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Structure of essential spectrum and
discrete spectra of the energy operator
of five-electron systems in the Hubbard

model. Fourth quartet state

We consider the energy operator of five-electron systems in the Hubbard model and
investigate the structure of essential spectra and discrete spectrum of the system in
the fourth quartet state of the system. We show that the essential spectrum of the
system in fourth quartet states is the union of at most seven segments, and discrete
spectrum of the system is at most one point.

Key words: five-electron system, Hubbard Model, quartet state, doublet state, sextet
state, essential spectra, discrete spectra.

DOI:  https://doi.org/10.47910/FEMJ202310

Introduction

In the early 1970s, three papers [1-3], where a simple model of a metal was proposed that
has become a fundamental model in the theory of strongly correlated electron systems,
appeared almost simultaneously and independently. In that model, a single nondegenerate
electron band with a local Coulomb interaction is considered. The model Hamiltonian
contains only two parameters: the matrix element ¢ of electron hopping from a lattice
site to a neighboring site and the parameter U of the one-site Coulomb repulsion of two-
electrons. In the secondary quantization representation, the Hamiltonian can be written

as
— E + E + +
H=t am,'ya"H‘ﬂ"/ + U am,Ta’7ﬂvTa‘m,¢am7l’

m, T,y m

where a,f,  and a,, , denote Fermi operators of creation and annihilation of an electron
with spin « on a site m and the summation over 7 means summation over the nearest
neighbors on the lattice.
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The model proposed in [1-3] was called the Hubbard model after John Hubbard, who
made a fundamental contribution to studying the statistical mechanics of that system,
although the local form of Coulomb interaction was first introduced for an impurity
model in a metal by Anderson [4]. We also recall that the Hubbard model is a particular
case of the Shubin-Wonsowsky polaron model [5], which had appeared 30 years before
[1-3]. In the Shubin-Wonsowsky model, along with the on-site Coulomb interaction, the
interaction of electrons on neighboring sites is also taken into account.

The Hubbard model is an approximation used in solid state physics to describe the
transition between conducting and insulating states. It is the simplest model describing
particle interaction on a lattice. Particles can be fermions, as in Hubbard’s original work,
and also bosons. The simplicity and sufficiency of Hubbard Hamiltonian have made the
Hubbard model very popular and effective for describing strongly correlated electron
systems.

The Hubbard model well describes the behavior of particles in a periodic potential
at sufficiently low temperatures such that all particles are in the lower Bloch band and
long-range interactions can be neglected. If the interaction between particles at different
sites is taken into account, then the model is often called the extended Hubbard model.
It was proposed for describing electrons in solids, and it remains especially interesting
since then for studying high-temperature superconductivity. Later, the extended Hubbard
model also found applications in describing the behavior of ultracold atoms in optical
lattices.

In considering electrons in solids, the Hubbard model can be considered a sophis-
ticated version of the model of strongly bound electrons, involving only the electron
hopping term in the Hamiltonian. In the case of strong interactions, these two models
can give essentially different results. The Hubbard model exactly predicts the existence of
so-called Mott insulators, where conductance is absent due to strong repulsion between
particles.

The Hubbard model is based on the approximation of strongly coupled electrons. In
the strongcoupling approximation, electrons initially occupy orbital’s in atoms (lattice
sites) and then hop over to other atoms, thus conducting the current. Mathematically,
this is represented by the so-called hopping integral. This process can be considered
the physical phenomenon underlying the occurrence of electron bands in crystal ma-
terials. But the interaction between electrons is not considered in more general band
theories. In addition to the hopping integral, which explains the conductance of the ma-
terial, the Hubbard model contains the so-called on-site repulsion, corresponding to the
Coulomb repulsion between electrons. This leads to a competition between the hopping
integral, which depends on the mutual position of lattice sites, and the on-site repulsion,
which is independent of the atom positions. As a result, the Hubbard model explains
the metal-insulator transition in oxides of some transition metals. When such a mate-
rial is heated, the distance between nearest-neighbor sites increases, the hopping integral
decreases, and on-site repulsion becomes dominant.

The Hubbard model is currently one of the most extensively studied multielectron
models of metals [6-10]. But little is known about exact results for the spectrum and wave
functions of the crystal described by the Hubbard model, and obtaining the corresponding
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statements is therefore of great interest. The spectrum and wave functions of the system
of two electrons in a crystal described by the Hubbard Hamiltonian were studied in [7].
It is known that two-electron systems can be in two states, triplet and singlet [6-10].
It was proved in [7] that the spectrum of the system Hamiltonian H' in the triplet
state is purely continuous and coincides with a segment [m, M|, and the operator H*®
of the system in the singlet state, in addition to the continuous spectrum [m, M], has
a unique antibound state for some values of the quasimomentum. For the antibound
state, correlated motion of the electrons is realized under which the contribution of
binary states is large. Because the system is closed, the energy must remain constant
and large. This prevents the electrons from being separated by long distances. Next, an
essential point is that bound states (sometimes called scattering-type states) do not form
below the continuous spectrum. This can be easily understood because the interaction is
repulsive. We note that a converse situation is realized for U < 0 : below the continuous
spectrum, there is a bound state (antibound states are absent) because the electrons are
then attracted to one another.

For the first band, the spectrum is independent of the parameter U of the on-site
Coulomb interaction of two electrons and corresponds to the energy of two noninteracting
electrons, being exactly equal to the triplet band. The second band is determined by
Coulomb interaction to a much greater degree: both the amplitudes and the energy of
two electrons depend on U, and the band itself disappears as U — 0 and increases without
bound as U — oco. The second band largely corresponds to a one-particle state, namely,
the motion of the doublet, i.e., two-electron bound states.

The spectrum and wave functions of the system of three electrons in a crystal de-
scribed by the Hubbard Hamiltonian were studied in [11]. In the three-electron systems
are exists quartet state, and two type doublet states. In the work [11] proved that the
essential spectrum of the system in a quartet state consists of a single segment and the
three-electron bound state is absent. It is also shown that the essential spectrum of the
system in doublet states is the union of at most three segments, and it is proved that
three-electron bound states exist in doublet states. In addition, the spectra of this doublet
states are the different.

The spectrum and wave functions of the system of four electrons in a crystal described
by the Hubbard Hamiltonian were studied in [12,13]. In the four-electron systems are
exists a six states: quintet state, three type triplet state, and two type singlet states. In
the work [12] investigated the spectrum and wave functions of four-electron systems in
a Hubbard model in triplet states. In the work [13] considered the spectrum and wave
functions of four-electron systems in a Hubbard model in a quintet and singlet states.

1 Energy operator of five-electron systems in the Hubbard Model.
Fourth quartet state

Here, we consider the energy operator of five-electron systems in the Hubbard model and
investigate the structure of the essential spectrum and discrete spectra of the system for
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fourth quartet state. The Hamiltonian of the considered model has the form

H=A Z Ay Oy + B Z al ~Omtry +U Z a; Tamﬁam 1@m, - (1)

m,y m, T,y

Here, A is the electron energy at a lattice site, B is the transfer integral between neigh-
boring sites (we assume that B > 0 for convenience), 7 = +e;,j = 1,2, ..., v, where e; are
unit mutually orthogonal vectors, which means that summation is taken over the nearest
neighbors, U is the parameter of the on-site Coulomb interaction of two electrons, 7 is
the spin index,y =1 or v =J, 1 or | denote the spin Values s or —5, and a+ and an,
are the respective electron creation and annihilation operators at a 51te m & Z”.

The energy of the system depends on its total spin S. Along with the Hamilto-
nian, the N, electron system is characterized by the total spin S, S = Smazs Smaz —
1,...,Smin, Smaz = %,Smm =0, % Hamiltonian (1) commutes with all components
of the total spin operator S = (ST,87,5%), and the structure of eigenfunctions and
eigenvalues of the system therefore depends on S.

The Hamiltonian H acts in the antisymmetric Fock space Ha,s. Below we give the
constructions of the Fock space F(H).

Let H be a Hilbert space and denote by H™ the n— fold tensor product H" =
HROH ... QH. Weset H* = C and F(H) = @,~,H". The F(H) is called the Fock
space over H; it will be separably, if H is. For example, if H = Ly(R), then an element
1 € F(H) is a sequence of functions

Y= {1/)0,¢1($1)7¢2(~T17$2)71/J3($1,3327$3)7 e },

so that

o0
’wo|2 + Z / |wn(x1,x2, .. .,mn)’2dx1dx2 ...dx, < oco.
nlen

Actually, it is not F(H), itself, but two of its subspaces which are used most frequently
in quantum field theory. These two subspaces are constructed as follows: Let P,, be the
permutation group on n elements, and let {t,,} be a basis for space H. For each o € P,,,
we define an operator (which we also denote by o) on basis elements H", by

o (<ka X o, Q- ®<Pkn) =0k, Q) try Q- X Pr -

The operator o extends by linearity to a bounded operator (of norm one) on space H",

so we can define S, = % > 0. That the operator S,, is the operator of orthogonal
g€P,

projection: S2 = S,,, and S} = S,,. The range of S, is called n— fold symmetric tensor
product of H. In the case, where H = Lo(R) and

R) Q) La(R) X - Q) La(R) = La(R™),

SpH™ is just the subspace of Ly (R™), of all functions, left invariant under any permutation
of the variables. We now define F,(H) = @, -, SnH". The space Fs(H) is called the
symmetrical Fock space over H, or Boson Fock space over H.



116 S. M. Tashpulatov

Let €(.) is function from P, to {1,—1}, which is one on even permutations and

minus one on odd permutations. Define A,, = # > e(o)o; then A, is an orthogonal
oEPy
projector on H". A, H"™ is called the n— fold antisymmetrical tensor product of H. In

the case where H = Lo(R), A, H™ is just the subspace of La(R"™), consisting of those
functions odd under interchange of two coordinates. The subspace F,(H)= @, -, A, H"
is called the antisymmetrical Fock space over H, or the Fermion Fock space over H.
Let ¢g be the vacuum vector in the space ﬁas.
The fourth quartet state corresponds to the free motion of five electrons over the
lattice, and their interactions with the basis functions:

4 3/2 _ ot ot ottt
Imon,rtiezy = Om 1 G p Gy G400

The subspace 47—73 /20 corresponding to the fourth quartet state is the set of all vectors

of the form _ B
)= Z f(m,n, r,t,l)4qil/72n’r,t7l, fels’,

m,n,rt,lEZV

where [$° is the subspace of antisymmetric functions in the space lz((Z")%). We denote
by 4H§/2 the restriction of the operator H to the space 47—[3)/2. We call the operator 4H§/2
the five-electron fourth quartet state operator.

Theorem 1. The subspace 4ﬁ§ /2 is invariant under the operator H, and the operator

4H§ /2 is a bounded self-adjoint operator. It generates a bounded self-adjoint operator

4ﬁg/2, acting in the space l§° as

4H§/2w =
= 5Af(m,n,r,t,l)—l—BZ[f(m—l—T,n,r,t,l)—l—f(m,n—i—T,?“,t,l)—i—f(m,n,r—i— T,t, 1)+ (2)

+f(ma n,r, t + T, l) + f(ma n,r, ta l + T)] + U((SWL,t + 5n,t + 57‘,t + 6l,t)f(ma n,r, ta l)7

q

acts on a vector 1) €* 7—~[3/2

where 6y, ; is the Kronecker symbol. The operator * H

3/2) as

T 3/2
4H§/2w = Z (4H§/2f)(m’n7r7tal)4qrn/’n’r’t’l~

m,n,r,t,l

Proof. We act with the Hamiltonian H on vectors ¢ € 47—73/2 using the standard
anticommutation relations between electron creation and annihilation operators at lattice
sites, {am, a5} = Omndy.8, {am, an s} = {at, ., ar 5} = 6, and also take into account
that a,, ypo = 0, where 0 is the zero element of 4ﬁg /- This yields the statement of the
theorem. a

Lemma 1. The spectra of the operators 4H§/2 and 4F§/2 coincide.

Proof. Because *HY /o and 4F§ /2 are bounded self-adjoint operators, it follows that if

A€ O'(4Hg/2), then the Weyl criterion (see [14], chapter VII, paragraph 3, pp. 262- 263)
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implies that there is a sequence {1;}$2; such that ¢, = >  fi(m,n,r,t, l)4qf’n/2n il
m,n,rt,l R
[lthil] = 1, and
lim [[(*H), — A)es]| = 0. 3)
1— 00

On the other hand,

[QEEPEYEY - (g = A) v (Hg = A) ) =

2
47749
= Z H( Hsp = )‘) fi(m’”’“t7l)H (a;m“:ﬁair“iﬂﬂ@o’“;,Ta%“%“ﬂ“ﬂ‘f’o) =

m,n,r,t,l

2
T74
= Z H (4H3/2 - >\> film,n, ¢, Z)H (az,Tat,WMan,Tam,Ta;,Ta:TaiTazfia;%cpo, ga()) =

m,n,rt,

- Z H (4Hg/2 - )\) fi(m,n,r,t,l)H2 (0, 0) = H (4H§/2 — )\) F;

m,n,r,t,l

2

)

and

||FZH2: Z ‘fi(manvrvtal)F:Hwi||2:1'

m,n,r,t,l

From this and formulas (2), we find that H4ﬁg/2Fi — AF|| = 0, as ¢ — o0, and F; =
=Y fi(m,n,r,t,1). This implies that A € 0(4Fg/2). Consequently, o(*H3 5) C0(4ﬁg/2).
m,n,r,t,l
Conversely, let X € 0(4H§ /2). Again by the Weyl criterion, there then exists a sequence
{F;}22, such that ||F;|| =1 and lim ||(4ﬁ§/2 — M|l = 0.
1—00

2

Setting F; = > fi(m,n,rt,1), we have || F;|| = ( > filmyn, T,t,l)|2> , we

m,n,r,t,l m,n,r,t,l
conclude that |[¢;|| = ||Fi|| = 1 and \|(4F§/2 —NE|| = |\(4F§/2 — AN)i|] = 0 as i — oo.
This means that A € 0(4Hg/2) and hence U(4F§/2) C U(4H§/2
imply 0(4Hg/2) = O'(4Fg/2). g
We let F denote the Fourier transform:

). These two relations

Fila((2°)°) = La((T)°) = *HS o,

where T" is the v— dimensional torus endowed with the normalized Lebesgue measure
d\, \M(T7) = 1.

We set 4f~lg /2 = F 4?3 2F —!. In the quasimomentum representation, the operator
THS /2 acts in the Hilbert space L§*((T")"), where L§® is the subspace of antisymmetric
functions in Lo ((T%)5).

Theorem 2. The Fourier transform of operator 4H§ /2 Is an bounded self-adjoint oper-
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ator 4H =F 4H3/2 F~1, acting in the space 4941 by the formula

3/2
(4HQ/2f> (A 7y, 0,m)= {E)A + 2B Z [cos Ai+cos u;+cos y;+cos 0; +cos m]} X
i=1

Xf(%um@,n)+U/f(8,u,%/\+9—s,n)ds+U/f(/\7smu+9—s,n)d8+ (4)
AU [ Foumsr 0= sonds U [ FOupr,s.0 40— s)ds.

The prove Theorem 2, the Fourier transform of (2) should be considered directly.
Using tensor products of Hilbert spaces and tensor products of operators in Hilbert
spaces [14], we can verify that the operator 4H§/2 can be represented in the form

HY = H,QIQI+TQH; QT+ I HS, (5)

where

(];Tzlf) (A7) = {2A+2BZ [cos)\ —l—cos%}}f(k +U/fs A+0—s)ds

(ﬁgf)(uﬂ):{A—i—QBicos,ui} i, 0 /fs,u—i—@—s)

and

(f[g’f)(&,n): {ZA +2BZ [cos 0;+cos nl}}f(ﬁ,n)—l—U f(s,04n—s)ds+U| f(s,7+n—s)ds,

i=1 Tv Tv

and I is the unit operator in space of two-electron states 7-72.

Therefore, we must investigate the spectrum of the operators IAi:Ql, ﬁ%, and IA{T‘QS

Let the total quasimomentum of the system A; = A + v be fixed. We let Lo(T'y,)
denote the space of functions that are square integrable on the manifold 'y, = {(\,7) :
A4+ = Ay }. It is known [15] that the operator H and the space H2® = L4*((T%)?), where
L5 ((T")?) is the subspace of antisymmetric functions in Ly ((T")?), can be decomposed
into a direct integrals

:/@f[zlAldAl, HY® =/@ﬁggld1\1
Tv Tv

of operators I?%Al and spaces 7—7‘2’15\1 such that the spaces ﬁgf\l are invariant under the

operators Hy, , and each operator Hy, acts in space H3, as

(ﬁ]zlAlfAl) A\ =— {2A + 4BZCOS % cos (A;l — A) } fa () + U/fAl(s)ds
i=1 T
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here fr, (s) = f(s,A1—s). _
It is known that the continuous spectrum of operator H21A1 is independent of the
parameter U and consists of the segments

72A74BZCOS %,72A+4BZCOS%

=1 i=1

(;X1:: an17A4K1]::

Definition 1. The eigenfunction px, € L3*((T")?) of the operator FNI21A1 correspond-
ing to an eigenvalue zp, ¢ G} is called a at U > 0 antibound state (at U < 0 bound

state) of operator ﬁ21A1 with the quasimomentum Aq, and the quantity za, is called the
energy of this state.

We set
d81d82...d8V

—2A—4BY"7_, cos % (:OS(ATi —5i) — z

Au(z):1+U/

Tv

Lemma 2. A number z = z, ¢ acom(f[%,\l) is an eigenvalue of operator ETQlAl if and
only if it is a zero of the function A,(z), i.e., A,(z9) = 0.

Proof. Let the number z = 29 ¢ [m} , M} | be an eigenvalue of the operator ﬁzlAl,
and @y, (z) be the corresponding eigenfunction, i.e.

_ {QA +4B Zcos % cos <A21 - A) } oa, (A) + U/cp,\l(s)ds = zopa, (7).
i=1

TV

~ Al Af
2A+4BZCOS?COS (2 — /M)] - Z] on, ().

i=1

Let
Ya, (7) =

Then

U
1/1A1(m)+/_ ( —ti)} _Zu)Al(t)dt:O,

P [QA +4BY"7_| cos % cos A;

i.e. the number p =1 is a eigenvalue of the operator Kx,(z), where

(KAl (Z)fA1> . / - [2A + 4B 221 CO:-]Ni cos (h — ti):| - zfA1 e

TV

It then follows that A, (zp) = 0.
Now let z = zy a zero of the function A,(z), i.e. A (z9) = 0. It follows from the
Fredholm theorem that the homogeneous equation

Ya, () + U/ Yp, (s)ds1dsy...ds,

i i =0
2 —2A—4ABY7 | cos % cos (% — sz) -z

has a nontrivial solution. This means that the number z = 2y is an eigenvalue of the
operator Hj, . |
We consider the one-dimensional case.
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Theorem 3. Atv =1andU < 0 (U > 0), and for all values of parameters of the Hamil-
tonian, the operator H21A1 has a unique two-electron bound state (antibound state) ¢ with

the energy value z; = —2A — \/U2 + 16 B2 cos? % (31 =-2A+ \/U2 + 16 B2 cos? A21>,

that is below (above) the continuous spectrum of the operator ﬁ21A1a ie., z1 < m/lh
(5> ML)

Proof. Letv=1andU < O Then the continuous spectrum of operator ﬁzlAl consists
in segment [ 2A —4Bcos A, —2A4 + 4B cos Al] In the one-dimensional case, if U < 0,
then the function A, (z) are monotonlcally decreasing function of z the outside of con-
tinuous spectrum of operator I:T%Al, i.e., in (—oo,my ) and in (M} ,+4o0). For z < mj,
the function A;(z) decreasing from 1 to —oo, A1(z) — 1 as z — —o0, A1(z) = —o0 as
z = my, — 0. Therefore, below the value mj the function A,(z) has a single zero at

the point z; = —24 — \/U2 +16B2 cos? &t For z > My the function A;(z) decreasing
from +00 to 1, Ai(z) = +o0 as z — M}, +0, Ai(z) = 1 as z — +o0. Therefore, above
the value M} the function A, (z) cannot vanish.

If v =1 and U > 0, then the function A,(z) increases monotonically outside the
continuous spectrum domain of the operator fIQIAl. For z < mj the function Ai(2)
increases from 1 to +o0, Aj(z) — 1 as z = —oo, Aj(z) = +oo as z = my, — 0.
Therefore, below the value mj the function A, (z) cannot vanish. For z > M} and
U > 0, the function A;(z) increases from —oco to 1, Aj(z) = —oo as z — My +0,
A1(z) = 1 as z = +oo. Therefore, above the value My the function A, (z) has a single

zero at the point 23 = —24 + \/U2 + 16 B2 cos? % O
In the two-dimensional case, we have similar results.

Theorem 4. At v = 2 and U < 0 (U > 0), and for all values of parameters of the
Hamiltonian, the operator I;Ql A, has a unique two-electron bound state (antibound state)
¢ with the energy value z (zl) that is below (above) the continuous spectrum of the
operator H2A , e, Z <mj, (2} > M3 ).

Proof. Letv =2and U < 0. Then the continuous spectrum of operator ﬁgAl consists

in segment {214 4B Z cos® 24+ 4B Z cos &+ A . In the two-dimensional case, if

i=
U < 0, then the functlon A v(z ) are monotonlcally decreasmg function of z the outside

of continuous spectrum of operator H2A17 i.e., in (—oo,m3,) and in (M3 ,+00). For z <
m3, the function Ay(z) decreasing from 1 to —oo, Az(z) — 1 as z = —o00, Ay(z) = —o0
as z = mj, — 0. Therefore, below the value m3  the function A, (z) has a single zero at
the point Z1. For z > M3 the function Ay(z) decreasing from +oo to 1, Ag(z) = 400
as z — Mﬁl +0, Ay(2) = 1 as z — 4o00. Therefore, above the value MXI the function
A, (z) cannot vanish.

If v =2 and U > 0, then the function A,(z) increases monotonically outside the
continuous spectrum domain of operator }NI21 A, - For z < m%l the function A (z) increases
from 1 to 400, Ay(z) = 1 as z = —o0, Ag(z) = 400 as z = m3, — 0. Therefore, below
the value m3  the function A,(z) cannot vanish. For z > M3 the function Ay(2)
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increases from —oo to 1, Ay(z) = —oo as z = MZ +0, Ag(z) — 1 as z — +oo.
Therefore, above the value M3 the function A, (z) has a single zero at the point z. O

We now consider three-dimensional case. Here and hereafter, we denote
dsydsads ds dsads

M= . A123A1 and  m — . 123A
Js 2i=1 €OS 3 (1 cos ( - sz)) Js 2im1 €OS T (1+cos (

Let v=3and U < 0.

)

Theorem 5. a). If U < 0 and U < —57, then the operator H2A has a unique bound
state ¢ with the energy value z- zl, that is below the continuous spectrum of the operator
Hjy ., le, zy <mj,.

b). If U < 0 and —32 < U < 0, then the operator H oa, has no bound state with the
energy value, that is below the continuous spectrum of the operator H2 Ay

¢). IfU >0and U > %, then the operator ﬁzlAl has a unique bound state ¢ with
the energy value zlll, that is above the continuous spectrum of the operator F~I21A1, ie.,
2 >M 3

d). IfU >0and0< U < %, then the operator fI%Al has no bound state with the

energy value, that is above the continuous spectrum of the operator 1?[21 Ay

Proof. Letv =3 and U < 0. Then the continuous spectrum of operator ]“{’21 A, consists

of segment [—2A 4B Z cosi 24+ 4B Z cos 21| . In the three-dimensional case,
=1 i=1
if U < 0, then the functlon A, ( ) are monotonically decreasing function of z the outside

of continuous spectrum of the operator Hj, , i.e., in (—oo mA ) and in (M} ,+00). For
z < mj, the function Ag( ) decreasing from 1 to 1 + 22, Ag(z) — 1as z — —oq,
As(z) > 1+ 9% as z — m3 —0. Therefore the below of Values m3, the function A, (z)

has a single zero at the p01nt zl, if 1 —|— M <0,ie,U< —48 Forz > M3 the function
As(z) decreasing from 1 — 2 > 1 to 1 As(z) = 1-— Z—g as z — My —l—O7 As(z) = 1
as z — +o00. Therefore, the above of values M3 function A, (z) cannot vanish.

Let v = 3 and U > 0. Then the function A, (z) are monotonically increasing function
of z the outside of continuous spectrum of the operator I;T%Al, ie., in (—oo,m} ) and
in (M} ,+00). For z < mj}, the function Ag(z) increasing from 1 to 1+ 24 > 1,
As(z) — 1as z = —o0, Ag(z) — 1+ Y3 as 2 — m} —0. Therefore, the below of values
m3, function A, (z) cannot vanish. For z > My the function As(z) increasing from —oo
to 1 — Y2 As(z )—)1—%asz—>M3 +0, Aq(z )—>1asz—>+oo Therefore the

above of values M} the function A, (z) vanishes at a single point 2, if1-Y2 <0, e,
U> 1B, m
We consider the Watson integral [16]

T T T

_ _ 1 / // 3dxdydz ~ 1,516,
3 3 —cosT — Ccosy — Cos 2
0 0
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Because the measure d\ is normalized,

L, ] /ﬂ /’T dudydz B /ﬂ ]] dudydz W
N 3 —cosxT —Cosy —cosz 34 cosx +cosy+cosz 3

-7 =T =T -7 =T =T

We now consider the case, v = 3 and the total quasimomentum A; of the system have
the form Ay = (Af, A}, A?) = (A9, AD,A9).
Theorem 6. Let v =3 and Ay = (A?,AY,A9). Then

A9 ~
a). IfU <0and U < —%7 then the operator H}, has a unique bound state

(o with the energy value %1, that is below the continuous spectrum of operator ﬁzl Ay 1€
71 < m?’\l.

A9 ~
b). If U < 0 and —% < U < 0, then the operator H}, has no bound state

with the energy value, that is below the continuous spectrum of operator IAEAI.

A
c). IfU>OandU>M

© with the energy value zl , that is above the continuous spectrum of operator PNI21A1, ie.,
z > M3 .

then the operator fI%Al has a unique antibound state

123 cos A2

d).IfU>0and0<U <

with the energy value, that is above the continuous spectrum of operator ﬁzlAl.

, then the operator F~121A1 has no antibound state

Proof. Letv =3, A1 = (A1 A2 A3) (AO AY AO) and U < 0 Then the continuous
spectrum of operator H21A consists of segment {—214 —12Bcos 5+, —2A4 + 12B cos 5

In the three-dimensional case, at U < 0 the function Ag(z) are Inonotonlcally decreasmg

function of z the outside of continuous spectrum of operator Hj}, , i.e., in (—oo,m3 )
2A10 ) ) Ay

and in (M} ,+00). For z < mj the function As(z) decreasing from 1 to 1+ %,

12B cos AL

As(z) > 1 as z — —o0, Az(z) = 1+ 7WA0 as z = m}, — 0. Therefore, the below of
12B cos -+

7WA0<0 le

values m% the function A, (z) has a single zero at the point %, if 1+
12B cos -

0
12B cos 2

U< -2

. For z > M} the function Az(z) decreasing from 1 — — W > 1 to
12Bcos =+

1, As(z) > 1— AAO as z = M} +0, As(z) = 1 as z — 4o00. Therefore, the above
12Bcos -+

of values M3 the function As(z) cannot vanish.

Let v = 3 and U > 0. Then the function Ag(z) are monotonically increasing function
of z the outside of continuous spectrum of the operator ﬁzlAl, i.e., in (—oo0, mil) and in
(M3 ,+00). For z < mj} the function As(z) increasing from 1 to 1+ ﬁ > 1,

(o).} 5

As(z) = 1as z = —o0, Ag(2) & 1+ —— as z — m}, — 0. Therefore, the below of
12B cos -+

values m3  the function A, (z) cannot vanish. Forz > M3 the function Ag(z) increasing

from —oo to 1— AO,Ag()—)l—%aSZ—)MA +0, Asz(z) = las z — +o0.
12B cos —- 12B cos -



Structure of essential spectrum and discrete spectra of the energy operator ... 123

Therefore, the above of values Mﬁl the function A, (z) has a single zero at the point le,’

0
12B cos ATl

if 1 - —YW <0, ie, U> 572 m

12B cos -
Now we consider the operator

(H%f)(u,@)z{A—l—ZB;cosui} 1,0 /fsu—l—@—s)d

and investigate the spectrum of this operator.
Let the total quasimomentum As = p + 6 of the system be fixed. Then the operator
H2 takes the form

(I;@Azf,\Q)( ) = {A+2BZCOS#Z}fA2 U/fA2

where .]?Az(s) - f(SaAQ - S)'

We set dsidss...ds,

A(2)=1-U V .
() / A+2BY . jcoss;—z
TV

Lemma 3. A number z = zy ¢ acont(ﬁ%\z), is an eigenvalue of operator fIQQM if and
only if it is a zero of the function A, (z), i.e., A,(zy) = 0.

It is known that the continuous spectrum of operator IA{@AZ fills the entire interval
[mj’\z, M/’\’J =[A—2Bv, A+ 2Bv].

We consider one-dimensional case.

Theorem 7. At values v =1 and U < 0 (U > 0), and for all values of parameters of
the Hamiltonian, the operator H22A2 has a unique two-electron bound state (antibound

state) ¢ whit the energy value zo = A++U? + 4B? (z, = A — VU? + 4B?), that is above
(below) the continuous spectrum of the operator ﬁQQAQ, Le., zp > My, (Z <mj,).

In two-dimensional case, we have the analogously results.

We consider three-dimensional case.
Theorem 8. a). IfU < 0 and U < —22, then the operator HQA has a unique bound
state p with the energy value Zz. 2’2, that is above the continuous spectrum of the operator
H3,, . ie., zp > M} .

b). If U < 0 and —S2 < U < 0, then the operator H?2 5, has no bound state with the
energy value, that is above the continuous spectrum of the operator H2 Ay

c). IfU >0 and U > , then the operator H2A has a unique antibound state ¢
with the energy value 2, that is below the continuous spectrum of the operator H2 Ay
ie., 22” < miz.

d). IfU >0and 0 < U < %, then the operator fIQQAZ has no antibound state with

the energy value, that is below the continuous spectrum of the operator E@Az.
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Now we consider the operator

(fIS’f)(G, n)= {2A+2B Z [cos 6;+cos 772]} FO.0)+U[ f(s,04n—s)ds+U| f(s,y+n—s)ds,
i=1

TV TV

and investigate the spectrum of this operator. B
Let the total quasimomentum A3 = 6 +n and Ay = v + 7. Then the operator H3
takes the form

(ﬁSAsz3)(0) = {QA + 4B Zcos % cos <A2§ - 91>} fA3(0)+U ﬁ\s (s)ds+U fA4(s)ds,
i=1

TV TV

where fa,(s) = f(s,As —s), and fa,(s) = f(s, Ay — 5).
It is known that the regions of change of parameters A3 and A4 identical, therefore,
the action of operators H3, it is possible write in the next form

- Y Al . -
3 _ 3 3 .
(H2A3fA3) 0) = {QA +4B E 1 cos —* cos (2 — 91) } fas(0) +2U [ fa,(s)ds.
1= Tv
We set

5 (z)—1+2U/ dsidss . ..ds,
' 2 2A+4BY cos 25 cos (h - si) -z

2 2

It is known that the continuous spectrum of operator .F~I§’A3 is independent of the

parameter U and consists of the segments [QA — 4B Z cos %, 2A+ 4B ; cos /\23] .

i=1 i=
Lemma 4. A number z = 2y ¢ Jcont(ﬁg’[\:}) is an eigenvalue of operator ﬁ§A3 if and
only if it is a zero of the function Zy(z), ie., Zy(zo) =0.

We consider the one-dimensional case.
Theorem 9. Ifv =1andU < 0 (U > 0), and for all values of parameters of the Hamilto-
nian, the operator Hg’A3 has a unique two-electron bound state (antibound state) ¢ with

the energy value z3 = 2A — \/4U2 + 16 B2 cos? % (Zg =2A+ \/4U2 + 16 B2 cos? A;),

that is below (above) the continuous spectrum of the operator ﬁg’Ag, ie., z3 < m/l\g
(Eg > MI{3) .

In the two-dimensional case, we have analogously results.

Now we consider three-dimensional case. We denote

d81d82d83

dsidssd
M= Al Al and  m= Al e Al '
A Siyeos 5 (1 cos (5 s0)) A iy eos 3 (14 cos (5 - s1))

Let v = 3.
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Theorem 10. a). IfU <0 and U < —=2, then the operator H‘;A has a unique bound
state ¢ with the energy value Z. 23, that is below the continuous spectrum of the operator
HS’A , e, §3<mf’h

b). IfU < 0 and —28 < U < 0, then the operator H2A has no bound state with the
energy value, that is beIOW the continuous spectrum of the operator H2 As

c). IfU>0andU> 2B
with the energy value z5 , that is above the continuous spectrum of the operator H2 A

then the operator HQA has a unique antibound state
ie., z3 > M3 .

d). IfU>0and0<U < %7 then the operator ﬁg’M has no antibound state with
the energy value, that is above the continuous spectrum of the operator H§A3~

Now we consider the case, when v = 3 and the total quasimomentum Ag of the system
has the form Ag = (Aé,Ag,Ag) = (Ag,A&Ag) .
Theorem 11. Let v = 3 and Az = (A3, A$,AY) . Then

6B cos %g 773 .
a). If U <0 and U < ———;—=, then the operator Hs, = has a unique bound state ¢

with the energy value ?g, that is below the continuous spectrum of the operator ﬁg’As,
ie., Zz <mj,.
Ag ~
b). If U < 0 and —6&:# < U < 0, then the operator HS’A3 has no bound state
with the energy value, that is below the continuous spectrum of the operator H23A3.

A
c). IfU>OandU>%

o with the energy value 23 , that is above the continuous spectrum of the operator H2 A
ie, 23 > Mf{s.

then the operator H2 A, has a unique antibound state

A
d). IFU>0and 0 < U < B2

with the energy value, that is above the continuous spectrum of the operator H2 A+
The spectrum of the operator AQ I + I Q) B, where A and B are densely defined
bounded linear operators, was studied in [17-19]. Explicit formulas were given there that
express the essential spectrum oe55(A Q@ I +1 Q) B) and discrete spectrum ogisc(AQ I+
IQ B) of operator AQI + I @ B in terms of the spectrum o(A) and the discrete
spectrum og4;5.(A) of A and in terms of the spectrum o (B) and discrete spectrum o g;5.(B)

of B :
daise (AQT+1Q) B) =
= {0 (A\0ess(4) + 0 (B)\0ess(B) P\ {(0ess(4) + 0(B)) U (0(A) + 000 (B))},
Gess (AR T +TQ) B) = (00ss(A) + 7(B) ) U ((A) + 00s(B)).

It is clear that o (AQ I +1® B) = {A+p ‘Aeo(A), e U(B)}
We now using the obtaining results and representation (5), we can describe the struc-
ture of essential spectrum and discrete spectrum of the operator of four five-electron

quartet state of the system ng /2

then the operator H2A has no antibound state



126 S. M. Tashpulatov

2 Essential spectra and discrete spectrum of the operator of

fourth five-electron quartet state of the system 4fI§ /o

Theorem 12. a). Let v = 1 and U < 0. Then the essential spectrum of the operator

4ﬁ§ /2 of the system in a fourth five-electron quartet state is exactly the union of seven

segments,

Oess <4ﬁ§/2) =la+ct+eb+d+ flUla+c+z3,b+d+23]U[a+e+ 22,0+ f + 23]U

Ula + 22 + 23,0+ 20 + +23] U [c + 21 + 23, d + 21 + 23U
Uet+e+z,d+ f+a]Ule+ 21+ 22, f +21 + 22

The discrete spectrum of the operator 4ﬁ§ /2 consists of no more then one point: or

Udisc(4ffg/2) =0, or JdiSC(‘l.FNIg/Q) = {21 + 22 + 23}, here and hereafter a = —2A —
ABcoshl, b = —2A + 4Bcostt, ¢ = A—2B,d = A+ 2B, e = 24 — 4Bcos &2,
f =24+ 43005%, 21 = —2A — \/U2+16BQCOSQ%, 29 = A+ VU?+4B?, and
z3 = 2A — \/U2 + 16 B2 cos? %

b). Let v =1 and U > 0. Then the essential spectrum of the operator 1H?  of the

3/2
system in a fourth five-electron quartet state is exactly the union of seven segments,

Cess (4f1§/2) =la+c+eb+d+ flUla+c+Z3,b+d+23]Ula+e+ 22,b+ f + 23]U

U[a+32+53,b+52++53]u[c+§1 +53,d+51+§3]U
Uc+e+z1,d+ f+Z1]Ule+ 21 + 22, f + 21 + Z2].

The discrete spectrum of the operator 4ﬁ§ /2 consists of no more then one point: or

O'disc(4H§/2) =0, or Jdisc(4ﬁ§/2) ={Z1+22+23}. Herez; = —2A+ \/U2 + 1682 cos? %7
% = A—VU? £ 482, and 55 — 24 + \/U2 +16B2 cos? &

Proof. It follows from representation (5) that
o (*H,) = {A+u+0:xeollly,) e o(fIiy,), 0 € oliT5,) },

and one-dimensional case, if U < 0, then the continuous spectrum of operator fNL} A, Con-
sists of segment [m} , M} | = [-2A4 — 4B cos AL 24 +4Bcos 4], and the discrete

spectrum of operator I;T%Al consists of single point z; = —24 — \/U2 + 16 B2 cos? % The

continuous spectrum of operator I?SM consists of segment [m}_, M} | =[A—2B,A+2B],
and the discrete spectrum of operator H22A2 consists of single point 2o = A++/U? + 4B2.
The continuous spectrum of operator HS’A?’ is consists of segment [2A — 4B cos %,

2A + 4B cos %] , and the discrete spectrum of operator I;TSAS consists of single point

z3 = 24 — \/ U2 + 16 B2 cos? % Therefore, the essential spectrum of the system of
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fourth five-electron quartet state operator 4H§ /2 is the union of seven segments, and

the fourth five-electron quartet state operator 4Hg /2 has eigenvalue {z; + 2o + 23}. If
{z1+ 22+ 23} € Ocss (41;[;/2) , then the discrete spectrum of operator H 372 empty set:
Odisc (4ﬁ§/2) =0,if {z1+ 22+ 23} & Oess( Hg/z) then the discrete spectrum of operator

4ﬁg/2 consists of unique eigenvalue {21 + 22 + 23}, i.e., 0gise (41;[;/2) = {21 + 22 + 23}
From here we find the statement a) of theorem 12. The statement b) of theorem 12 is
proved a similarly. O

In the two-dimensional case the similar results occur.

We now consider the three-dimensional case.

In the three-dimensional case, the structure of essential spectra and discrete spectrum
of operator H 3/2 is described by the following theorems:

Theorem 13. Let v =3 and U < 0. Then the followmg statement is holds.
a)LetU<—@M>2Wandm>M(m< )orU<—@M<2Wand

m > I/V,orU<—— m > 1M and m < W orU<—— m < W,andM>2W

or U < —= M < 2VV and m < 1M then the essential spectrum of the system fourth

ﬁve—e]ectron quartet state operator 4H§ /2 is the union of seven segments,

Tess (4H§/2) = {al et e, b+ dy +f1} U [al Fer+ 2a, b+ dy +§3} U
U [a1+61 +§2,b1+f1 +:Zi2} ) [a1 +§2 +§3»b1 +§2 +§3} U
U [cl 15 45 di 4+ 5 +§3} U [cl—i—el + L di 4+ f +§1] U [el +Zi 420 fi+ 2 +§2}.

The discrete spectrum of the operator 4H§/2 consists of no more one point: or

Cdise (413'?‘3/2) =0, or ogisec (4}?3‘3/2) = {%1 + 2o +§g,} , where

Al . A
1= —24— 4B§lcos—1 b1:—2A+4B§71:cos?1, c1=A—6B,
3 Aé 3 Aé
di=A+68, 61:2A—4BE cos f1:2A+4BE cos

i=1 i=1

%1, %2, and 53 are the eigenvalues of the operators E@Al, H. 22A , and ﬁz A5 correspondingly.

b). Let — 6B <U<——,m> 1M,amdM>§VV,o1r—W<U< 2B m<lM
andm>%VV,or %\]43<U<—ﬁ,m> VV,andM<2VV,or Z§VJ?<U<—H m <
%VV,andm>%M7or—%§U<—— M>2VV,andm< 1I/V,0r—@<U<——
M < %VV, and m < %M . Then the essential spectrum of the system fourth five-electron

quartet state operator 4flg /2 is the union of four segments,

Tess (41?;3/2) = [Ch +c1+ e, b +dy +f1} U [Ch +er+ 23,01+ dy +§3} U

Ula+ 5+ 5 di+5+5] U |a+a+3d+fi+h),
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or
Tess (4ffg/2) = [a1+cl +el,b1+d1+f1} U [al e+ 23,0+ d +§3} U
U [al 3y 4 23, by + 2o +§3} U [a1+el +Za, by + fu +§2},
or
Tess <4H§/2) = {Ch +c +€1,b1+d1+f1} U [a1 tey+ 20,01+ fi +§2} U
U {61 +§1 +§2,f1 JF%l +§2} U [01+€1 +§1,d1+f1 +§1}-

The discrete spectrum of the operator 4ﬁq/ is a empty set: ogise (4 3/2) = 0.

c).Let =38 <U < 2B M > 2W,andm > LM, or =22 <U < 4B 'm > 1W, and
m<iM, or—S8 <U < -2B M<2W andm>1W,or——<U<—— m>1M
andm<%VV,or—%§U<—%,m< W, and M > QI/V,or—f\f §U<—%7

m < %M ,and M < 2W Then the essential spectrum of the system fourth five-electron

quartet state operator 4pd

3/2 is the union of two segments,

Oess (4ﬁ§/2) = |:a1 +c1+e,b +dy +f1:| U {al + +§3,b1 +dp +§3] ,
or ~ = =
Tess <4H§/2) = [a1 +cte,bi+di +f1} U [61 +e1+21,d1+ fi +21} ;

or ~ ~
Uess( H§/2) = [a1 +c1+er, b +d1+f1} U {(h +e1+ 22,01 + f1 +52} :

The discrete spectrum of the operator 4ﬁg/2 is a empty set: ggisc (4flg/2) = 0.

d). Let =22 < U <0, M > 2W (M < 2W)andm> iM, or—%<U<0
m > iW (m<%W)andm<%M,orf—<U<0 m > M(m< $M)and m < W.
Then the essential spectrum of the system fourth five- e]ectron quartet state operator

4Hg/2 is comsists of a single segment: o (4ﬁg/2) = [al +c1 +e1,by +dy + fl}. The

discrete spectrum of the operator 4[?:,')1/2 is a empty set: T g;sc (4 3/2> = 0.

Theorem 14. Let U > 0. Then the following statement is holds.
a).LetU>GB,m>2Wandm<2M or U > Svg,m>2M and M > 1T/V,or

U>%,m<2WandM> tW,or U > 28 M < iW and m < 2M, orU>2A§,

M < 1VV and m > VV, or U > 21\?, m < 2I/V, and m > 1M Then the essential

spectrum of the system fourth five-electron quartet state operator S

3/2 is the union of

seven segments,
Gess (MHi)p) = [ar + 1+ ex,by+dy+ i) U Jan + e 2, by + di + 24| U
U [al—&-el-i-zg,bl—i—ﬁ—i-zg} U {a1+z/2/+zg,b1—|—z;+zg} U [cl+zil+z;,’,d1+z;,—|—z§} U

U [c1 e +2z,di+ fi +z1’} U [61 2+, fit +z§} :
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The discrete spectrum of the operator 4ﬁg /2 consists of no more one point: or
Odisc (4I§g/2) =0, or o4isc (4ﬁg/2> = {z;/ + zg + zg}, where z;,, zg, and zg are the
eigenvalues of the operators I:T2A , fi:%A , and ]EIZA , correspondingly.

b). Let@<U<2J§’,m> 2VV,andM< 1W,or2A§ < U< W,m>2M and
M>1VV,or <U<2A£I3,m>2Mandm<2VV,or <U<F,m<2Mand
M<1VV,0r <U<6Bm>2I/V7andm<2Mor <U<ﬁm<2VV,and

— m?

M > 1 sW. Then the essential spectrum of the system fourth five-electron quartet state
operator 4H§ /2 is the union of four segments,

Tess (41“;3/2) = [al +er+e, by +d +f1} U [al +er+zy,01+ fi +z;'} u
U[cl+el+z'{,d1+f1+zf} u [e1+z'{+z§,f1 +z'{+z§},
or
Oess (41";3‘1/2) = [al +e1+ e, by +dy +f1} U [al +er+zg, b+ d —|—z;:] U
u[cl +el+z/1/,d1+f1+z;} U [c1+z'1'+z;j,d1+z'1’+z§},
or
Cons (4ﬁg/2) = [a,l 14 e, b +dy +f1} U [al fei 42y ,by+ fi +z;'} U
U [al o1+ 2, b1+ dy +z3} U [al + 2y + 25,01 + 29 +z3} .

The discrete spectrum of the operator 4Hq/2 is a empty set: gg;sc ( 3/2) = 0.
c). Let 48 < U < 8B m > 2W, and M < i1W, or 28 < U < 2B m > 2M, and

? m

m>§W,or6B<U§ m,m<2W,andm>2M,orWB<U§QB,M<%VV,and
m<2M,or%<U§%,m<2M,andm>%VV,Of%<U§%,M>%VV,and

m < %W then the essential spectrum of the system fourth five-electron quartet state
operator 4H d 3/2 is the union of two segments,

ess (41§g/2) - [al ferten b +di+ fl] u [cl eyt dy+ fi+ z'l'} :

Or -~ " "
Tess (4H§/2) = {th +c1ter, by +dy +fl} U [a1 +e1+ 2,01+ fi +22} ;

Or 1" "
Oess (4H3/2) = [a1—|—61 +e1,b1 +dy +f1} U [a1 +c +Z3,b1+d1+23] .

The discrete spectrum of the operator H 3/2 is a empty set: gg;sc ( 3/2) = 0.

d). LetO<U<4£,m>2W,andM<1W,orm>2M andM>1I/V,or
O<U<§5,m< W, and m > 2M, or M < W7andm<2M or()<U<%5,
m < 2M, and m > 2VV, or M > 1I/V7 and m < 2VV Then the essential spectrum of the

system fourth five-electron quartet state operator i‘H g /2 consists of a single segment:

Tess (4H§/2) = [al +e1ten, b +di + fl]
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The discrete spectrum of the operator 4[?5/2 is a empty set: 0gsc (41?[51/2) = (.

Let v=3 and Ay = (A?,A?,A?) ,and Az = (Ag,Ag,Ag) .
Theorem 15. Let U < 0. Then the following statement is holds.

AO
12B cos =& A9 A9 A9
a). Let U < O U< ————2%, cos 5 > %, and cos 5+ > %cosf, or U < 0,
AO AO AO 0
U < —@, cosd <« 1 and cosdt > Leoss or cost < lcos , then the essential

2 2 2 2 2 2
spectrum of the system fourth five-electron quartet state operator 4H a 372 is the union of

seven segments,
Oess (4ﬁ§/2> = {51 +& +en,by+di+ J}vl} U [51 1+ 23,00 4+ dy +§3} u

U [61 + &1+ 20, b1 + f1 +§2} U [51 + Zo + 23, b1 + 2o +§3} U
U [51 +Z1+23,d1 + 21 +§3} U {514-514-51,6714‘]?14‘%1} U [51 +% +§2,JF1 + 7 +§2} .
The discrete spectrum of the operator 4Hg /2 consists of no more one point: or
Odisc <4FI§/2> =0, or ogise (4ﬁg/2) = {%1 3y + Z3} . Here and hereafter

A0 A0
= 24— 12Bcos71 by = —2A + 12B cos 71 & =A—6B,

_ A9 _ A9
di=A+6B, ¢ =2A— 123(:0873, fr=2A+ 123cos73,

Z1, Za, and Z3 are the eigenvalues of the operators Hy, , H3,,, and H3, , correspondingly.

O
B 0

b). Let U < 0, f—<U< “# cosA <§, amdcosA2 <%cosA or U <0,

0

12B cos 5- 12B cos -
—% < U < —%, cosA2 < %, amdcosA2 > écosA ,or U <0, —# <

0

U< - cos > 5, and cosA2 > %cos . Then the essential spectrum of the system

fourth ﬁve—e]ectron quartet state operator H3 /2 is the union of four segments,
Gess (M) = [@1+ @ + 80,0+ dy+ L) U [+ 60+ 5B+ d + 5] U
Ula+5+5,d+5+5|u|a+a+5,d+fi+5],
or
Gess (M) = [@1+ @ + 0,0+ dy+ i) U [+ 6+ 5, b+ da + 5] U
U [61 + 22+ 23,b1 + 22 +§3} U [Zil &1+ 20, b1 + A +§2} .
The discrete spectrum of the operator 4H§/2 is a empty set: o’disc(“ﬁgﬂ) = 0.

A
6B cos - A° AQ AO
¢ Let U < 0, =88 < U < —=2572, cos 5t > jcos =8, and cos 5+ > 3, or

A9 A9
12B cos =+ 6B cos =2 A 1 A9 AY 1
- " 2 - 2 1 = 3
U <O, W < U< W 7amdcosZ>2c0527(3082<2,01rl]<07
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AO
12B cos - 1 A2 AY

AO
6B cos —> A9 .
—— S U < ————=, and cos 5+ < 5085, €OS 5 < 1 . Then the essential

W
spectrum of the system fourth five-electron quartet state operator 4H§ /2 is the union of

two segments,
Oess (4_ﬁg/2) = {,dl 4+ +€1,El + C?l + }71} U |:51 +c +§3,gl + (71 +?Z:3} s
or

Tess (41?5/2) = {a’l +a 4 &, +dy +f1} U [51 +é+2,di+ fi +§1} :

The discrete spectrum of the operator 4H§/2 is a empty set: 0g;se (4 3/2) = 0.

0

A
6B = AS A9 0
d). Let U < 0, ** < U < 0, and cos 5~ > %cosf, and cos% > %, or
A0
AY 12B cos =L AO A0 A©
cos 5+ < 3 1,0rU <0, *§U<O,and00571<%c0573,c0871<%. Then

the essential spectrum of the system fourth five-electron quartet state operator 4H ?‘f /2 is
consists of a single segment: Tz ( Hg/Q) = [al +c +e1, by +di + fl}. The discrete

spectrum of the operator 4Hq/2 is a empty set: gg;sc (4 3/2) = 0.

A9 AY A9

e). Let U >0, U > W,andcos A <§, cos—1<70057, or cos 5 >7cos =, or

A9
IQB cos 2

U>0,U>
system fourth ﬁve-electron quartet state operator i g /2 is the union of seven segments,

71 > 5, COS 1 > 2 cos = 2 . Then the essential spectrum of the

Cons (41§3‘1/2) = [al +C 4 é,b+dy +fl} U [El + 0+ 24, b1+ dy —|—z;] U
U [51+€1+z’2’751+ﬁ+z;/} U [a'l + 2y + 29, b1 + 29 + 23} U [a+z;’+zg,c?1+z;’+z;j} U
U {’51 + e +z/1/,£lvl —|—]?1 + z;} U [51 —|—z/1/ + z;ﬁ —1—2/1/ + z;} .
The discrete spectrum of the operator 4ﬁg , consists of no more one point: or

- -~ 1" " " " " "
Odisc (4Hg/2) =0, or o4isc <4Hg/2> = {z1 + 29 + 23 }, where z;, 2z, and z; are the

eigenvalues of operators HY, , H2, , and H3, , correspondingly.
2A,0 124, 2A3 P gLy

AO
6B 3 0
f). LetU>O&<U<?/{,3,andcosA <%7COS%>;COSA,OI‘U>0
A9 A9
12B cos L 12B cos 5k
%§U<%,cos >é,cos1>7cos ,orU>0#<U<GB
0
cos & < L and COSA— > lcos . Then the essential spectrum of the system fourth
2 2 2 2 D V:

five-electron quartet state operator 4H§ /2 is the union of four segments,
ess (4H3/2) - [61 Y b +di+ fl} U [Zil F 3+ 2 by + dy +z§} U
U {’c] + €1 +z/1/,£lvl —|—J71 +z/1/} U {51 —|—z/1/ —|—z§,d} —|—z/1/ —4—2:9:} ,
or
Tess (4323/2) = [Eil +a e, b di ﬁ} U [&’1 YT 4z by b dy 4 z;} U

Ulan+@ 425, B+ fi 2 | U@+ 25+ 25, B o+ 2+ 2
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The discrete spectrum of the the operator H:,)/2 is a empty set: Og;sc (4ﬁg/2) = 0.

A0 A9
12B cos - 6B cos > AY 1 AY 1 A9
=/ " 2 " 2 221 = 1 =
k). Let U > 0, W < U< W ,and0052<2,c082<20052,or
A A9
6B cos A? A9 6B cos —>
U>O,T2<U<6B,C05 > 7cos—1>%cos73,o1rU>O — = <UL
AD
12B cos = A9 AY
%, cos 5+ < %, cos 5+ > %cos . Then the essential spectrum of the system

fourth five-electron quartet state operator 4H g 3/2 is the union of two segments,
Tess (4}?3?/2) = [51 +C e by +di+ ﬁ} U {51 +e 42 ,di+ Lt Z;,} ;

or - ~ ~ ~ "o~ ~ "
Oess (4H§/2) = [’dl +51 +€1,b1 +d1 +f1:| U {Eil +51+23,bl +d1 +2’3:| .

The discrete spectrum of the operator 4[?3/2 is a empty set: 0gisc (4FI§/2> = 0.

AQ
12B cos - 0 0 9
D). Let U > 0,0 < U < % and cos% < %, cos% < %COS%, or U > 0,

AO
6B cos 2 A9 A9 AY A9 .
0<UK< *, cos 5 > Fcos 5, cos 5 > 3, (cos 5+ < ). Then the essential

spectrum of the system fourth five-electron quartet 5tate operator 4fd 3/2 is consists of a

single segment: 0 (* H3/2) =[a; + ¢ + e, b1 + d1 + fl}. The discrete spectrum of the

operator 4Hg/2 is a empty set: 0gsc (4 3/2) = 0.

Proof. The proof of Theorems 13-14 is similar to the proof of Theorem 12. |
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Tawnysamos C. M. CTpyKTypa CYIIECTBEHHOIO CIIEKTPa U JACKPETHBIN
CIIEKTD OIlepaTopa IHEPIUU ISTUIJIEKTPOHHBIX CHCTEM B MOjen Xabbap-
jga. HerBepToe KBApTETHOE COCTOsIHUE. /[a/IbHEBOCTOUHBIH MATEMATHIECKUI

xypraa. 2023. T. 23. Ne 1. C. 112-133.

AHHOTAITNS

PaccmarpuBaercss omepaTop SHEPIUH MSATUIIEKTPOHHBIX CHCTEM B MOJEJIH
Xabbapma, uccieayercsi CTPYKTypa CYIIeCTBEHHOTO CIIEKTPA U TUCKPETHBIH
CIIEKTP CHUCTEMBI B YETBEPTOM KBapTETHOM COCTOsIHUM cHcTeMbl. [lokasza-
HO, 9YTO CYIIECTBEHHBI CHEKTD CUCTEMBI B YETBEPTOM KBapTETHOM COCTOS-
HUU $IBJISI€TCSI O0beNHEHNEM He OoJiee YeM CeMM OTPE3KOB, a JIMCKPETHBIH
CIIEKTD COCTOHUT U3 He OoJjiee YeM OIHON TOYUKH.

KittoueBble cioBa: namussexkmponnas cucmema, modeav Xabbapoda, rweap-
MEMHOE COCTNOANUE, OYOAETNHOE COCTNOAHUE, CEKCMEMMHOE COCMOAHUE, CY-
WeCmBENH cnekmp, Juckpemuoil cnekmp.



