Inverse problem with integral overdetermination for a semilinear parabolic equation |
Chebotarev A. Yu. |
2024, issue 2, P. 280-285 DOI: https://doi.org/10.47910/FEMJ202425 |
Abstract |
An analysis of the inverse problem for a nonlinear parabolic equation with integral overdetermination is presented. Nonlocal estimates of the solution of the inverse problem are obtained, its solvability in time as a whole is proved, and conditions for the uniqueness of the solution are derived. |
Keywords: semilinear parabolic equation, inverse coefficient problem, integral overdetermination, nonlocal unique solvability. |
Download the article (PDF-file) |
References |
[1] Kuttler C., Maslovskaya A., “Hybrid stochastic fractional-based approach to modeling bacterial quorum sensing”, Math. Model., 93, (2021), 360–375. [2] Maslovskaya A., Kuttler C., Chebotarev A., Kovtanyuk A., “Optimal multiplicative control of bacterial quorum sensing under external enzyme impact”, Math. Model. Nat. Phenom., 17, (2022), 29. [3] Chebotarev A. Yu., Pinnau R., “An inverse problem for a quasi-static approximate model of radiative heat transfer”, J. Math. Anal. Appl., 472, (2019), 314–327. [4] CHebotarev A. IU., “Obratnaia zadacha dlia uravneni? slozhnogo teploobmena s frene- levskimi usloviiami sopriazheniia”, ZH. vychisl. matem. i matem. fiz., 61:2, (2021), 303–311. [5] Piatkov S. G., Rotko V. V., “Obratnye zadachi dlia nekotorykh kvaziline?nykh parabolicheskikh sistem s tochechnymi usloviiami pereopredeleniia”, Matem. tr., 22:1, (2019), 178–204. [6] Belonogov V. A., Piatkov S. G., “O nekotorykh klassakh obratnykh zadach opredeleniia ko?ffit?sienta teploobmena v sloistykh sredakh” , Sibirski? matematicheski? zhurnal, 63:2, (2022), 252–271. [7] Piatkov S. G., Baranchuk V. A., “Opredelenie ko?ffit?sienta teploperedachi v matematicheskikh modeliakh teplomassoperenosa”, Matematicheskie zametki, 113:1, (2023), 90–108. [8] Lions ZH.-L., Optimal?noe upravlenie sistemami, opisyvaemymi uravneniiami s chastnymi proizvodnymi, Mir, Moskva, 1972. |