Far Eastern Mathematical Journal

To content of the issue


Inequalities for derivatives of rational functions with critical values on an interval


Dubinin V. N.

2024, issue 2, P. 187-192
DOI: https://doi.org/10.47910/FEMJ202417


Abstract
Multipoint distortion theorems are proved for rational functions with restrictions on their zeros, poles and critical values.

Keywords:
polynomials, rational functions, critical values, inequalities for derivatives.

Download the article (PDF-file)

References

[1] Rusak V. N., Rat?sional?nye funkt?sii kak apparat priblizheniia, BGU, Minsk, 1979.
[2] Borwein P., Erd`elyi T., “Sharp extensions of Bernstein’s inequality to rational spaces”, Mathematika, 43, (1996), 413–423.
[3] Min G., “Inequalities for rational functions with prescribed poles”, Can. J. Math., 50:1, (1998), 152–166.
[4] Dubinin V. N., “O primenenii konformnykh otobrazheni? v neravenstvakh dlia rat?sional?nykh funkt?si?”, Izv. RAN. Ser. matem., 66:2, (2002), 67–80.
[5] Lukashov A. L., “Neravenstva dlia proizvodnykh rat?sional?nykh funkt?si? na neskol?kikh otrezkakh”, Izv. RAN. Ser. matem., 68:3, (2004), 115–138.
[6] Kalmykov S., Nagy B., Totik V., “Bernstein and Markov type inequalities for rational functions”, Acta Math., 219, (2017), 21–63.
[7] Wali S. L., Shah W. M., “Some applications of Dubinin’s lemma to rational functions with prescribed poles”, J. Math. Anal. Appl., 450:1, (2017), 769–779.
[8] Kalmykov S. I., “O mnogotochechnykh teoremakh iskazheniia dlia rat?sional?nykh funkt?si?”, Sib. matem. zhurn., 61:1, (2020), 107–119.
[9] Dubinin V. N., “O polinomakh s kriticheskimi znacheniiami na otrezke” , Matem. zametki, 78:6, (2005), 827–832.
[10] Dubinin V. N., Condenser capacities and symmetrization in geometric function theory, Birkhauser/ Springer, Basel, 2014.
[11] Goluzin G. M., Geometricheskaia teoriia funkt?si? kompleksnogo peremennogo, Nauka, M., 1966.

To content of the issue