Far Eastern Mathematical Journal

To content of the issue


Critical frequencies influence on formulation of the problem of a thin wing oscillation in a gas flow


R. G. Barantsev

2003, issue 2, P. 226–230


Abstract
Thin wing oscillation problem is considered in supersonic, transonic and hypersonic flow. Asymptotic formulation of the problem changes with transition over critical frequencies.

Keywords:
thin wing oscillation, gas flow, critical frequencies, flutter

Download the article (PDF-file)

References

[1] R. G. Barancev, “Metod poryadkovyx uravnenij”, Dal'nevostochnyj matematicheskij zhurnal, 2:2 (2001), 5–9.
[2] R. G. Barantsev, “Order equations method in non-stationary gasdynamics”, Theory and Applications. Lodz., 6th Conference on Dynamical Systems (December 10–12), Proceedengs, 2001, 19–26.
[3] R. G. Barancev, I. A. Mixajlova, I. M. Citelov, “K opredeleniyu poryadka vozmushhayushhix funkcij v metode malyx vozmushhenij”, Inzhen. zh-l, 1:2 (1961), 69–81.
[4] R. G. Barancev, Lekcii po transzvukovoj gazodinamike, LGU, L., 1965, 216 s.
[5] S. B. Radzevich, “K zadache potencial'nogo obtekaniya tonkogo koleblyushhegosya profilya sverxzvukovym potokom gaza”, Asimptoticheskie metody v teorii sistem, Irkutsk, 1990, 68–76.
[6] R. G. Barancev, S. B. Radzevich, “Asimptoticheskaya postanovka zadach o kolebaniyax kryla v transzvukovom potoke na razlichnyx intervalax chastot”, Asimptoticheskie metody v dinamike sistem, Irkutsk, 1985, 174–178.
[7] Barancev R.G., Kachaeva I.N., “K opredeleniyu poryadkov vozmushhenij v ravnomernom giperzvukovom potoke”, Zapiski LGI, 52:3 (1974), 97–100.
[8] A. O. Lyubin, “Opredelenie poryadkov vozmushhenij pri obtekanii tonkogo koleblyushhegosya profilya ravnomernym giperzvukovym potokom”, Asimptoticheskie metody v teorii sistem, Irkutsk, 1976, 118–132.

To content of the issue