Far Eastern Mathematical Journal

To content of the issue


The role of surface tension and wetting in the cultivation of metal products in direct laser 3D printing technologies


Belozerov N. I., Chekhonin K. A.

2024, issue 2, P. 157-169
DOI: https://doi.org/10.47910/FEMJ202414


Abstract
The three-dimensional convective heat and mass transfer occurring in a metal melt bath during layer build-up in 3D laser printing technologies (L-DED technology) is considered. The mathematical model of the considered non-isothermal hydrodynamic process with a phase transition is based on the Navier-Stokes, continuity and energy equations, taking into account diffusion, convective and radiative heat losses. The dynamic model of the free surface of the metal melt includes a Laplace pressure jump, Marangoni forces and wetting conditions. The numerical solution of the problem is performed by the method of mixed finite elements with a divergently stable approximation of the main variables. The influence of surface tension and wetting dynamics on the evolution of geometric parameters of a melt bath during thin wall growth is shown.

Keywords:
L-DED technologies, surface tension, wetting, convective heat and mass transfer, phase transition, free surface.

Download the article (PDF-file)

References

[1] Mukherjee T., DebRoy T., Theory and Practice of Additive Manufacturing 1st Edition, Wiley, 2023.
[2] Rudsko? V. K. [i dr.], Additivnye tekhnologii. Materialy i tekhnologicheskie prot?sessy, Politekh – Press, SPb, 2021, 515 s.
[3] Liu T. S., Chen P., et al., “Review on laser directed energy deposited aluminum alloys”, Int. J. Extrem. Manuf., 6:2, (2024), 022004.
[4] Kovalev O., Bedenko D., Zaitsev A., “Development and application of laser cladding modelling technique: From coaxial powder feeding to surface deposition and bead formation”, Appl. Math., 57, (2018), 339–359.
[5] Ye W.-S., Sun A.-D., Zhai W.-Z., Wang G.-L., “Finite element simulation analysis of ?ow heat transfer behavior and molten pool characteristics during 0Cr16Ni5Mo1 laser cladding”, J. of Materials Research and Technology, 30, (2024), 2186–2199.
[6] Udin I., Valdaytseva E., Hislov N., “Numerical Estimation of the Geometry of the Deposited Layers during Direct Laser Deposition of Multi-Pass Walls”, Metals, 11:12, (2021), 1972.
[7] Chekhonin K. A., Vlasenko V. D., “Modelling of capillary coaxial gap ?lling with viscous liquid”, Computational Continuum Mechanics, 12, (2019), 313–324.
[8] Chekhonin K. A., Vlasenko V. D., “Three–dimensional Finite Element Model of Three– phase Contact Line Dynamics and Dynamic Contact Angle”, WSEAS transactions on ?uid mechanics, 19, (2024), 577–582.
[9] Shikhmurzaev Y. D., “Solidi?cation and dynamic wetting: a uni?ed modeling framework”, Physics of Fluids, 33, (2021), 072101.
[10] Herbaut et al R., “A criterion for the pinning and depinning of an advancing contact line on a cold substrate”, Euro. Phys. J. Spec. Top., 229, (2020), 043602.
[11] Gielen et al M. V., “Solidi?cation of liquid metal drops during impact”, J. Fluid Mech., 883:A32, (2020), 20.
[12] Chekhonin K. A., Vlasenko V. D., “Three-dimensional ?nite element model of the motion of a viscous incompressible ?uid with a free surface, taking into account the surface tension”, AIP conference proceedings. Actual problems of continuum mechanics: experiment, theory, and applications, 207, (2023), 030007.
[13] Bulgakov V. K., CHekhonin K. A., Osnovy teorii metoda smeshannykh konechnykh ?lementov, Izd-vo KHabar. politekh. instituta, KHabarovsk, 1999.
[14] Belozerov N. I., CHekhonin K. A., “Trekhmernoe konechno-?lementnoe modelirovanie techeniia rasplava metalla so svobodno? poverkhnost?iu v usloviiakh dvizhushchegosia lazernogo istochnika”, Dal?nevostochny? matematicheski? zhurnal, 24:1, (2024), 9–21.
[15] Belozerov N. I., CHekhonin K. A., “Samosoglasovannaia chislennaia model? gidrodinamicheskikh prot?sessov v tekhnologii priamogo lazernogo narashchivaniia sloia”, Sbornik tezisov XXVIII Vserossi?sko? konferent?sii po chislennym metodam resheniia zadach teorii uprugosti i plastichnosti, 2023, 16–18.
[16] Belozerov N. I., CHekhonin K. A., “Modelirovanie gidrodinamicheskikh prot?sessov v tekhnologii priamogo lazernogo additivnogo prot?sessa”, Sovremennye problemy mekhaniki sploshno? sredy, Tezisy dokladov XXI Mezhdunarodno? konferent?sii, 2023, 12.
[17] Yua J., Lin X., Wang J., “Mechanics and energy analysis on molten pool spreading during laser solid forming”, Applied Surface Science, 256, (2010), 4612–4620.
[18] Rappaz M., Bullet M., Deville M., Modeling in Materials Science and Engineering, Springer Verlag, Berlin, 2003.
[19] Voinov O. V., “Gidrodinamika smachivaniia”, Mekhanika zhidkosti i gaza, 5, (1976), 76–84.

To content of the issue