The role of surface tension and wetting in the cultivation of metal products in direct laser 3D printing technologies |
Belozerov N. I., Chekhonin K. A. |
2024, issue 2, P. 157-169 DOI: https://doi.org/10.47910/FEMJ202414 |
Abstract |
The three-dimensional convective heat and mass transfer occurring in a metal melt bath during layer build-up in 3D laser printing technologies (L-DED technology) is considered. The mathematical model of the considered non-isothermal hydrodynamic process with a phase transition is based on the Navier-Stokes, continuity and energy equations, taking into account diffusion, convective and radiative heat losses. The dynamic model of the free surface of the metal melt includes a Laplace pressure jump, Marangoni forces and wetting conditions. The numerical solution of the problem is performed by the method of mixed finite elements with a divergently stable approximation of the main variables. The influence of surface tension and wetting dynamics on the evolution of geometric parameters of a melt bath during thin wall growth is shown. |
Keywords: L-DED technologies, surface tension, wetting, convective heat and mass transfer, phase transition, free surface. |
Download the article (PDF-file) |
References |
[1] Mukherjee T., DebRoy T., Theory and Practice of Additive Manufacturing 1st Edition, Wiley, 2023. [2] Rudsko? V. K. [i dr.], Additivnye tekhnologii. Materialy i tekhnologicheskie prot?sessy, Politekh – Press, SPb, 2021, 515 s. [3] Liu T. S., Chen P., et al., “Review on laser directed energy deposited aluminum alloys”, Int. J. Extrem. Manuf., 6:2, (2024), 022004. [4] Kovalev O., Bedenko D., Zaitsev A., “Development and application of laser cladding modelling technique: From coaxial powder feeding to surface deposition and bead formation”, Appl. Math., 57, (2018), 339–359. [5] Ye W.-S., Sun A.-D., Zhai W.-Z., Wang G.-L., “Finite element simulation analysis of ?ow heat transfer behavior and molten pool characteristics during 0Cr16Ni5Mo1 laser cladding”, J. of Materials Research and Technology, 30, (2024), 2186–2199. [6] Udin I., Valdaytseva E., Hislov N., “Numerical Estimation of the Geometry of the Deposited Layers during Direct Laser Deposition of Multi-Pass Walls”, Metals, 11:12, (2021), 1972. [7] Chekhonin K. A., Vlasenko V. D., “Modelling of capillary coaxial gap ?lling with viscous liquid”, Computational Continuum Mechanics, 12, (2019), 313–324. [8] Chekhonin K. A., Vlasenko V. D., “Three–dimensional Finite Element Model of Three– phase Contact Line Dynamics and Dynamic Contact Angle”, WSEAS transactions on ?uid mechanics, 19, (2024), 577–582. [9] Shikhmurzaev Y. D., “Solidi?cation and dynamic wetting: a uni?ed modeling framework”, Physics of Fluids, 33, (2021), 072101. [10] Herbaut et al R., “A criterion for the pinning and depinning of an advancing contact line on a cold substrate”, Euro. Phys. J. Spec. Top., 229, (2020), 043602. [11] Gielen et al M. V., “Solidi?cation of liquid metal drops during impact”, J. Fluid Mech., 883:A32, (2020), 20. [12] Chekhonin K. A., Vlasenko V. D., “Three-dimensional ?nite element model of the motion of a viscous incompressible ?uid with a free surface, taking into account the surface tension”, AIP conference proceedings. Actual problems of continuum mechanics: experiment, theory, and applications, 207, (2023), 030007. [13] Bulgakov V. K., CHekhonin K. A., Osnovy teorii metoda smeshannykh konechnykh ?lementov, Izd-vo KHabar. politekh. instituta, KHabarovsk, 1999. [14] Belozerov N. I., CHekhonin K. A., “Trekhmernoe konechno-?lementnoe modelirovanie techeniia rasplava metalla so svobodno? poverkhnost?iu v usloviiakh dvizhushchegosia lazernogo istochnika”, Dal?nevostochny? matematicheski? zhurnal, 24:1, (2024), 9–21. [15] Belozerov N. I., CHekhonin K. A., “Samosoglasovannaia chislennaia model? gidrodinamicheskikh prot?sessov v tekhnologii priamogo lazernogo narashchivaniia sloia”, Sbornik tezisov XXVIII Vserossi?sko? konferent?sii po chislennym metodam resheniia zadach teorii uprugosti i plastichnosti, 2023, 16–18. [16] Belozerov N. I., CHekhonin K. A., “Modelirovanie gidrodinamicheskikh prot?sessov v tekhnologii priamogo lazernogo additivnogo prot?sessa”, Sovremennye problemy mekhaniki sploshno? sredy, Tezisy dokladov XXI Mezhdunarodno? konferent?sii, 2023, 12. [17] Yua J., Lin X., Wang J., “Mechanics and energy analysis on molten pool spreading during laser solid forming”, Applied Surface Science, 256, (2010), 4612–4620. [18] Rappaz M., Bullet M., Deville M., Modeling in Materials Science and Engineering, Springer Verlag, Berlin, 2003. [19] Voinov O. V., “Gidrodinamika smachivaniia”, Mekhanika zhidkosti i gaza, 5, (1976), 76–84. |