On a geometric theory of the realization of nonlinear controlled dynamic processes in the class of second-order bilinear models |
Lakeyev A. V., Linke Yu. E., Rusanov V. A. |
2024, issue 2, P. 200-219 DOI: https://doi.org/10.47910/FEMJ202419 |
Abstract |
In the development of the general theory of inverse problems of implementation of nonlinear dynamical systems on the basis of geometric constructions of the tensor product of Hilbert spaces, system-theoretic foundations are built for the analytical study of necessary and sufficient conditions for the existence of a differential implementation of a continuous infinite-dimensional dynamical system (represented by a beam of any power of controlled trajectories) in the class of bilinear nonstationary ordinary second order differential equations in a separable Hilbert space. The bilinear eight-variant structure of the differential equations of state of the infinite-dimensional dynamic system under study models the combined nonlinearity of both the trajectory itself and the speed of movement on this trajectory. Along the way, for this dynamic implementation, the topological-metric conditions for the continuity of the projectivization of the nonlinear Rayleigh-Ritz functional operator are analytically substantiated with the calculation of the fundamental group of its image. The results obtained have the potential for the development of geometric systems theory in substantiating the nonlinear analysis of coefficient-operator inverse problems of non-autonomous differential models of multilinear controllable dynamic systems of higher orders. |
Keywords: inverse problems of nonlinear systems analysis, tensor analysis in Hilbert spaces, bilinear non-autonomous differential realization of the second order, Rayleigh-Ritz functional operator. |
Download the article (PDF-file) |
References |
[1] Kalman R., Falb P., Arbib M., Ocherki po matematichesko? teorii sistem, M., 1971. [2] Ahmed N. U., Optimization and Identification of Systems Governed by Evolution Equations on Banach Space, New York, 1988. [3] Dalet?ski? IU. L., Fomin S. V., Mery i different?sial?nye uravneniia v beskonechnomernykh prostranstvakh, M., 1983. [4] Gol?dman N. L., “Opredelenie ko?ffit?sientov pri proizvodno? po vremeni v kvaziline?nykh parabolicheskikh uravneniiakh v prostranstvakh G?l?dera”, Different?sial?nye uravneniia, 48:12, (2012), 1597–1606. [5] Rid M., Sa?mon B., Metody sovremenno? matematichesko? fiziki, t. 1. Funkt?sional?ny? analiz: Per. s angl., M., 1977. [6] Kantorovich L. V., Akilov G. P., Funkt?sional?ny? analiz, M., 1977. [7] Rusanov V. A., Daneev A. V., Lakeyev A. V., Linke Yu. E., “On the differential realization theory of nonlinear dynamic processes in Hilbert space”, Far East Journal of Mathematical Sciences, 97:4, (2015), 495–532. [8] Rusanov V. A., Daneev A. V., Linke IU. ?., “ K geometricheskim osnovam different?sial?no? realizat?sii dinamicheskikh prot?sessov v gil?bertovom prostranstve” , Kibernetika i sistemny? analiz, 53:4, (2017), 71–83. [9] Van der SHaft A., “K teorii realizat?sii neline?nykh sistem, opisyvaemykh different?sial?nymi uravneniiami vysshego poriadka” , Teoriia sistem. Matematicheskie metody i modelirovanie, Sb. state? (red. A.N. Kolmogorov, S.P. Novikov): Per. s angl., M., 1989, 192–237. [10] Lakeev A. V., Linke IU.?., Rusanov V. A., “K strukturno? identifikat?sii neline?nogo reguliatora nestat?sionarno? giperbolichesko? sistemy”, Doklady RAN, 468:2, (2016), 143–148. [11] Ramazanova A. T., Kuliyev H. F., Roesch A., “An inverse problem for determining right hand side of equations for hyperbolic equation of fourth order”, Advances in Differential Equations and Control Processes, 20:2, (2019), 143–161. [12] Lakeev A. V., Linke IU. ?., Rusanov V. A., “K realizat?sii poliline?nogo reguliatora different?sial?no? sistemy vtorogo poriadka v gil?bertovom prostranstve” , Different?sial?nye uravneniia, 53:8, (2017), 1098–1109. [13] Prasolov V. V., ?lementy kombinatorno? i different?sial?no? topologii, M., 2014. [14] Rusanov V. A., Lakeyev A. V., Banshchikov A. V., Daneev A. V., “On the bilinear second-order differential realization of a infinite-dimensional dynamical system: An approach based on extensions to M2-operators”, Fractal and Fractional (Special Issues: Nonlinear Functional Analysis and Applications), 7:4, (2023), 1–18. [15] Kirillov A. A., ?lementy teorii predstavleni?, M., 1978. [16] Rusanov V. A., Antonova L. V., Daneev V. A., “K obratnym zadacham neline?nogo sistemnogo analiza. Bikhevioristicheski? podkhod” , Problemy upravleniia, 5, (2011), 14–21. [17] Kaiser E., Kutz J. N., Brunton S. L., “Sparse identification of nonlinear dynamics for model predictive control in the low-data limit”, arXiv: 1711.05501v2 [math.OC] 30 Sep 2018. [18] Rusanov V. A., SHarpinski? D. IU., “K teorii strukturno? identifikat?sii neline?nykh mnogomernykh sistem”, Prikladnaia matematika i mekhanika, 74:1, (2010), 119–132. [19] Kargapolov M. I., Merzliakov IU. I., Osnovy teorii grupp, M., 1972. [20] Novikov S. P., Ta?manov I. A., Sovremennye geometricheskie struktury i polia, M., 2014. [21] ?ngel?king R., Obshchaia topologiia, M., 1986. [22] Dmitriev A. V., Druzhinin ?. I., II. K teorii priamykh vychislitel?nykh algoritmov parametrichesko? identifikat?sii line?nykh ob”ektov, Sbornik state?: Teoreticheskie i prikladnye voprosy optimal?nogo upravleniia, Nauka, Novosibirsk, 1985, 218–225. [23] Dmitriev A. V., Druzhinin ?. I., “Identifikat?siia dinamicheskikh kharakteristik nepreryvnykh line?nykh modele? v usloviiakh polno? parametrichesko? neopredelennosti”, Izvestiia RAN. Teoriia i sistemy upravleniia, 3, (1999), 44–52. [24] Rusanov V. A., Daneev A. V., Linke IU. ?., “K optimizat?sii prot?sessa iustirovki modeli different?sial?no? realizat?sii mnogomerno? sistemy vtorogo poriadka”, Different?sial?nye uravneniia, 55:10, (2019), 1432–1438. [25] D?iachenko M. I., Ul?ianov P. L., Mera i integral, M., 1998. [26] Lakeev A. V., Linke IU. ?., Rusanov V. A., “Metricheskie svo?stva operatora Releia – Ritt?sa”, Izvestiia vuzov. Matematika, 9, (2022), 54–63. [27] Lakeyev A. V., Rusanov V. A., Daneev A. V., Aksenov Yu. D., “On realization of the superposition principle for a finite bundle of integral curves of a second-order bilinear differential system”, Advances in Differential Equations and Control Processes, 30:2, (2023), 169–197. [28] Gromov V. P., “Analiticheskie resheniia different?sial?no-operatornykh uravneni? v lokal?no vypuklykh prostranstvakh” , Doklady RAN, 394:3, (2004), 305–308. [29] D?edonne ZH., Osnovy sovremennogo analiza, M., 1964. [30] Lakeev A. V., Linke IU. ?., Rusanov V. A., “Operator Releia – Ritt?sa v obratnykh zadachakh poliline?nykh neavtonomnykh ?voliut?sionnykh uravneni? vysshikh poriadkov” , Matematicheskie trudy, 26:2, (2023), 162–176. [31] Willems J. C., “System theoretic models for the analysis of physical systems”, Ric. Aut., 10, (1979), 71–106. [32] Kabanikhin S. I., Obratnye i nekorrektnye zadachi, Novosibirsk, 2009. [33] Popkov Yu. S., “Controlled positive dynamic systems with an entropy operator: Fundamentals of the theory and applications”, Mathematics, 9, (2021), 2585, https://doi.org/10.3390/math9202585. [34] Kosov A. A., Sem?nov ?. I., “ O tochnykh mnogomernykh resheniiakh odno? neline?no? sistemy uravneni? reakt?sii diffuzii”, Different?sial?nye uravneniia, 54:1, (2018), 108–122. |