On one extrapolation algorithm for improving the quality of sonar images of the seabed |
Kovalenko E.O., Prokhorov I.V. |
2023, issue 2, P. 211-221 DOI: https://doi.org/10.47910/FEMJ202318 |
Abstract |
The issues of improving the quality of sonar images of the seabed according to measurements of a side-view sonar equipped with several antennas with different widths of the radiation pattern are considered. In the framework of a mathematical model describing the process of pulse sensing in a half-space with diffuse reflection conditions at the boundary, an extrapolation method for suppressing the blurriness of images of the bottom scattering coefficient is proposed. The results of numerical simulations are presented, and the limitations and prospects of applying the extrapolation approach are indicated. |
Keywords: radiation transfer equation, inverse problem, bottom scattering coefficient, side-scan sonar, seabed images, extrapolation. |
Download the article (PDF-file) |
References |
[1] I. V. Prokhorov, A. A. Sushchenko, “Issledovanie zadachi akusticheskogo zondirovaniia morskogo dna metodami teorii perenosa izlucheniia”, Akusticheskii zhurnal, 61:3 (2015), 400–408. [2] E. O. Kovalenko, I. V. Prokhorov, “Opredelenie koeffitsienta donnogo rasseianiia pri mnogoluchevom zondirovanii okeana”, Dal'nevost. matem. zhurn., 19:2 (2019), 206–222. [3] E. O. Kovalenko, I. V. Prokhorov, “Lokalizatsiia linii razryva koeffitsienta donnogo rasseianiia po dannym akusticheskogo zondirovaniia”, Sib. zhurn. industr. matem., 25:1 (2022), 67–79. [4]. R. C. Gonzales, R. E. Woods, Digital image processing, MA Addison-Wesley, Boston, 2001. [5] S. I. Sai, A. G. Shoberg, I. N. Burdinskii, L. A. Naumov, V. V. Zolotarev, “Algoritmy analiza i tsifrovoi obrabotki gidrolokatsionnykh izobrazhenii”, Podvodnye issledovaniia i robototekhnika, 2008, № 2(6), 32–40. [6] A. S. Krylov, A. V. Nasonov, O. S. Ushmaev, “Video super-resolution with fast deconvolution”, Pattern Recognition and Image Analysis, 19:3 (2009), 497–500. [7] A. V. Nasonov, A. S. Krylov, O. S. Ushmaev, “Primenenie metoda superrazresheniia dlia biometricheskikh zadach raspoznavaniia lits v videopotoke”, Sistemy vysokoi dostupnosti, 2009, № 1, 26–34. [8] G. Griffiths, Technology and Applications of Autonomous Underwater Vehicles, CRC Press, London, 2002. [9] Iu. V. Matvienko, V. A. Voronin, S. P. Tarasov, A. V. Sknaria, E. V. Tutynin, “Puti sovershenstvovaniia gidroakusticheskikh tekhnologii obsledovaniia morskogo dna s ispol'zovaniem avtonomnykh neobitaemykh podvodnykh apparatov”, Podvodnye issledovaniia i robototekhnika, 8:2 (2009), 4–15. [10] A. V. Vagin, A. S. Vorotyntseva, “Teoreticheskoe i eksperimental'noe obosnovanie printsipov postroeniia gidrolokatorov obzora donnoi obstanovki”, Izv. SPbGETU «LETI», 15:5/6 (2022), 5–14. [11] A. L. Ageev, G. A. Igumnov, V. B. Kostousov, I. B. Agafonov, V. V. Zolotarev, E. A. Madison, “Sintezirovanie apertury mnogokanal'nogo gidrolokatora bokovogo obzora s kompensatsiei traektornykh nestabil'nostei”, Izvestiia Iuzhnogo federal'nogo universiteta. Tekhnicheskie nauki, 2013, № 3 (140), 140–148. [12] V. B. Kostousov, A. V. Kostousov, “Modelirovanie GBO s sintezirovannoi aperturoi”, Podvodnye issledovaniia i robototekhnika, 2008, № 2 (6), 16–29. [13] A. Ishimaru, Wave Propagation and Scattering in Random Media, Academic Press, New York, 1978. [14] I. V. Prokhorov, A. A. Sushchenko, “Zadacha Koshi dlia uravneniia perenosa izlucheniia v neogranichennoi srede”, Dal'nevostochnyi matematicheskii zhurnal, 18:1 (2018), 101—111. [15] A. A. Amosov, “Initial-Boundary Value Problem for the Non-stationary Radiative Transfer Equation with Diffuse Reflection and Refraction Conditions”, Journal of Mathematical Sciences, 235:2 (2018), 117–137. [16] A. A. Amosov, “Nonstationary radiation transfer through a multilayered medium with reflection and refraction conditions”, Mathematical Methods in the Applied Sciences, 41:17 (2018), 8115–8135. [17] I. V. Prokhorov, “Zadacha Koshi dlia uravneniia perenosa izlucheniia s frenelevskimi i lambertovskimi usloviiami sopriazheniia”, Matem. zametki, 105:1 (2019), 95–107. [18] M. A. Penkin, A. S. Krylov, A. V. Khvostikov, “Gibridnyi metod podavleniia ostsilliatsii Gibbsa na izobrazheniiakh magnitno-rezonansnoi tomografii”, Programmirovanie, 2021, № 3, 64–72. |