot vanish.

If ν = 2 and U > 0, then the function ∆ν(z) increases monotonically outside the

continuous spectrum domain of operator H̃1
2Λ1

. For z < m2
Λ1

the function ∆2(z) increases

from 1 to +∞, ∆2(z) → 1 as z → −∞, ∆2(z) → +∞ as z → m2
Λ1

− 0. Therefore, below

the value m2
Λ1

the function ∆ν(z) cannot vanish. For z > M2
Λ1

the function ∆2(z)
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increases from −∞ to 1, ∆2(z) → −∞ as z → M2
Λ1

+ 0, ∆2(z) → 1 as z → +∞.

Therefore, above the value M2
Λ1

the function ∆ν(z) has a single zero at the point z
′

1. 2
We now consider three-dimensional case. Here and hereafter, we denote

M =

∫
T 3

ds1ds2ds3∑3
i=1 cos

Λi
1

2

(
1−cos

(
Λi

1

2 − si

)) and m =

∫
T 3

ds1ds2ds3∑3
i=1 cos

Λi
1

2

(
1+cos

(
Λi

1

2 − si

)) .
Let ν = 3 and U < 0.

Theorem 5. a). If U < 0 and U < − 4B
M , then the operator H̃1

2Λ1
has a unique bound

state φ with the energy value ˜̃z1, that is below the continuous spectrum of the operator

H̃1
2Λ1

, i.e., ˜̃z1 < m3
Λ1
.

b). If U < 0 and − 4B
M ≤ U < 0, then the operator H̃1

2Λ1
has no bound state with the

energy value, that is below the continuous spectrum of the operator H̃1
2Λ1

.

c). If U > 0 and U > 4B
m , then the operator H̃1

2Λ1
has a unique bound state φ with

the energy value z
′′

1 , that is above the continuous spectrum of the operator H̃1
2Λ1

, i.e.,

z
′′

1 > M3
Λ1
.

d). If U > 0 and 0 < U ≤ 4B
m , then the operator H̃1

2Λ1
has no bound state with the

energy value, that is above the continuous spectrum of the operator H̃1
2Λ1

.

P r o o f. Let ν = 3 and U < 0. Then the continuous spectrum of operator H̃1
2Λ1

consists

of segment

[
−2A− 4B

3∑
i=1

cos
Λi

1

2 ,−2A+ 4B
3∑

i=1

cos
Λi

1

2

]
. In the three-dimensional case,

if U < 0, then the function ∆ν(z) are monotonically decreasing function of z the outside

of continuous spectrum of the operator H̃1
2Λ1

, i.e., in (−∞,m3
Λ1
) and in (M3

Λ1
,+∞). For

z < m3
Λ1

the function ∆3(z) decreasing from 1 to 1 + UM
4B , ∆3(z) → 1 as z → −∞,

∆3(z) → 1+ UM
4B as z → m3

Λ1
−0. Therefore, the below of values m3

Λ1
the function ∆ν(z)

has a single zero at the point ˜̃z1, if 1+ UM
4B < 0, i.e., U < − 4B

M . For z > M3
Λ1

the function

∆3(z) decreasing from 1 − Um
4B > 1 to 1, ∆3(z) → 1 − Um

4B as z → M3
Λ1

+ 0, ∆3(z) → 1

as z → +∞. Therefore, the above of values M3
Λ1

function ∆ν(z) cannot vanish.

Let ν = 3 and U > 0. Then the function ∆ν(z) are monotonically increasing function

of z the outside of continuous spectrum of the operator H̃1
2Λ1

, i.e., in (−∞,m3
Λ1
) and

in (M3
Λ1
,+∞). For z < m3

Λ1
the function ∆3(z) increasing from 1 to 1 + UM

4B > 1,

∆3(z) → 1 as z → −∞, ∆3(z) → 1+ UM
4B as z → m3

Λ1
−0. Therefore, the below of values

m3
Λ1

function ∆ν(z) cannot vanish. For z > M3
Λ1

the function ∆3(z) increasing from −∞
to 1 − Um

4B , ∆3(z) → 1 − Um
4B as z → M3

Λ1
+ 0, ∆2(z) → 1 as z → +∞. Therefore, the

above of values M3
Λ1

the function ∆ν(z) vanishes at a single point z
′′

1 , if 1− Um
4B < 0, i.e.,

U > 4B
m . 2

We consider the Watson integral [16]

W =
1

π3

π∫
0

π∫
0

π∫
0

3dxdydz

3− cosx− cos y − cos z
≈ 1, 516.
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Because the measure dλ is normalized,

J =

π∫
−π

π∫
−π

π∫
−π

dxdydz

3− cosx− cos y − cos z
=

π∫
−π

π∫
−π

π∫
−π

dxdydz

3 + cosx+ cos y + cos z
=
W

3
.

We now consider the case, ν = 3 and the total quasimomentum Λ1 of the system have

the form Λ1 =
(
Λ1
1,Λ

2
1,Λ

3
1

)
=
(
Λ0
1,Λ

0
1,Λ

0
1

)
.

Theorem 6. Let ν = 3 and Λ1 =
(
Λ0
1,Λ

0
1,Λ

0
1

)
. Then

a). If U < 0 and U < − 12B cos
Λ0
1
2

W , then the operator H̃1
2Λ1

has a unique bound state

φ with the energy value ˜̃z1, that is below the continuous spectrum of operator H̃1
2Λ1

, i.e.,˜̃z1 < m3
Λ1
.

b). If U < 0 and − 12B cos
Λ0
1
2

W ≤ U < 0, then the operator H̃1
2Λ1

has no bound state

with the energy value, that is below the continuous spectrum of operator H̃1
2Λ1

.

c). If U > 0 and U >
12B cos

Λ0
1
2

W , then the operator H̃1
2Λ1

has a unique antibound state

φ with the energy value z
′′

1 , that is above the continuous spectrum of operator H̃1
2Λ1

, i.e.,

z
′′

1 > M3
Λ1
.

d). If U > 0 and 0 < U ≤ 12B cos
Λ0
1
2

W , then the operator H̃1
2Λ1

has no antibound state

with the energy value, that is above the continuous spectrum of operator H̃1
2Λ1

.

P r o o f. Let ν = 3, Λ1 =
(
Λ1
1,Λ

2
1,Λ

3
1

)
=
(
Λ0
1,Λ

0
1,Λ

0
1

)
and U < 0. Then the continuous

spectrum of operator H̃1
2Λ1

consists of segment
[
−2A− 12B cos

Λ0
1

2 ,−2A+ 12B cos
Λ0

1

2

]
.

In the three-dimensional case, at U < 0 the function ∆3(z) are monotonically decreasing

function of z the outside of continuous spectrum of operator H̃1
2Λ1

, i.e., in (−∞,m3
Λ1
)

and in (M3
Λ1
,+∞). For z < m3

Λ1
the function ∆3(z) decreasing from 1 to 1 + UW

12B cos
Λ0
1
2

,

∆3(z) → 1 as z → −∞, ∆3(z) → 1 + UW

12B cos
Λ0
1
2

as z → m3
Λ1

− 0. Therefore, the below of

values m3
Λ1

the function ∆ν(z) has a single zero at the point ˜̃z1, if 1+ UW

12B cos
Λ0
1
2

< 0, i.e.,

U < − 12B cos
Λ0
1
2

W . For z > M3
Λ1

the function ∆3(z) decreasing from 1− UW

12B cos
Λ0
1
2

> 1 to

1, ∆3(z) → 1− UW

12B cos
Λ0
1
2

as z →M3
Λ1

+ 0, ∆3(z) → 1 as z → +∞. Therefore, the above

of values M3
Λ1

the function ∆3(z) cannot vanish.

Let ν = 3 and U > 0. Then the function ∆3(z) are monotonically increasing function

of z the outside of continuous spectrum of the operator H̃1
2Λ1

, i.e., in (−∞,m3
Λ1
) and in

(M3
Λ1
,+∞). For z < m3

Λ1
the function ∆3(z) increasing from 1 to 1 + UW

12B cos
Λ0
1
2

> 1,

∆3(z) → 1 as z → −∞, ∆3(z) → 1 + UW

12B cos
Λ0
1
2

as z → m3
Λ1

− 0. Therefore, the below of

values m3
Λ1

the function ∆ν(z) cannot vanish. For z > M3
Λ1

the function ∆3(z) increasing

from −∞ to 1− UW

12B cos
Λ0
1
2

,∆3(z) → 1− UW

12B cos
Λ0
1
2

as z →M3
Λ1

+0,∆3(z) → 1 as z → +∞.
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Therefore, the above of values M3
Λ1

the function ∆ν(z) has a single zero at the point z
′′

1 ,

if 1− UW

12B cos
Λ0
1
2

< 0, i.e., U >
12B cos

Λ0
1
2

W . 2
Now we consider the operator

(
H̃2

2 f̃
)
(µ, θ) =

{
A+ 2B

ν∑
i=1

cosµi

}
f̃(µ, θ)− U

∫
T ν

f̃(s, µ+ θ − s)ds,

and investigate the spectrum of this operator.

Let the total quasimomentum Λ2 = µ+ θ of the system be fixed. Then the operator

H̃2
2 takes the form

(
H̃2

2Λ2
f̃Λ2

)
(µ) =

{
A+ 2B

ν∑
i=1

cosµi

}
f̃Λ2(µ)− U

∫
T ν

f̃Λ2(s)ds,

where f̃Λ2(s) = f̃(s,Λ2 − s).

We set
∆̃ν(z) = 1− U

∫
T ν

ds1ds2...dsν
A+ 2B

∑ν
i=1 cos si − z

.

Lemma 3. A number z = z0 /∈ σcont(H̃
2
2Λ2

), is an eigenvalue of operator H̃2
2Λ2

if and

only if it is a zero of the function ∆̃ν(z), i.e., ∆̃ν(z0) = 0.

It is known that the continuous spectrum of operator H̃2
2Λ2

fills the entire interval[
mν

Λ2
,Mν

Λ2

]
= [A− 2Bν,A+ 2Bν].

We consider one-dimensional case.

Theorem 7. At values ν = 1 and U < 0 (U > 0), and for all values of parameters of

the Hamiltonian, the operator H̃2
2Λ2

has a unique two-electron bound state (antibound

state) φ whit the energy value z2 = A+
√
U2 + 4B2

(
z̃2 = A−

√
U2 + 4B2

)
, that is above

(below) the continuous spectrum of the operator H̃2
2Λ2

, i.e., z2 > M1
Λ2

(
z̃2 < m1

Λ2

)
.

In two-dimensional case, we have the analogously results.

We consider three-dimensional case.

Theorem 8. a). If U < 0 and U < − 6B
W , then the operator H̃2

2Λ2
has a unique bound

state φ with the energy value ˜̃z2, that is above the continuous spectrum of the operator

H̃2
2Λ2

, i.e., ˜̃z2 > M3
Λ2
.

b). If U < 0 and − 6B
W ≤ U < 0, then the operator H̃2

2Λ2
has no bound state with the

energy value, that is above the continuous spectrum of the operator H̃2
2Λ2

.

c). If U > 0 and U > 6B
W , then the operator H̃2

2Λ2
has a unique antibound state φ

with the energy value z2
′′
, that is below the continuous spectrum of the operator H̃2

2Λ2
,

i.e., z2
′′
< m3

Λ2
.

d). If U > 0 and 0 < U ≤ 6B
W , then the operator H̃2

2Λ2
has no antibound state with

the energy value, that is below the continuous spectrum of the operator H̃2
2Λ2

.
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Now we consider the operator

(
H̃3

2 f̃
)
(θ, η)=

{
2A+2B

ν∑
i=1

[
cos θi+cos ηi

]}
f̃(θ, η)+U

∫
T ν

f̃(s, θ+η−s)ds+U
∫
T ν

f̃(s, γ+η−s)ds,

and investigate the spectrum of this operator.

Let the total quasimomentum Λ3 = θ + η and Λ4 = γ + η. Then the operator H̃3
2

takes the form(
H̃3

2Λ3
f̃Λ3

)
(θ) =

{
2A+ 4B

ν∑
i=1

cos
Λi
3

2
cos

(
Λi
3

2
− θi

)}
f̃Λ3

(θ)+U

∫
T ν

f̃Λ3
(s)ds+U

∫
T ν

f̃Λ4
(s)ds,

where f̃Λ3
(s) = f̃(s,Λ3 − s), and f̃Λ4

(s) = f̃(s,Λ4 − s).

It is known that the regions of change of parameters Λ3 and Λ4 identical, therefore,

the action of operators H̃3
2Λ3

it is possible write in the next form

(
H̃3

2Λ3
f̃Λ3

)
(θ) =

{
2A+ 4B

ν∑
i=1

cos
Λi
3

2
cos

(
Λi
3

2
− θi

)}
f̃Λ3

(θ) + 2U

∫
T ν

f̃Λ3
(s)ds.

We set

˜̃
∆ν(z) = 1 + 2U

∫
T ν

ds1ds2 . . . dsν

2A+ 4B
∑ν

i=1 cos
Λi

3

2 cos
(

Λi
3

2 − si

)
− z

.

It is known that the continuous spectrum of operator H̃3
2Λ3

is independent of the

parameter U and consists of the segments

[
2A− 4B

ν∑
i=1

cos
Λi

3

2 , 2A+ 4B
ν∑

i=1

cos
Λi

3

2

]
.

Lemma 4. A number z = z0 /∈ σcont(H̃
3
2Λ3

) is an eigenvalue of operator H̃3
2Λ3

if and

only if it is a zero of the function
˜̃
∆ν(z), i.e.,

˜̃
∆ν(z0) = 0.

We consider the one-dimensional case.

Theorem 9. If ν = 1 and U < 0 (U > 0), and for all values of parameters of the Hamilto-

nian, the operator H̃3
2Λ3

has a unique two-electron bound state (antibound state) φ with

the energy value z3 = 2A −
√
4U2 + 16B2 cos2 Λ3

2

(
z̃3 = 2A+

√
4U2 + 16B2 cos2 Λ3

2

)
,

that is below (above) the continuous spectrum of the operator H̃3
2Λ3

, i.e., z3 < m1
Λ3(

z̃3 > M1
Λ3

)
.

In the two-dimensional case, we have analogously results.

Now we consider three-dimensional case. We denote

M=

∫
T 3

ds1ds2ds3∑3
i=1 cos

Λi
3

2

(
1− cos

(
Λi

3

2 − si

)) and m=

∫
T 3

ds1ds2ds3∑3
i=1 cos

Λi
3

2

(
1 + cos

(
Λi

3

2 − si

)) .
Let ν = 3.
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Theorem 10. a). If U < 0 and U < − 2B
m , then the operator H̃3

2Λ3
has a unique bound

state φ with the energy value ˜̃z3, that is below the continuous spectrum of the operator

H̃3
2Λ3

, i.e., ˜̃z3 < m3
Λ3
.

b). If U < 0 and − 2B
m ≤ U < 0, then the operator H̃3

2Λ3
has no bound state with the

energy value, that is below the continuous spectrum of the operator H̃3
2Λ3

.

c). If U > 0 and U > 2B
M , then the operator H̃3

2Λ3
has a unique antibound state φ

with the energy value z3
′′
, that is above the continuous spectrum of the operator H̃3

2Λ3
,

i.e., z3
′′
> M3

Λ3
.

d). If U > 0 and 0 < U ≤ 2B
M , then the operator H̃3

2Λ3
has no antibound state with

the energy value, that is above the continuous spectrum of the operator H̃3
2Λ3

.

Now we consider the case, when ν = 3 and the total quasimomentum Λ3 of the system

has the form Λ3 =
(
Λ1
3,Λ

2
3,Λ

3
3

)
=
(
Λ0
3,Λ

0
3,Λ

0
3

)
.

Theorem 11. Let ν = 3 and Λ3 =
(
Λ0
3,Λ

0
3,Λ

0
3

)
. Then

a). If U < 0 and U < − 6B cos
Λ0
3
2

W , then the operator H̃3
2Λ3

has a unique bound state φ

with the energy value ˜̃z3, that is below the continuous spectrum of the operator H̃3
2Λ3

,

i.e., ˜̃z3 < m3
Λ3
.

b). If U < 0 and − 6B cos
Λ0
3
2

W ≤ U < 0, then the operator H̃3
2Λ3

has no bound state

with the energy value, that is below the continuous spectrum of the operator H̃3
2Λ3

.

c). If U > 0 and U >
6B cos

Λ0
3
2

W , then the operator H̃3
2Λ3

has a unique antibound state

φ with the energy value z3
′′
, that is above the continuous spectrum of the operator H̃3

2Λ3
,

i.e., z3
′′
> M3

Λ3
.

d). If U > 0 and 0 < U ≤ 6B cos
Λ0
3
2

W , then the operator H̃3
2Λ3

has no antibound state

with the energy value, that is above the continuous spectrum of the operator H̃3
2Λ3

.

The spectrum of the operator A
⊗
I + I

⊗
B, where A and B are densely defined

bounded linear operators, was studied in [17–19]. Explicit formulas were given there that

express the essential spectrum σess(A
⊗
I+I

⊗
B) and discrete spectrum σdisc(A

⊗
I+

I
⊗
B) of operator A

⊗
I + I

⊗
B in terms of the spectrum σ(A) and the discrete

spectrum σdisc(A) of A and in terms of the spectrum σ(B) and discrete spectrum σdisc(B)

of B :

σdisc

(
A
⊗

I + I
⊗

B
)
=

=
{
σ(A)\σess(A) + σ(B)\σess(B)

}
\
{
(σess(A) + σ(B)) ∪ (σ(A) + σess(B))

}
,

σess

(
A
⊗

I + I
⊗

B
)
=
(
σess(A) + σ(B)

)
∪
(
σ(A) + σess(B)

)
.

It is clear that σ (A
⊗
I + I

⊗
B) =

{
λ+ µ : λ ∈ σ(A), µ ∈ σ(B)

}
.

We now using the obtaining results and representation (5), we can describe the struc-

ture of essential spectrum and discrete spectrum of the operator of four five-electron

quartet state of the system 4H̃q
3/2.
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2 Essential spectra and discrete spectrum of the operator of

fourth five-electron quartet state of the system 4H̃q
3/2

Theorem 12. a). Let ν = 1 and U < 0. Then the essential spectrum of the operator
4H̃q

3/2 of the system in a fourth five-electron quartet state is exactly the union of seven

segments,

σess

(
4H̃q

3/2

)
= [a+ c+ e, b+ d+ f ] ∪ [a+ c+ z3, b+ d+ z3] ∪ [a+ e+ z2, b+ f + z2]∪

∪[a+ z2 + z3, b+ z2 ++z3] ∪ [c+ z1 + z3, d+ z1 + z3]∪
∪[c+ e+ z1, d+ f + z1] ∪ [e+ z1 + z2, f + z1 + z2].

The discrete spectrum of the operator 4H̃q
3/2 consists of no more then one point: or

σdisc(
4H̃q

3/2) = ∅, or σdisc(4H̃q
3/2) = {z1 + z2 + z3}, here and hereafter a = −2A −

4B cos Λ1

2 , b = −2A + 4B cos Λ1

2 , c = A − 2B, d = A + 2B, e = 2A − 4B cos Λ3

2 ,

f = 2A + 4B cos Λ3

2 , z1 = −2A −
√
U2 + 16B2 cos2 Λ1

2 , z2 = A +
√
U2 + 4B2, and

z3 = 2A−
√
U2 + 16B2 cos2 Λ3

2 .

b). Let ν = 1 and U > 0. Then the essential spectrum of the operator 4H̃q
3/2 of the

system in a fourth five-electron quartet state is exactly the union of seven segments,

σess

(
4H̃q

3/2

)
= [a+ c+ e, b+ d+ f ] ∪ [a+ c+ z̃3, b+ d+ z̃3] ∪ [a+ e+ z̃2, b+ f + z̃2]∪

∪[a+ z̃2 + z̃3, b+ z̃2 ++z̃3] ∪ [c+ z̃1 + z̃3, d+ z̃1 + z̃3]∪
∪[c+ e+ z̃1, d+ f + z̃1] ∪ [e+ z̃1 + z̃2, f + z̃1 + z̃2].

The discrete spectrum of the operator 4H̃q
3/2 consists of no more then one point: or

σdisc(
4H̃q

3/2) = ∅, or σdisc(4H̃q
3/2) = {z̃1+z̃2+z̃3}. Here z̃1 = −2A+

√
U2 + 16B2 cos2 Λ1

2 ,

z̃2 = A−
√
U2 + 4B2, and z̃3 = 2A+

√
U2 + 16B2 cos2 Λ3

2 .

P r o o f. It follows from representation (5) that

σ
(
4H̃q

3/2

)
=
{
λ+ µ+ θ : λ ∈ σ(H̃1

2Λ1
), µ ∈ σ(H̃2

2Λ2
), θ ∈ σ(H̃3

2Λ3
)
}
,

and one-dimensional case, if U < 0, then the continuous spectrum of operator H̃1
2Λ1

con-

sists of segment
[
m1

Λ1
,M1

Λ1

]
=
[
−2A− 4B cos Λ1

2 ,−2A+ 4B cos Λ1

2

]
, and the discrete

spectrum of operator H̃1
2Λ1

consists of single point z1 = −2A−
√
U2 + 16B2 cos2 Λ1

2 . The

continuous spectrum of operator H̃2
2Λ2

consists of segment
[
m1

Λ2
,M1

Λ2

]
=[A−2B,A+2B] ,

and the discrete spectrum of operator H̃2
2Λ2

consists of single point z2 = A+
√
U2 + 4B2.

The continuous spectrum of operator H̃3
2Λ3

is consists of segment
[
2A− 4B cos Λ3

2 ,

2A+ 4B cos Λ3

2

]
, and the discrete spectrum of operator H̃3

2Λ3
consists of single point

z3 = 2A −
√
U2 + 16B2 cos2 Λ3

2 . Therefore, the essential spectrum of the system of
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fourth five-electron quartet state operator 4H̃q
3/2 is the union of seven segments, and

the fourth five-electron quartet state operator 4H̃q
3/2 has eigenvalue {z1 + z2 + z3}. If

{z1 + z2 + z3} ∈ σess

(
4H̃q

3/2

)
, then the discrete spectrum of operator 4H̃q

3/2 empty set:

σdisc

(
4H̃q

3/2

)
= ∅, if {z1+z2+z3} /∈ σess(

4H̃q
3/2), then the discrete spectrum of operator

4H̃q
3/2 consists of unique eigenvalue {z1 + z2 + z3}, i.e., σdisc

(
4H̃q

3/2

)
= {z1 + z2 + z3}.

From here we find the statement a) of theorem 12. The statement b) of theorem 12 is

proved a similarly. 2
In the two-dimensional case the similar results occur.

We now consider the three-dimensional case.

In the three-dimensional case, the structure of essential spectra and discrete spectrum

of operator 4H̃q
3/2 is described by the following theorems:

Theorem 13. Let ν = 3 and U < 0. Then the following statement is holds.

a). Let U < − 6B
W , M > 2

3W and m > M
2 , (m < M

2 ,) or U < − 4B
M , M < 2

3W and

m > 1
3W, or U < − 4B

M , m > 1
2M, and m < 1

3W , or U < − 2B
m , m < 1

3W, and M > 2
3W

or U < − 2B
m , M < 2

3W , and m < 1
2M, then the essential spectrum of the system fourth

five-electron quartet state operator 4H̃q
3/2 is the union of seven segments,

σess

(
4H̃q

3/2

)
=
[
a1 + c1 + e1, b1 + d1 + f1

]
∪
[
a1 + c1 + ˜̃z3, b1 + d1 + ˜̃z3]∪

∪
[
a1 + e1 + ˜̃z2, b1 + f1 + ˜̃z2] ∪ [a1 + ˜̃z2 + ˜̃z3, b1 + ˜̃z2 + ˜̃z3]∪

∪
[
c1 + ˜̃z1 + ˜̃z3, d1 + ˜̃z1 + ˜̃z3] ∪ [c1 + e1 + ˜̃z1, d1 + f1 + ˜̃z1] ∪ [e1 + ˜̃z1 + ˜̃z2, f1 + ˜̃z1 + ˜̃z2] .

The discrete spectrum of the operator 4H̃q
3/2 consists of no more one point: or

σdisc

(
4H̃q

3/2

)
= ∅, or σdisc

(
4H̃q

3/2

)
=
{˜̃z1 + ˜̃z2 + ˜̃z3} , where

a1 = −2A− 4B

3∑
i=1

cos
Λi
1

2
, b1 = −2A+ 4B

3∑
i=1

cos
Λi
1

2
, c1 = A− 6B,

d1 = A+ 6B, e1 = 2A− 4B

3∑
i=1

cos
Λi
3

2
, f1 = 2A+ 4B

3∑
i=1

cos
Λi
3

2
,

˜̃z1, ˜̃z2, and ˜̃z3 are the eigenvalues of the operators H̃1
2Λ1

, H̃2
2Λ2

, and H̃3
2Λ3

, correspondingly.

b). Let − 6B
W ≤ U < − 4B

M , m > 1
2M, and M > 2

3W, or − 6B
W ≤ U < − 2B

m , m < 1
2M,

and m > 1
3W, or −

4B
M ≤ U < − 6B

M , m > 1
3W, and M < 2

3W, or −
4B
M ≤ U < − 2B

m , m <
1
3W, and m > 1

2M, or − 2B
m ≤ U < − 6B

M , M > 2
3W, and m < 1

3W, or −
2B
m ≤ U < − 4B

M ,

M < 2
3W, and m < 1

2M. Then the essential spectrum of the system fourth five-electron

quartet state operator 4H̃q
3/2 is the union of four segments,

σess

(
4H̃q

3/2

)
=
[
a1 + c1 + e1, b1 + d1 + f1

]
∪
[
a1 + c1 + ˜̃z3, b1 + d1 + ˜̃z3]∪

∪
[
c1 + ˜̃z1 + ˜̃z3, d1 + ˜̃z1 + ˜̃z3] ∪ [c1 + e1 + ˜̃z1, d1 + f1 + ˜̃z1] ,
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or

σess

(
4H̃q

3/2

)
=
[
a1 + c1 + e1, b1 + d1 + f1

]
∪
[
a1 + c1 + ˜̃z3, b1 + d1 + ˜̃z3]∪

∪
[
a1 + ˜̃z2 + ˜̃z3, b1 + ˜̃z2 + ˜̃z3] ∪ [a1 + e1 + ˜̃z2, b1 + f1 + ˜̃z2] ,

or

σess

(
4H̃q

3/2

)
=
[
a1 + c1 + e1, b1 + d1 + f1

]
∪
[
a1 + e1 + ˜̃z2, b1 + f1 + ˜̃z2]∪

∪
[
e1 + ˜̃z1 + ˜̃z2, f1 + ˜̃z1 + ˜̃z2] ∪ [c1 + e1 + ˜̃z1, d1 + f1 + ˜̃z1] .

The discrete spectrum of the operator 4H̃q
3/2 is a empty set: σdisc

(
4H̃q

3/2

)
= ∅.

c). Let − 4B
M ≤ U < − 2B

m , M > 2
3W, andm > 1

2M, or− 2B
m ≤ U < − 4B

M , m > 1
3W, and

m < 1
2M, or − 6B

W ≤ U < − 2B
m , M < 2

3W, and m > 1
3W, or −

2B
m ≤ U < − 6B

W , m > 1
2M,

and m < 1
3W, or − 6B

W ≤ U < − 4B
M , m < 1

3W, and M > 2
3W, or − 4B

M ≤ U < − 6B
W ,

m < 1
2M, and M < 2

3W. Then the essential spectrum of the system fourth five-electron

quartet state operator 4H̃q
3/2 is the union of two segments,

σess

(
4H̃q

3/2

)
=
[
a1 + c1 + e1, b1 + d1 + f1

]
∪
[
a1 + c1 + ˜̃z3, b1 + d1 + ˜̃z3] ,

or
σess

(
4H̃q

3/2

)
=
[
a1 + c1 + e1, b1 + d1 + f1

]
∪
[
c1 + e1 + ˜̃z1, d1 + f1 + ˜̃z1] ,

or
σess

(
4H̃q

3/2

)
=
[
a1 + c1 + e1, b1 + d1 + f1

]
∪
[
a1 + e1 + ˜̃z2, b1 + f1 + ˜̃z2] .

The discrete spectrum of the operator 4H̃q
3/2 is a empty set: σdisc

(
4H̃q

3/2

)
= ∅.

d). Let − 2B
m ≤ U < 0, M > 2

3W (M < 2
3W ) and m > 1

2M, or − 4B
M ≤ U < 0,

m > 1
3W (m < 1

3W ) and m < 1
2M, or − 6B

W ≤ U < 0, m > 1
2M (m < 1

2M) and m < 1
3W.

Then the essential spectrum of the system fourth five-electron quartet state operator
4H̃q

3/2 is consists of a single segment: σess

(
4H̃q

3/2

)
=
[
a1 + c1 + e1, b1 + d1 + f1

]
. The

discrete spectrum of the operator 4H̃q
3/2 is a empty set: σdisc

(
4H̃q

3/2

)
= ∅.

Theorem 14. Let U > 0. Then the following statement is holds.

a). Let U > 6B
W , m > 2

3W and m < 2M, or U > 6B
W , m > 2M, and M > 1

3W, or

U > 4B
m , m < 2

3W and M > 1
3W, or U > 4B

m , M < 1
3W and m < 2M, or U > 2B

M ,

M < 1
3W and m > 2

3W, or U > 2B
M , m < 2

3W, and m > 1
2M. Then the essential

spectrum of the system fourth five-electron quartet state operator 4H̃q
3/2 is the union of

seven segments,

σess

(
4H̃q

3/2

)
=
[
a1 + c1 + e1, b1 + d1 + f1

]
∪
[
a1 + c1 + z

′′

3 , b1 + d1 + z
′′

3

]
∪

∪
[
a1+e1+z

′′

2 , b1+f1+z
′′

2

]
∪
[
a1+z

′′

2 +z
′′

3 , b1+z
′′

2 +z
′′

3

]
∪
[
c1+z

′′

1 +z
′′

3 , d1+z
′′

1 +z
′′

3

]
∪

∪
[
c1 + e1 + z

′′

1 , d1 + f1 + z
′′

1

]
∪
[
e1 + z

′′

1 + z
′′

2 , f1 + z
′′

1 + z
′′

2

]
.
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The discrete spectrum of the operator 4H̃q
3/2 consists of no more one point: or

σdisc

(
4H̃q

3/2

)
= ∅, or σdisc

(
4H̃q

3/2

)
=
{
z

′′

1 + z
′′

2 + z
′′

3

}
, where z

′′

1 , z
′′

2 , and z
′′

3 are the

eigenvalues of the operators H̃1
2Λ1

, H̃2
2Λ2

, and H̃3
2Λ3

, correspondingly.

b). Let 6B
W < U ≤ 2B

M , m > 2
3W, and M < 1

3W, or
2B
M < U ≤ 6B

W , m > 2M, and

M > 1
3W, or

4B
m < U ≤ 2B

M , m > 2M, and m < 2
3W, or

2B
M < U ≤ 4B

m , m < 2M, and

M < 1
3W, or

4B
m < U ≤ 6B

W , m > 2
3W, and m < 2M, or 6B

W < U ≤ 4B
m , m < 2

3W, and

M > 1
3W. Then the essential spectrum of the system fourth five-electron quartet state

operator 4H̃q
3/2 is the union of four segments,

σess

(
4H̃q

3/2

)
=
[
a1 + c1 + e1, b1 + d1 + f1

]
∪
[
a1 + e1 + z

′′

2 , b1 + f1 + z
′′

2

]
∪

∪
[
c1 + e1 + z

′′

1 , d1 + f1 + z
′′

1

]
∪
[
e1 + z

′′

1 + z
′′

2 , f1 + z
′′

1 + z
′′

2

]
,

or

σess

(
4H̃q

3/2

)
=
[
a1 + c1 + e1, b1 + d1 + f1

]
∪
[
a1 + c1 + z

′′

3 , b1 + d1 + z
′′

3

]
∪

∪
[
c1 + e1 + z

′′

1 , d1 + f1 + z
′′

1

]
∪
[
c1 + z

′′

1 + z
′′

3 , d1 + z
′′

1 + z
′′

3

]
,

or

σess

(
4H̃q

3/2

)
=
[
a1 + c1 + e1, b1 + d1 + f1

]
∪
[
a1 + e1 + z

′′

2 , b1 + f1 + z
′′

2

]
∪

∪
[
a1 + c1 + z

′′

3 , b1 + d1 + z
′′

3

]
∪
[
a1 + z

′′

2 + z
′′

3 , b1 + z
′′

2 + z
′′

3

]
.

The discrete spectrum of the operator 4H̃q
3/2 is a empty set: σdisc

(
4H̃q

3/2

)
= ∅.

c). Let 4B
m < U ≤ 6B

W , m > 2
3W, and M < 1

3W, or
4B
m < U ≤ 2B

M , m > 2M, and

m > 2
3W, or

6B
W < U ≤ 4B

m , m < 2
3W, and m > 2M, or 6B

W < U ≤ 2B
M , M < 1

3W, and

m < 2M, or 2B
M < U ≤ 4B

m , m < 2M, and m > 2
3W, or

2B
M < U ≤ 6B

W , M > 1
3W, and

m < 2
3W, then the essential spectrum of the system fourth five-electron quartet state

operator 4H̃q
3/2 is the union of two segments,

σess

(
4H̃q

3/2

)
=
[
a1 + c1 + e1, b1 + d1 + f1

]
∪
[
c1 + e1 + z

′′

1 , d1 + f1 + z
′′

1

]
,

or
σess

(
4H̃q

3/2

)
=
[
a1 + c1 + e1, b1 + d1 + f1

]
∪
[
a1 + e1 + z

′′

2 , b1 + f1 + z
′′

2

]
,

or
σess

(
4H̃q

3/2

)
=
[
a1 + c1 + e1, b1 + d1 + f1

]
∪
[
a1 + c1 + z

′′

3 , b1 + d1 + z
′′

3

]
.

The discrete spectrum of the operator 4H̃q
3/2 is a empty set: σdisc

(
4H̃q

3/2

)
= ∅.

d). Let 0 < U ≤ 4B
m , m > 2

3W, and M < 1
3W, or m > 2M, and M > 1

3W, or

0 < U ≤ 6B
W , m < 2

3W, and m > 2M, or M < 1
3W, and m < 2M, or 0 < U ≤ 2B

M ,

m < 2M, and m > 2
3W, or M > 1

3W, and m < 2
3W. Then the essential spectrum of the

system fourth five-electron quartet state operator 4H̃q
3/2 consists of a single segment:

σess

(
4H̃q

3/2

)
=
[
a1 + c1 + e1, b1 + d1 + f1

]
.
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The discrete spectrum of the operator 4H̃q
3/2 is a empty set: σdisc

(
4H̃q

3/2

)
= ∅.

Let ν = 3 and Λ1 =
(
Λ0
1,Λ

0
1,Λ

0
1

)
, and Λ3 =

(
Λ0
3,Λ

0
3,Λ

0
3

)
.

Theorem 15. Let U < 0. Then the following statement is holds.

a). Let U < 0, U < − 12B cos
Λ0
1
2

W , cos
Λ0

1

2 > 1
2 , and cos

Λ0
1

2 > 1
2 cos

Λ0
3

2 , or U < 0,

U < − 6B
W , cos

Λ0
1

2 < 1
2 and cos

Λ0
1

2 > 1
2 cos

Λ0
3

2 , or cos
Λ0

1

2 < 1
2 cos

Λ0
3

2 , then the essential

spectrum of the system fourth five-electron quartet state operator 4H̃q
3/2 is the union of

seven segments,

σess

(
4H̃q

3/2

)
=
[
ã1 + c̃1 + ẽ1, b̃1 + d̃1 + f̃1

]
∪
[
ã1 + c̃1 + ˜̃z3, b̃1 + d̃1 + ˜̃z3]∪

∪
[
ã1 + ẽ1 + ˜̃z2, b̃1 + f̃1 + ˜̃z2] ∪ [ã1 + ˜̃z2 + ˜̃z3, b̃1 + ˜̃z2 + ˜̃z3]∪

∪
[
c̃1 + ˜̃z1 + ˜̃z3, d̃1 + ˜̃z1 + ˜̃z3] ∪ [c̃1+ẽ1+˜̃z1, d̃1+f̃1+˜̃z1] ∪ [ẽ1 + ˜̃z1 + ˜̃z2, f̃1 + ˜̃z1 + ˜̃z2] .

The discrete spectrum of the operator 4H̃q
3/2 consists of no more one point: or

σdisc

(
4H̃q

3/2

)
= ∅, or σdisc

(
4H̃q

3/2

)
=
{˜̃z1 + ˜̃z2 + ˜̃z3} . Here and hereafter

ã1 = −2A− 12B cos
Λ0
1

2
, b̃1 = −2A+ 12B cos

Λ0
1

2
, c̃1 = A− 6B,

d̃1 = A+ 6B, ẽ1 = 2A− 12B cos
Λ0
3

2
, f̃1 = 2A+ 12B cos

Λ0
3

2
,

˜̃z1, ˜̃z2, and ˜̃z3 are the eigenvalues of the operators H̃1
2Λ1

, H̃2
2Λ2

, and H̃3
2Λ3

, correspondingly.

b). Let U < 0, − 6B
W ≤ U < − 6B cos

Λ0
3
2

W , cos
Λ0

1

2 < 1
2 , and cos

Λ0
1

2 < 1
2 cos

Λ0
3

2 , or U < 0,

− 6B
W ≤ U < − 12B cos

Λ0
1
2

W , cos
Λ0

1

2 < 1
2 , and cos

Λ0
1

2 > 1
2 cos

Λ0
3

2 , or U < 0, − 12B cos
Λ0
1
2

W ≤
U < − 6B

W , cos
Λ0

1

2 > 1
2 , and cos

Λ0
1

2 > 1
2 cos

Λ0
3

2 . Then the essential spectrum of the system

fourth five-electron quartet state operator 4H̃q
3/2 is the union of four segments,

σess

(
4H̃q

3/2

)
=
[
ã1 + c̃1 + ẽ1, b̃1 + d̃1 + f̃1

]
∪
[
ã1 + c̃1 + ˜̃z3, b̃1 + d̃1 + ˜̃z3]∪

∪
[
c̃1 + ˜̃z1 + ˜̃z3, d̃1 + ˜̃z1 + ˜̃z3] ∪ [c̃1 + ẽ1 + ˜̃z1, d̃1 + f̃1 + ˜̃z1] ,

or

σess

(
4H̃q

3/2

)
=
[
ã1 + c̃1 + ẽ1, b̃1 + d̃1 + f̃1

]
∪
[
ã1 + c̃1 + ˜̃z3, b̃1 + d̃1 + ˜̃z3]∪

∪
[
ã1 + ˜̃z2 + ˜̃z3, b̃1 + ˜̃z2 + ˜̃z3] ∪ [ã1 + ẽ1 + ˜̃z2, b̃1 + f̃1 + ˜̃z2] .

The discrete spectrum of the operator 4H̃q
3/2 is a empty set: σdisc(

4H̃q
3/2) = ∅.

c). Let U < 0, − 6B
W ≤ U < − 6B cos

Λ0
3
2

W , cos
Λ0

1

2 > 1
2 cos

Λ0
3

2 , and cos
Λ0

1

2 > 1
2 , or

U < 0, − 12B cos
Λ0
1
2

W ≤ U < − 6B cos
Λ0
3
2

W , and cos
Λ0

1

2 > 1
2 cos

Λ0
3

2 , cos
Λ0

1

2 < 1
2 , or U < 0,
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− 6B cos
Λ0
3
2

W ≤ U < − 12B cos
Λ0
1
2

W , and cos
Λ0

1

2 < 1
2 cos

Λ0
3

2 , cos
Λ0

1

2 < 1
2 . Then the essential

spectrum of the system fourth five-electron quartet state operator 4H̃q
3/2 is the union of

two segments,

σess

(
4H̃q

3/2

)
=
[
ã1 + c̃1 + ẽ1, b̃1 + d̃1 + f̃1

]
∪
[
ã1 + c̃1 + ˜̃z3, b̃1 + d̃1 + ˜̃z3] ,

or
σess

(
4H̃q

3/2

)
=
[
ã1 + c̃1 + ẽ1, b̃1 + d̃1 + f̃1

]
∪
[
c̃1 + ẽ1 + ˜̃z1, d̃1 + f̃1 + ˜̃z1] .

The discrete spectrum of the operator 4H̃q
3/2 is a empty set: σdisc

(
4H̃q

3/2

)
= ∅.

d). Let U < 0, − 6B cos
Λ0
3
2

W ≤ U < 0, and cos
Λ0

1

2 > 1
2 cos

Λ0
3

2 , and cos
Λ0

1

2 > 1
2 , or

cos
Λ0

1

2 < 1
2 , or U < 0, − 12B cos

Λ0
1
2

W ≤ U < 0, and cos
Λ0

1

2 < 1
2 cos

Λ0
3

2 , cos
Λ0

1

2 < 1
2 . Then

the essential spectrum of the system fourth five-electron quartet state operator 4H̃q
3/2 is

consists of a single segment: σess

(
4H̃q

3/2

)
=
[
a1 + c1 + e1, b1 + d1 + f1

]
. The discrete

spectrum of the operator 4H̃q
3/2 is a empty set: σdisc

(
4H̃q

3/2

)
= ∅.

e). Let U > 0, U > 6B
W , and cos

Λ0
1

2 < 1
2 , cos

Λ0
1

2 < 1
2 cos

Λ0
3

2 , or cos
Λ0

1

2 > 1
2 cos

Λ0
3

2 , or

U > 0, U >
12B cos

Λ0
1
2

W , cos
Λ0

1

2 > 1
2 , cos

Λ0
1

2 > 1
2 cos

Λ0
3

2 . Then the essential spectrum of the

system fourth five-electron quartet state operator 4H̃q
3/2 is the union of seven segments,

σess

(
4H̃q

3/2

)
=
[
ã1 + c̃1 + ẽ1, b̃1 + d̃1 + f̃1

]
∪
[
ã1 + c̃1 + z

′′

3 , b̃1 + d̃1 + z
′′

3

]
∪

∪
[
ã1+ẽ1+z

′′

2 , b̃1+f̃1+z
′′

2

]
∪
[
ã1 + z

′′

2 + z
′′

3 , b̃1 + z
′′

2 + z
′′

3

]
∪
[
c̃1+z

′′

1 +z
′′

3 , d̃1+z
′′

1 +z
′′

3

]
∪

∪
[
c̃1 + ẽ1 + z

′′

1 , d̃1 + f̃1 + z
′′

1

]
∪
[
ẽ1 + z

′′

1 + z
′′

2 , f̃1 + z
′′

1 + z
′′

2

]
.

The discrete spectrum of the operator 4H̃q
3/2 consists of no more one point: or

σdisc

(
4H̃q

3/2

)
= ∅, or σdisc

(
4H̃q

3/2

)
=
{
z

′′

1 + z
′′

2 + z
′′

3

}
, where z

′′

1 , z
′′

2 , and z
′′

3 are the

eigenvalues of operators H̃1
2Λ1

, H̃2
2Λ2

, and H̃3
2Λ3

, correspondingly.

f). Let U > 0,
6B cos

Λ0
3
2

W ≤ U < 6B
W , and cos

Λ0
1

2 < 1
2 , cos

Λ0
1

2 > 1
2 cos

Λ0
3

2 , or U > 0,

6B
W ≤ U <

12B cos
Λ0
1
2

W , cos
Λ0

1

2 > 1
2 , cos

Λ0
1

2 > 1
2 cos

Λ0
3

2 , or U > 0,
12B cos

Λ0
1
2

W < U ≤ 6B
W ,

cos
Λ0

1

2 < 1
2 , and cos

Λ0
1

2 > 1
2 cos

Λ0
3

2 . Then the essential spectrum of the system fourth

five-electron quartet state operator 4H̃q
3/2 is the union of four segments,

σess

(
4H̃q

3/2

)
=
[
ã1 + c̃1 + ẽ1, b̃1 + d̃1 + f̃1

]
∪
[
ã1 + c̃1 + z

′′

3 , b̃1 + d̃1 + z
′′

3

]
∪

∪
[
c̃1 + ẽ1 + z

′′

1 , d̃1 + f̃1 + z
′′

1

]
∪
[
c̃1 + z

′′

1 + z
′′

3 , d̃1 + z
′′

1 + z
′′

3

]
,

or

σess

(
4H̃q

3/2

)
=
[
ã1 + c̃1 + ẽ1, b̃1 + d̃1 + f̃1

]
∪
[
ã1 + c̃1 + z

′′

3 , b̃1 + d̃1 + z
′′

3

]
∪

∪
[
ã1 + ẽ1 + z

′′

2 , b̃1 + f̃1 + z
′′

2

]
∪
[
ã1 + z

′′

2 + z
′′

3 , b̃1 + z
′′

2 + z
′′

3

]
.
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The discrete spectrum of the the operator 4H̃q
3/2 is a empty set: σdisc

(
4H̃q

3/2

)
= ∅.

k). Let U > 0,
12B cos

Λ0
1
2

W < U ≤ 6B cos
Λ0
3
2

W , and cos
Λ0

1

2 < 1
2 , cos

Λ0
1

2 < 1
2 cos

Λ0
3

2 , or

U > 0,
6B cos

Λ0
3
2

W < U ≤ 6B
W , cos

Λ0
1

2 > 1
2 , cos

Λ0
1

2 > 1
2 cos

Λ0
3

2 , or U > 0,
6B cos

Λ0
3
2

W < U ≤
12B cos

Λ0
1
2

W , cos
Λ0

1

2 < 1
2 , cos

Λ0
1

2 > 1
2 cos

Λ0
3

2 . Then the essential spectrum of the system

fourth five-electron quartet state operator 4H̃q
3/2 is the union of two segments,

σess

(
4H̃q

3/2

)
=
[
ã1 + c̃1 + ẽ1, b̃1 + d̃1 + f̃1

]
∪
[
c̃1 + ẽ1 + z

′′

1 , d̃1 + f̃1 + z
′′

1

]
,

or
σess

(
4H̃q

3/2

)
=
[
ã1 + c̃1 + ẽ1, b̃1 + d̃1 + f̃1

]
∪
[
ã1 + c̃1 + z

′′

3 , b̃1 + d̃1 + z
′′

3

]
.

The discrete spectrum of the operator 4H̃q
3/2 is a empty set: σdisc

(
4H̃q

3/2

)
= ∅.

l). Let U > 0, 0 < U ≤ 12B cos
Λ0
1
2

W and cos
Λ0

1

2 < 1
2 , cos

Λ0
1

2 < 1
2 cos

Λ0
3

2 , or U > 0,

0 < U ≤ 6B cos
Λ0
3
2

W , cos
Λ0

1

2 > 1
2 cos

Λ0
3

2 , cos
Λ0

1

2 > 1
2 , (cos

Λ0
1

2 < 1
2 ). Then the essential

spectrum of the system fourth five-electron quartet state operator 4H̃q
3/2 is consists of a

single segment: σess(
4H̃q

3/2) = [ã1 + c̃1 + ẽ1, b̃1 + d̃1 + f̃1]. The discrete spectrum of the

operator 4H̃q
3/2 is a empty set: σdisc

(
4H̃q

3/2

)
= ∅.

P r o o f. The proof of Theorems 13–14 is similar to the proof of Theorem 12. 2
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АННОТАЦИЯ

Рассматривается оператор энергии пятиэлектронных систем в модели
Хаббарда, исследуется структура существенного спектра и дискретный
спектр системы в четвертом квартетном состоянии системы. Показа-
но, что существенный спектр системы в четвертом квартетном состоя-
нии является объединением не более чем семи отрезков, а дискретный
спектр состоит из не более чем одной точки.

Ключевые слова: пятиэлектронная система, модель Хаббарда, квар-
тетное состояние, дублетное состояние, секстетное состояние, су-
щественный спектр, дискретный спектр.


