Inverse problem of identification of the diffusion coefficient in diffision-reaction equation |
I. S. Vakhitov |
2010, issue 2, P. 93–105 |
Abstract |
The solvability and uniqueness of inverse extremum problem of identification of the diffusion coefficient in a two-dimensional diffusion-reaction equation are proved. The numerical algorithm of solving the inverse problem is developted and realized. The results of numerical experiments are discussed. |
Keywords: elliptic equation, identification problem, diffusion coefficient, Newton method, uniqueness |
Download the article (PDF-file) |
References |
[1] K. A. Lur'e, Optimal'noe upravlenie v zadachax matematicheskoj fiziki, Nauka, M., 1975, 480 s. [2] S. Ya. Serovajskij, Optimizaciya i differencirovanie, t. 1, Minimizaciya funkcionalov. Stacionarnye sistemy, Print-S, Almaty, 2006, 602 s. [3] K. Ito, K. Kunisch, “Estimation of the convection coefficient in elliptic equations”, Inverse Problems, 1997, no. 14, 995–1013. [4] G. V. Alekseev, E. A. Kalinina, “Identifikaciya mladshego koe'fficienta dlya stacionarnogo uravneniya konvekcii-diffuzii-reakcii”, Sib. zhurn. industr. matem., 10:1 (2007), 3–16. [5] Runsheng Yang Yunhua Ou, “Inverse coefficient problems for nonlinear elliptic equations”, ANZIAM, 49:2 (2007), 271–279. [6] Guy Chavent, Karl Kunisch, “The output least squares identifiability of the duffusion coefficient from an $H^1$-observation in a 2-D elliptic equation”, ESAIM: Control, Optimization and Calculus of Variations, 2002, no. 8, 423–440. [7] Yee Lo Keung, Jun Zou, “Numerical identification of parametersin parabolic system”, Inverse Problems, 1998, no. 14, 83–100. [8] Ian Knowles, “A variational algorithm for electrical impedance tomography”, Inverse Problems, 1998, no. 14, 1513–1525. [9] G. V. Alekseev, “Razreshimost' obratnyx e'kstremal'nyx zadach dlya stacionarnyx uravnenij teplomassoperenosa”, Sib. mat. zhurn., 42:5 (2001), 971–991. [10] C. V. Alekseev, E. A. Adomavichus, “Theoretical analysis of inverse extremal problems of admixture diffusion in viscous fluids”, J. Inv. Ill-Posed Problems, 9:5 (2001), 435–468. [11] G. V. Alekseev, “Obratnye e'kstremal'nye zadachi dlya stacionarnyx uravnenij teorii massoperenosa”, Zh. vych. matem. i mat. fiz., 42:3 (2002), 380–394. [12] G. V. Alekseev, “Edinstvennost' i ustojchivost' v koe'fficientnyx obratnyx e'kstremal'nyx zadachax dlya stacionarnoj modeli massoperenosa”, Dokl. AN, 416:6 (2007), 750–753. [13] G. V. Alekseev, “Koe'fficientnye obratnye e'kstremal'nye zadachi dlya stacionarnyx uravnenij teplomassoperenosa”, Zhurn. vychisl. matem. matem. fiziki, 47:6 (2007), 1055–1076. [14] G. V. Alekseev, O. V. Soboleva, D. A. Tereshko, “Zadachi identifikacii dlya stacionarnoj modeli massoperenosa”, Prikl. mex. texn. fiz., 49:4 (2008), 24–35. [15] G. V. Alekseev, D. A. Tereshko, Analiz i optimizaciya v gidrodinamike vyazkoj zhidkosti, Dal'nauka, Vladivostok, 2008. [16] A. D. Ioffe, V. M. Tixomirov, Teoriya e'kstremal'nyx zadach, Nauka, M., 1974, 240 s. |