Far Eastern Mathematical Journal

To content of the issue


Numerical optimization in problems of design multilayer cloaking shells consisting of hyperbolic metamaterials


Lobanov A. V.

2024, issue 2, P. 220-234
DOI: https://doi.org/10.47910/FEMJ202420


Abstract
The article is devoted to the numerical modeling of optimization problems for a 3D model of electrostatics that arise when designing multilayer shielding or cloaking devices. Various shell design options are considered. Based on the analysis of the computational experiments carried out, important properties of optimal solutions are established and it is shown that the resulting optimal solutions correspond to shielding or cloaking devices that have the highest efficiency in the class of devices under consideration.

Keywords:
inverse problems, optimization method, electrostatic cloaking, hyperbolic metamaterials, particle swarm optimization method.

Download the article (PDF-file)

References

[1] Veselago V. G., “?lektrodinamika veshchestv s odnovremenno otrit?satel?nymi znacheniiami ? i µ”, Uspekhi fizicheskikh nauk, 92, (1967), 517–526.
[2] Pendry J. B., “Negative refraction makes a perfect lens”, Phys. Rev. Lett., 85, (2000), 3966–3969.
[3] Shalaev V. M., “Optical negative-index metamaterials”, Nature Photonics, 1, (2007), 41–48.
[4] Liu Y., Zhang X., “Metamaterials: a new frontier of science and technology”, Chem. Soc. Rev., 40, (2011), 2494–2507.
[5] Lai Y., Ng J., Chen H. Y., Han D. Z., “Optical illusion effects created by using metamaterials”, Proceedings of the 2009 International Conference on Electromagnetics in Advanced Applications, Italy, 2009.
[6] Vendik I. B., Vendik O. G., “Metamaterialy i ikh primenenie v tekhnike sverkhvysokikh chastot (Obzor)”, ZHurnal tekhnichesko? fiziki, 83:1, (2013), 3–28.
[7] Sliusar V., “Metamaterialy v antenno? tekhnike: istoriia i osnovnye print?sipy” , ?lektronika: NTB, 7, (2009), 70–79.
[8] Pendry J. B., Wood B., “Metamaterials at zero frequency”, Journal of Physics: Condensed Matter, 19, (2007), 076208:1–9.
[9] Gomory F., Solovyov M., Souc J., Navau C., “Experimental realization of a magnetic cloak”, Science, 335, (2012), 1466–1468.
[10] Kettunen H., Wallen H., Sihvola A., “Cloaking and magnifying using radial anisotropy”, Journal of Applied Physics, 114, (2013), 110–122.
[11] Batool S., Nisar M., Frezza F., Mangini F., “Cloaking using the anisotropic multilayer sphere”, Photonics, 7, (2020), 1–12.
[12] Alekseev G. V., Spivak IU. ?., “Teoreticheski? analiz zadachi magnitno? maskirovki na osnove optimizat?sionnogo metoda”, Different?sial?nye uravneniia, 54:9, (2018), 1155–1166.
[13] Alekseev G. V., Tereshko D. A., “Modelirovanie i optimizat?siia v zadachakh proektirovaniia sfericheskikh sloistykh teplovykh obolochek” , Prikladnaia mekhanika i tekhnicheskaia fizika, 60:2, (2019), 158–168.
[14] Alekseev G. V., Tereshko D. A., “Optimizat?sionny? metod v osesimmetrichnykh zadachakh ?lektrichesko? maskirovki material?nykh tel” , ZHurnal vychislitel?no? matematiki i matematichesko? fiziki, 59:2, (2019), 217–234.
[15] Alekseev G. V., Lobanov A. V., “ Optimizat?sionny? analiz zadach ?lektrostatichesko? maskirovki”, Sibirski? zhurnal industrial?no? matematiki, 23:4, (2020), 5–17.
[16] Alekseev G. V., Spivak IU. ?., “CHislenny? analiz trekhmernykh zadach magnitno? maskirovki na osnove optimizat?sionnogo metoda”, ZHurnal vychislitel?no? matematiki i matematichesko? fiziki, 61:2, (2021), 224–238.
[17] Alekseev G. V., Levin V. A., Tereshko D. A., Analiz i optimizat?siia v zadachakh diza?na ustro?stv nevidimosti material?nykh tel, FIZMATLIT, M., 2021.
[18] Alekseev G. V., Lobanov A. V., “Optimization method for solving cloaking and shielding problems for a 3D model of electrostatics”, Mathematics, 11:6, (2023), 1395.
[19] Poddubny A., Iorsh I., Belov P., Kivshar Y., “Hyperbolic metamaterials”, Nature Photon, 7, (2013), 948–957.
[20] Shekhar P., Atkinson J., Zubin J., “Hyperbolic metamaterials: fundamentals and applications”, Nano Convergence, 1:14, (2014), 1–17.
[21] Ferrari L., Wu C., Lepage D., Zhang X., “Hyperbolic metamaterials and their applications”, Progress in Quantum Electronics, 40, (2015), 1–40.
[22] Davidovich M. V., “Giperbolicheskie metataterialy: poluchenie, svo?stva, primeneniia, perspektivy”, Uspekhi fizicheskikh nauk, 189:12, (2019), 1249–1284.
[23] Poli R., Kennedy J., Blackwell T., “Particle swarm optimization: An overview”, Swarm Intell., 1, (2007), 33–57.
[24] Wang D., Tan D., Liu L., “Particle swarm optimization algorithm: an overview”, Soft Computing, 22, (2018), 387–408.
[25] Bai Z., Li W., Wang L., “Emittance optimization using particle swarm algorithm”, Proc. IPAC2011, 1, (2011), 2271–2273.
[26] Kessentini S., Barchiesi D., “Particle swarm optimization with adaptive inertia weight”, International Journal of Machine Learning and Computing, 5:5, (2015), 368–373.
[27] Gordon K., Kang J., Park C., Lillehei P., “A novel negative dielectric constant material based on phosphoric acid doped poly (benzimidazole)”, Journal of Applied Polymer Science, 125:4, (2012), 2977–2985.

To content of the issue