Experimental research of Frobenius problem for three arguments |
I. S. Vorobjov |
2011, issue 1, P. 3–9 |
Abstract |
The paper describes some numerical results concerning Frobenius problem. Density distribution functions are calculated for $frac{f(a,b,c)}{sqrt{abc}}$, $frac{N(a,b,c)}{sqrt{abc}}$ and $frac{N(a,b,c)}{f(a,b,c)}$, where $f(a,b,c)$ is modified Frobenius number (largest integer $M$ such that equation $ax+by+cz=M$ does not have positive integer solution) and $N(a,b,c)$ is modified genus of numerical semigroup generated by $a,b,c$. Expectations of the same ratios are calculated numerically. The paper also contains new sharp lower bound for genus: $N(a,b,c) \ge \frac{5\sqrt{3}}{9}\sqrt{abc}$. |
Keywords: continued fractions, Frobenius numbers |
Download the article (PDF-file) |
References |
[1] V. Arnold, Arnold’s Problems, Springer, 2005 mathscinet. [2] S. M. Johnson, “A linear diophantine problem”, Canad. J. Math, 1960, no. 12, 390–398. [3] O. Ro?dseth, “On a Linear Diophantine Problem of Frobenius”, J. Reine Angew. Math, 301 (1978), 171–178. [4] E. S. Selmer and O?. Beyer, “On the linear diophantine problem of Frobenius in three variables”, J. Reine Angew. Math, 301 (1978), 161–170. [5] J. Marklof, “The asymptotic distribution of Frobenius numbers”, Inventiones mathematicae, 181:1, 179–207. [6] A. V. Ustinov, “Reshenie zadachi Arnol'da o slaboj asimptotike dlja chisel Frobeniusa s tremja argumentami”, Matem. sb., 200:4 (2009), 131–160. [7] O. Ro?dseth, “Weighted multi-connected loop networks”, Discrete Mathematics, 148:1-3 (1996), 161–173. [8] L. G. Fel, “Weak asymptotics in the 3-dim Frobenius problem”, Funct. Anal. Other Math., 2009, no. 2, 179–202. [9] H. S. Wilf, “A circle-of-lights algorithm for the “money-changing problem”, Am. Math. Monthly, 85 (1978), 562–565. [10] V. I. Arnol'd, Jeksperimental'noe nabljudenie matematicheskih faktov, MCNMO, M., 2006. [11] M. Beck, D. Einstein, Sh. Zacks, “Some experimental results on the Frobenius problem”, Experiment. Math., 12:3 (2003), 263–269 [12] D. Beihoffer, J. Hendry, A. Nijenhuis, S. Wagon, “Faster algorithms for Frobenius numbers”, Electron. J. Combin., 12:1 (2005), research paper 27 [13] A. V. Ustinov, “O raspredelenii chisel Frobeniusa s tremja argumentami”, Izv. RAN ser. matem., 74:5 (2010), 145–170 [14] J. L. Davison, “On the Linear Diophantine Problem of Frobenius”, Journal of Number Theory, 48:3 (1994), 353–363 [15] J. Marklof, A. Stro?mbergsson, Diameters of random circulant graphs, arXiv: 1103.3152v1 |