Far Eastern Mathematical Journal

To content of the issue


Solvability of frequency-dependent model of the complex heat transfer


Pishchikov A. A.

2024, issue 2, P. 252-258
DOI: https://doi.org/10.47910/FEMJ202422


Abstract
A stationary frequency-dependent model of the complex heat transfer is considered. Sufficient conditions for the existence of a weak solution to the posed boundary value problem are found.

Keywords:
stationary diffusion-reaction models, weak solution, radiative heat transfer equations, non-local solvability.

Download the article (PDF-file)

References

[1] Modest M. F., Radiative Heat Transfer, Academic Press, 2013.
[2] Clever D., Lang J., “Optimal control of radiative heat transfer in glass cooling with restrictions on the temperature gradient”, Optimal Control Applications and Methods, 33:2, (2012), 157–175.
[3] Lang J., “Adaptive computation for boundary control of radiative heat transfer in glass”, Journal of Computational and Applied Mathematics, 183:2, (2005), 312–326.
[4] Paquet L., El Cheikh R., Lochegnies D., Siedow N., “Radiative Heating of a Glass Plate”, MathematicS in Action, 5:1, (2012), 1–30.
[5] Kovtaniuk A. E., CHebotarev A. IU., “Stat?sionarnaia zadacha slozhnogo teploobmena”, ZH. vychisl. matem. i matem. fiz., 54:4, (2014), 191–199.
[6] Kovtaniuk A. E., CHebotarev A. IU., “Nelokal?naia odnoznachnaia razreshimost? stat?sionarno? zadachi slozhnogo teploobmena”, ZH. vychisl. matem. i matem. fiz., 56:5, (2016), 816–823.
[7] Chebotarev A. Yu., Grenkin G. V., Kovtanyuk A. E., “Inhomogeneous steady-state problem of complex heat transfer”, ESAIM Math. Model. Numer. Anal., 51:6, (2017), 2511–2519.
[8] Zisman G. A., Todes O. M., Kurs obshche? fiziki, t. III, Nauka, M., 1970.
[9] Lions ZH.-L., Nekotorye metody resheniia neline?nykh kraevykh zadach, M.: Mir, 1972.

To content of the issue