Critical frequencies influence on formulation of the problem of a thin wing oscillation in a gas flow |
R. G. Barantsev |
2003, issue 2, P. 226–230 |
Abstract |
Thin wing oscillation problem is considered in supersonic, transonic and hypersonic flow. Asymptotic formulation of the problem changes with transition over critical frequencies. |
Keywords: thin wing oscillation, gas flow, critical frequencies, flutter |
Download the article (PDF-file) |
References |
[1] R. G. Barancev, “Metod poryadkovyx uravnenij”, Dal'nevostochnyj matematicheskij zhurnal, 2:2 (2001), 5–9. [2] R. G. Barantsev, “Order equations method in non-stationary gasdynamics”, Theory and Applications. Lodz., 6th Conference on Dynamical Systems (December 10–12), Proceedengs, 2001, 19–26. [3] R. G. Barancev, I. A. Mixajlova, I. M. Citelov, “K opredeleniyu poryadka vozmushhayushhix funkcij v metode malyx vozmushhenij”, Inzhen. zh-l, 1:2 (1961), 69–81. [4] R. G. Barancev, Lekcii po transzvukovoj gazodinamike, LGU, L., 1965, 216 s. [5] S. B. Radzevich, “K zadache potencial'nogo obtekaniya tonkogo koleblyushhegosya profilya sverxzvukovym potokom gaza”, Asimptoticheskie metody v teorii sistem, Irkutsk, 1990, 68–76. [6] R. G. Barancev, S. B. Radzevich, “Asimptoticheskaya postanovka zadach o kolebaniyax kryla v transzvukovom potoke na razlichnyx intervalax chastot”, Asimptoticheskie metody v dinamike sistem, Irkutsk, 1985, 174–178. [7] Barancev R.G., Kachaeva I.N., “K opredeleniyu poryadkov vozmushhenij v ravnomernom giperzvukovom potoke”, Zapiski LGI, 52:3 (1974), 97–100. [8] A. O. Lyubin, “Opredelenie poryadkov vozmushhenij pri obtekanii tonkogo koleblyushhegosya profilya ravnomernym giperzvukovym potokom”, Asimptoticheskie metody v teorii sistem, Irkutsk, 1976, 118–132. |