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It is shown that the variation principle can be used as a practical way to find the electron density and the total energy in the frame
of the density functional theory (DFT) without solving of the Kohn-Sham equation. On examples of diatomic systems Si2, Al2, and
N2, the equilibrium interatomic distances and binding energies have been calculated in good comparison with published data. The
method can be improved to simulate nanoparticles containing thousands and millions atoms.

1. Introduction

It is well known [1] that the electron ground state energy Eel

of a quantum system may be found by minimization of the
energy functional which depends on the total electron den-
sity ρ as follows:
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where V , Et, Eex, Ecor, and EH are an external potential, the
kinetic, exchange, correlation, and Hartree energies, corre-
spondingly, and EH is given as follows:
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The first attempt to study the quantum system without
wave functions was made by Thomas and Fermi [2, 3]. They
considered the interrelation of the electron density, the
electronic kinetic energy, and the electrostatic potential of
an isolated atom and have found a simple one-dimensional
equation for the potential. Then their idea has been devel-
oped by a number of authors [4–6], however still nowadays

this theory is used only for single-atomic and other radial
symmetric systems, or for jellium-approached ones [7–9].
Our work demonstrates a possibility to calculate the total
energy and the electron density for neutral many-atomic sys-
tems directly from the minimization of the energy functional
equation (1).

2. Results and Discussion

The variation principle together with the constant number of
electrons N gives
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Thus we have the equation for finding the equilibrium
ρ(�r)
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where ϕ(�r ) = ∫
(ρ(�r′)/|�r − �r′|)d3�r′, μt(ρ) = δT[ρ]/δρ,

μex(ρ) = δEex[ρ]/δρ, and μcor(ρ) = δEcor[ρ]/δρ.
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Equation (4) may be solved using any iteration method
if you can calculate all its components. For simplicity, we
have limited our current consideration by the local density
approximation (LDA), in which
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The correlation potential μcor and the correlation energy
εcor were taken as it was proposed in works [10, 11]. Namely,
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for rs = (4/3πρ)−1/3 ≥ 1.
And

εcor = A ln rs + B + Crs ln rs + Drs,
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for rs = (4/3πρ)−1/3 < 1.
Here A = 0.0311, B = −0.048, C = 0.002, D = −0.0116,

γ = −0.1423, β1 = 1.0529, and β2 = 0.3334 (in a.e.).
The well-known Newton’s iteration method was used to

find ρ(�r ) as a self-consisted solution for (4):

ρi+1 = ρi − F
[
ρi
]

dF
[
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]
/dρi

. (8)

The main problem is to calculate the Coulomb potential
ϕ(�r ) for a many-atomic system, and it is seems that this is
a main reason why there was a little progress on this way.
However, at the last years, the efficient methods for calcula-
tion of Coulomb integrals were developed. Namely, we used
the supercell-cut-off technique [12, 13] and the fast Fourier
transformation code [14].

The second problem is to operate with all-electrons
atomic potentials which have strong singularities leading to
very sharp density peaks and, as a result, to impossibility
to calculate the Coulomb potential correctly through the
Fourier expansion with limited number of plane waves.
Therefore, we worked within the frame of a pseudopotential
version of the DFT theory, constructing pseudopotentials
using FHI98PP code [15] and taking into account only
valence electrons. For simplicity we have considered only
diatomic systems (Si2, Al2, N2), thus the total external
potential V(�r ) was calculated as a sum of pseudopotentials

Vp(�r − �R1) and Vp(�r − �R2) centered on the positions of two

atoms, �R1 and �R2. The sum of pseudoatomic densities, ρp(�r−
�R1) + ρp(�r − �R2), was used as a start density for the Newton’s
iteration procedure. To find the equilibrium interatomic

Table 1: The equilibrium distances and binding energies for Si2,
Al2, and N2. The published data is shown in brackets.

Si2 Al2 N2

d0, Å 2.2 (2.27a) 2.6 (2.51b) 1.1 (1.098c)

Eb, eV 3.3 (3.07a) 1.4 (1.55b) 7.3 (9.42d)
a
Calculated [16]; bcalculated [17]; cexperimental [18]; dexperimental [19].

distance (d0) we considered the total energy Etot as a sum
of the electron energy, Eel, and the energy of the “ion-ion”
repulsion, Erep, that is, the interaction energy of positive-
charged point nucleus

Erep = Z2
v∣

∣∣�R1 − �R2

∣
∣∣

, (9)

where Zv is the number of valence electrons: Zv(Si) = 4,
Zv(Al) = 3, and Zv(N) = 5.

With the self-consisted ρ(�r ), obtained from (4), we cal-
culated the total energy Etot as a function of the interatomic

distance d = |�R1 − �R2|, Etot = Eel + Erep.
Values of the equilibrium distances d0 and binding

energies Eb for studied species are listed in Table 1 comparing
with published data.

3. Summary

Our results show that the calculated equilibrium binding
energies and distances are close to published data; thus we
can be sure that this approach may be used for modeling of
huge particles, probably up to million atoms.

Our consideration is limited by the spin-restricted
case; however, we believe that the spin polarization can be
included as well as the general gradient approximation.

The main advantage of the developed method consists in
the independence of the calculation time from the number
of electrons; it depends linearly on the volume of the system,
or in other words on the number of atoms. Certainly, it does
not give us electron states, but they can be easily calculated
through the usual Kohn-Sham technique if we know the
electron density. We also believe that the proposed approach
can be successfully improved in future for all-electrons
atoms.
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