МОЖНО ЛИ ПОСТРОИТЬ ТРЕУГОЛЬНИК ПО ОСНОВАНИЯМ БИССЕКТРИС?

А. В. Устинов

1. Список Верника

В работе «Лёгкое решение очень трудной геометрической задачи» (см. [4], а также изложение на английском языке [7]) Л. Эйлер поставил вопрос о возможности восстановления треугольника по ортоцентру, центру масс, центрам вписанной и описанной окружностей. Эйлер доказал, что если любые две из четырех данных точек совпадают, то треугольник правильный и совпадают все четыре точки. В этом случае треугольник восстановить нельзя: его стороны могут иметь произвольную длину. Если же данные точки не совпадают, то треугольник по ним определяется однозначно. Тот замечательный факт, что ортоцентр, центр масс и центр описанной окружности лежат на одной прямой (известной сейчас как прямая Эйлера), оказался побочным результатом, которому автор, по-видимому, не придал особого значения.

Позднее оказалось, что много интересных и содержательных задач возникает, если расширить список точек, по которым нужно восстанавливать треугольник. В соответствии с современной традицией здесь предполагается, что построения проводятся с

Работа выполнена при поддержке фонда «Династия».

помощью циркуля и линейки. В статье Эйлера никаких предположений об инструментах построения не делалось, вопрос заключался лишь в однозначности определения вершин треугольника. В современной традиции треугольник может однозначно определяться, но быть при этом непостроимым, аналогично тому как не всегда решается задача о трисекции угла. В статье [9] было предложено рассмотреть задачу о восстановлении треугольника по трем точкам из следующих 16 (конечно же, многие подобные задачи рассматривались задолго до появления статьи [9]):

A,B,C,O — вершины треугольника и центр описанной окружности;

 M_a, M_b, M_c, G — середины сторон треугольника и центр масс; H_a, H_b, H_c, H — основания высот треугольника и ортоцентр; T_a, T_b, T_c, I — основания биссектрис треугольника и центр вписанной окружности.

При таком подходе возникает 139 принципиально различных задач (например, из трёх вариантов A, B, G; B, C, G; A, C, G естественно оставить только один), перечисленных в таблице 1.

В некоторых тройках положение одной точки определяется по положению двух других. Например, таким свойством обладает тройка A, B, M_c . Такие случаи помечены буквой ${\bf R}$ (redundant), задача о восстановлении треугольника для них не имеет однозначного решения. В некоторых тройках присутствует более слабая зависимость. Например, точки A, B, O не могут располагаться произвольно (точка O должна лежать на серединном перпендикуляре к отрезку AB). В зависимости от их взаимного расположения задача либо не имеет решения, либо имеет бесконечно много решений. Такие тройки помечены буквой ${\bf L}$ (locusdependent). Разрешимые задачи имеют статус ${\bf S}$ (solvable), неразрешимые — ${\bf U}$ (unsolvable). Пустое место означает, что ответ на сегодняшний день не известен.

1.	A, B, O	\mathbf{L}	36.	A, M_b, T_c	$ \mathbf{S} $	71.	O, G, H	\mathbf{R}	106.	M_a, H_b, T_c	U
2.	A, B, M_a	\mathbf{S}	37.	A, M_b, I	\mathbf{s}	72.	O, G, T_a	U	107.	M_a, H_b, I	U
3.	A, B, M_c	\mathbf{R}	38.	A, G, H_a	L	73.	O, G, I	U	108.	M_a, H, T_a	U
4.	A, B, G	\mathbf{s}	39.	A, G, H_b	\mathbf{s}	74.	O, H_a, H_b	U	109.	M_a, H, T_b	U
5.	A, B, H_a	\mathbf{L}	40.	A, G, H	\mathbf{s}	75.	O, H_a, H	\mathbf{s}	110.	M_a, H, I	U
6.	A, B, H_c	L	41.	A, G, T_a	\mathbf{s}	76.	O, H_a, T_a	\mathbf{S}	111.	M_a, T_a, T_b	U
7.	A, B, H	\mathbf{S}	42.	A, G, T_b	U	77.	O, H_a, T_b		112.	M_a, T_a, I	\mathbf{s}
8.	A, B, T_a	\mathbf{S}	43.	A, G, I	$ \mathbf{s} $	78.	O, H_a, I		113.	M_a, T_b, T_c	
9.	A, B, T_c	\mathbf{L}	44.	A, H_a, H_b	$ \mathbf{S} $	79.	O, H, T_a	\mathbf{U}	114.	M_a, T_b, I	U
10.	A, B, I	\mathbf{S}	45.	A, H_a, H	\mathbf{L}	80.	O, H, I	\mathbf{U}	115.	G, H_a, H_b	U
11.	A, O, M_a	\mathbf{S}	46.	A, H_a, T_a	$ \mathbf{L} $	81.	O, T_a, T_b	$ m{U} $	116.	G, H_a, H	\mathbf{S}
12.	A, O, M_b	\mathbf{L}	47.	A, H_a, T_b	$ \mathbf{S} $	82.	O, T_a, I	\mathbf{S}	117.	G, H_a, T_a	\mathbf{S}
13.	A, O, G	\mathbf{S}	48.	A, H_a, I	$ \mathbf{S} $	83.	M_a, M_b, M_c	\mathbf{S}	118.	G, H_a, T_b	
14.	A, O, H_a	\mathbf{S}	49.	A, H_b, H_c	$ \mathbf{S} $	84.	M_a, M_b, G	\mathbf{S}	119.	G, H_a, I	
15.	A, O, H_b	\mathbf{S}	50.	A, H_b, H	\mathbf{L}	85.	M_a, M_b, H_a	\mathbf{S}	120.	G, H, T_a	U
16.	A, O, H	\mathbf{S}	51.	A, H_b, T_a	$ \mathbf{S} $	86.	M_a, M_b, H_c	\mathbf{S}	121.	G,H,I	U
17.	A, O, T_a	\mathbf{S}	52.	A, H_b, T_b	$ \mathbf{L} $	87.	M_a, M_b, H	\mathbf{S}	122.	G, T_a, T_b	U
18.	A, O, T_b	\mathbf{S}	53.	A, H_b, T_c	$ \mathbf{S} $	88.	M_a, T_b, T_a	\mathbf{U}	123.	G, T_a, I	
19.	A, O, I	\mathbf{S}	54.	A, H_b, I	$ \mathbf{S} $	89.	M_a, M_b, T_c	\mathbf{U}	124.	H_a,H_b,H_c	\mathbf{S}
20.	A, M_a, M_b	\mathbf{S}	55.	A, H, T_a	$ \mathbf{S} $	90.	M_a, M_b, I	\mathbf{U}	125.	H_a, H_b, H	\mathbf{S}
21.	A, M_a, G	\mathbf{R}	56.	A, H, T_b	\mathbf{U}	91.	M_a, G, H_a	L	126.	H_a, H_b, T_a	\mathbf{S}
22.	A, M_a, H_a	\mathbf{L}	57.	A, H, I	$ \mathbf{S} $	92.	M_a, G, H_b	\mathbf{S}	127.	H_a, H_b, T_c	
23.	A, M_a, H_b	\mathbf{S}	58.	A, T_a, T_b	$ \mathbf{S} $	93.	M_a, G, H	\mathbf{S}	128.	H_a, H_b, I	
24.	A, M_a, H	\mathbf{S}	59.	A, T_a, I	$ \mathbf{L} $	94.	M_a, G, T_a	\mathbf{S}	129.	H_a, H, T_a	L
25.	A, M_a, T_a	\mathbf{S}	60.	A, T_b, T_c	$ \mathbf{S} $	95.	M_a, G, T_b	\mathbf{U}	130.	H_a, H, T_b	U
26.	A, M_a, T_b	\mathbf{U}	61.	A, T_b, I	$ \mathbf{S} $	96.	M_a, G, I	\mathbf{S}	131.	H_a, H, I	\mathbf{S}
27.	A, M_a, I	\mathbf{S}	62.	O, M_a, M_b	$ \mathbf{S} $	97.	M_a, H_a, H_b	\mathbf{S}	132.	H_a, T_a, T_b	
28.	A, M_b, M_c	\mathbf{S}	63.	O, M_a, G	$ \mathbf{S} $	98.	M_a, H_a, L	L	133.	H_a, T_a, I	\mathbf{S}
29.	A, M_b, G	\mathbf{S}	64.	O, M_a, H_a	$ \mathbf{L} $	99.	M_a, H_a, T_a	\mathbf{L}	134.	H_a, T_b, T_c	
30.	A, M_b, H_a	\mathbf{L}	65.	O, M_a, H_b	$ \mathbf{S} $	100.	M_a, H_a, T_b	\mathbf{U}	135.	H_a, T_b, I	
31.	A, M_b, H_b	\mathbf{L}	66.	O, M_a, H	$ \mathbf{S} $	101.	M_a, H_a, I	S	136.	H, T_a, T_b	\boldsymbol{U}
32.	A, M_b, H_c	\mathbf{L}	67.	O, M_a, T_a	\mathbf{L}	102.	M_a, H_b, H_c	\mathbf{L}	137.	H, T_a, I	
33.	A, M_b, H	\mathbf{S}	68.	O, M_a, T_b	U	103.	M_a, H_b, H	S	138.	T_a, T_b, T_c	U
34.	A, M_b, T_a	\mathbf{S}	69.	O, M_a, I	$ \mathbf{S} $	104.	M_a, H_b, T_a	S	139.	T_a, T_b, I	\mathbf{S}
35.	A, M_b, T_b	L	70.	O, G, H_a	S	105.	M_a, H_b, T_b	S			

Таблица 1. Список Верника.

Данные в таблице приводятся по статье [5], с учётом решений задач $81,\,122$ и $136,\,$ приведённых ниже.

Неразрешимость тех или иных задач обычно сводится к следующему утверждению (см. [3, гл. 3]). Напомним, что когда речь идёт о построении числа, подразумевается, что нужно построить отрезок, длина которого равна этому числу.

Теорема 1. Пусть дан отрезок длины 1. Тогда если кубическое уравнение с рациональными коэффициентами не имеет рациональных корней, то ни один из его корней не может быть построен с помощью циркуля и линейки.

Например, задача о построении треугольника по точкам O, G, I, как показано Эйлером в [4], в общем случае сводится к построению корней кубического уравнения. Можно так подобрать исходные данные, что соответствующее им уравнение не будет иметь рациональных корней. Значит, по теореме 1, такая задача (вместе с эквивалентными задачами, см. номера 73, 80 и 121 в приведенной таблице) неразрешима.

2. О ПОСТРОЕНИИ ТРЕУГОЛЬНИКА ПО ОСНОВАНИЯМ БИССЕКТРИС

В статьях [9, 6] оставалась нерешённой задача о возможности построения треугольника по основаниям биссектрис (задача 138). Далее приводится решение, первоначально опубликованное в [8].

Теорема 2. В общем случае восстановление треугольника по основаниям биссектрис (внутренних или внешних углов) с помощью циркуля и линейки невозможно.

Замечание. В статье [10] было доказано, что задача может быть решена с помощью дополнительного инструмента, позволяющего строить гиперболы. В некоторых частных случаях, например, для равнобедренных треугольников, задача допускает решение в рамках стандартного подхода.

Для анализа задачи удобней перейти к барицентрическим координатам (см. [2, § 11]). Барицентрическими координатами точки M относительно треугольника ABC называется набор масс ($\mu_a:\mu_b:\mu_c$), которые нужно поместить в вершины $A,\,B,\,C$, чтобы центр масс полученной системы точек совпал с точкой M:

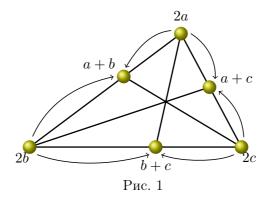
$$M = \frac{\mu_a A + \mu_b B + \mu_c C}{\mu_a + \mu_b + \mu_c}.$$

Координаты ($\mu_a:\mu_b:\mu_c$) определены с точностью до мультипликативной константы, поэтому они записываются аналогично проективным координатам.

Лемма 1. Пусть (x:y:z) — барицентрические координаты точки I относительно треугольника $T_aT_bT_c$. Тогда

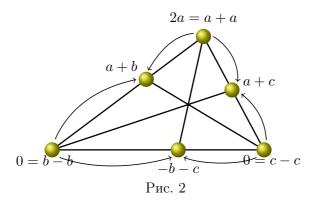
$$A = (-x : y : z), \quad B = (x : -y : z), \quad C = (x : y : -z).$$

Доказательство. Из свойств биссектрисы следует, что точка I относительно треугольника ABC имеет барицентрические координаты (a:b:c)=(2a:2b:2c). Перегруппировав массы (см. рис. 1), получаем, что относительно треугольника $T_aT_bT_c$ точка I имеет координаты (b+c:a+c:a+b).



С другой стороны, точку A относительно треугольника ABC можно задать координатами (2a:0:0)=(2a:b-b:c-c). После

перегруппировки масс (см. рис. 2) получаем, что относительно треугольника $T_aT_bT_c$ точка A имеет координаты (-b-c:a+c:a+b)=(-x:y:z).



Для точек B и C утверждение леммы проверяется аналогично. \Box

Задача 1. Докажите, что утверждение леммы 1 остаётся справедливым, если центр вписанной окружности I заменить на любой из центров вневписанных окружностей I_a , I_b или I_c .

Лемма 2. Пусть Q=(x:y:z) — барицентрические координаты точки Q относительно треугольника $T_aT_bT_c$ со сторонами $u=|T_bT_c|,\ v=|T_aT_c|,\ w=|T_aT_b|$. Если точка T_a лежит на биссектрисе угла T_bQT_c (или смежного c ним угла), то

$$x(w^{2}y^{2} - v^{2}z^{2}) + yz((u^{2} + w^{2} - v^{2})y - (u^{2} + v^{2} - w^{2})z) = 0.$$

Доказательство. (См. [10].) Точка T_a лежит на биссектрисе угла T_bQT_c (или смежного с ним угла) тогда и только тогда, когда $\cos \angle T_aQT_b = \pm \cos \angle T_aQT_c$, то есть $\cos^2 \angle T_aQT_b = \cos^2 \angle T_aQT_c$.

В терминах расстояний это равенство означает, что

$$(|QT_a|^4 - |QT_b|^2 |QT_c|^2)(|QT_b|^2 - |QT_c|^2) - 2|QT_a|^2(v^2 |QT_b|^2 - w^2 |QT_c|^2) - 2(v^2 - w^2)|QT_b|^2 |QT_c|^2 + (1) + v^4 |QT_b|^2 - w^4 |QT_c|^2 = 0.$$

Если две точки $P_1,\,P_2$ относительно треугольника XYZ со сторонами $u=|YZ|,\,v=|XZ|,\,w=|XY|$ имеют соответственно координаты

$$(x_1, y_1, z_1), (x_2, y_2, z_2)$$
 $(x_1 + y_1 + z_1 = x_2 + y_2 + z_2 = 1),$

то расстояние между этими точками $d = |P_1 P_2|$ можно найти по формуле (см. [2, § 11])

$$-d^{2} = (x_{1} - x_{2})(y_{1} - y_{2})w^{2} + (x_{1} - x_{2})(z_{1} - z_{2})v^{2} + (y_{1} - y_{2})(z_{1} - z_{2})u^{2}.$$

Применяя её к точкам $Q=(x:y:z)=\left(\frac{x}{x+y+z},\frac{y}{x+y+z},\frac{z}{x+y+z}\right)$ и $T_a=(1:0:0),$ приходим к равенству

$$|QT_a|^2 = \frac{w^2y^2 + (v^2 + w^2 - u^2)yz + v^2z^2}{(x+y+z)^2}.$$

Если аналогичным образом выразить $|QT_b|^2$, $|QT_c|^2$ и результат подставить в (1), то после сокращения на сомножитель

$$\frac{-(u+v+w)(-u+v+w)(u-v+w)(u+v-w)}{(x+y+z)^4}x \neq 0$$

получится нужное равенство.

Доказательство теоремы 2. Согласно леммам 1 и 2 числа $x,\,y,\,z$ должны удовлетворять уравнениям

$$-x(w^{2}y^{2}-v^{2}z^{2})+yz((w^{2}+u^{2}-v^{2})y-(u^{2}+v^{2}-w^{2})z)=0,$$

$$-y(u^{2}z^{2}-w^{2}x^{2})+xz((u^{2}+v^{2}-w^{2})z-(v^{2}+w^{2}-u^{2})x)=0,$$

$$-z(v^{2}x^{2}-u^{2}y^{2})+xy((v^{2}+w^{2}-u^{2})x-(w^{2}+u^{2}-v^{2})y)=0.$$

Третье уравнение является следствием первых двух, поскольку в рассматриваемой задаче $xyz \neq 0$. Исключая переменную z из

первых двух уравнений, можно получить однородное уравнение четвертой степени относительно неизвестных x и y. Это уже позволяет предположить, что задача не может быть решена с помощью циркуля и линейки (действительно, в общем случае группа Галуа этого уравнения равна S_4).

Однако при дополнительном условии $w^2 = u^2 - uv + v^2$, которое выполняется в треугольниках с $\angle T_c = 60^\circ$, старший коэффициент зануляется и уравнение становится кубическим. Переходя к переменной t, которая определяется равенством bx = tay, получаем равенство

$$3(u-v)vt^3 - (u^2 - 4uv + v^2)t^2 + (u^2 - 4uv + v^2)t + 3u(u-v) = 0. (2)$$

Подбором можно найти значения $u=8,\ v=7,\ w=\sqrt{57}$ ($\angle T_c=60^\circ$), которым соответствует уравнение

$$7t^3 + 37t^2 - 37t + 8 = 0.$$

не имеющее рациональных корней. Значит, по теореме 1, нельзя построить отрезки x, y, z, точку I и сам треугольник ABC. В явном виде треугольник $T_aT_bT_c$ можно нарисовать, выбрав точки $T_a=(7,0), T_b=(4,4\sqrt{3}), T_c=(0,0).$ Трём корням уравнения (2) соответствуют три конфигурации, представленные в таблице 2 (здесь и далее численные значения приводятся с точностью до одной сотой).

t	0.54	0.33	-6.17
A	(-0.38, 6.83)	(1.31, 6.97)	(5.83, 0.75)
B	(1.46, -25.77)	(5.53, 29.39)	(7.66, 0.99)
C	(8.50, 7.02)	(6.65, 6.88)	(6.34, -0.96)
I_*	I = (3.69, 3.05)	$I_b = (3.79, 3.92)$	$I_a = (3.79, 3.92)$

Таблица 2.

Задача 2. Докажите, что при $w^2 = u^2 + uv + v^2$ уравнение, которому удовлетворяет переменная t также становится кубическим. Найдите треугольник $T_aT_bT_c$ с углом 120° при вершине T_c , для которого задача построения треугольника ABC с помощью циркуля и линейки также неразрешима.

3. Решение задач 81, 136 и 122 из списка Верника

Ниже приводятся решения задач 81, 136 и 122, которые, повидимому, найдены впервые.

Теорема 3. В общем случае восстановление треугольника по основаниям двух биссектрис и центру описанной окружености с помощью циркуля и линейки невозможно.

Доказательство. Докажем, что треугольник ABC нельзя построить, если треугольник OT_aT_b — равносторонний. Будем считать, что $|OT_a|=|OT_b|=|T_aT_b|=1$. Из равенств

$$|CT_a| = \frac{ab}{b+c}, \quad |CT_b| = \frac{ab}{a+c}$$

вытекают формулы

$$|OT_a|^2 = R^2 - \frac{a^2bc}{b+c}, \qquad |OT_b|^2 = R^2 - \frac{ab^2c}{a+c}.$$

Из них следует, что равенство $|OT_a| = |OT_b|$ возможно только при a=b. Для равнобедренного треугольника (a=b) формулы для расстояний между данными точками упрощаются:

$$1 = |T_a T_b| = \frac{ac}{a+c},$$

$$1 = |OT_a| = |OT_b| = R^2 - \frac{a^3 c}{a+c}.$$

Выражая R через стороны треугольника и исключая неизвестную c, получаем, что число a является корнем уравнения

$$a^3 - 6a^2 + 9a - 3 = 0. (3)$$

Это уравнение не имеет рациональных корней, и по теореме 1 отрезок длины a, а вместе с ним и треугольник ABC нельзя построить циркулем и линейкой.

Трём корням уравнения (3) соответствуют три конфигурации, представленные в следующей таблице (соответствующие им треугольники изображены на рис. 3).

$a_1 = 2 - 2\cos\frac{2\pi}{9} = 0.46$	$a_2 = 2 - 2\cos\frac{4\pi}{9} = 1.65$	$a_3 = 2 - 2\cos\frac{8\pi}{9} = 3.87$
$c_1 = 1 + 2\cos\frac{8\pi}{9} = -0.87$	$c_2 = 1 + 2\cos\frac{2\pi}{9} = 2.53$	$c_3 = 1 + 2\cos\frac{4\pi}{9} = 1.34$
$R_1 = 2\sin\frac{\pi}{9}$	$R_2 = 2\sin\frac{2\pi}{9}$	$R_3 = 2\sin\frac{4\pi}{9}$
$\alpha = \beta = \frac{\pi}{9}, \gamma = \frac{7\pi}{9}$	$\alpha = \beta = \frac{2\pi}{9}, \gamma = \frac{5\pi}{9}$	$\alpha = \beta = \frac{4\pi}{9}, \gamma = \frac{\pi}{9}$

Таблица 3.

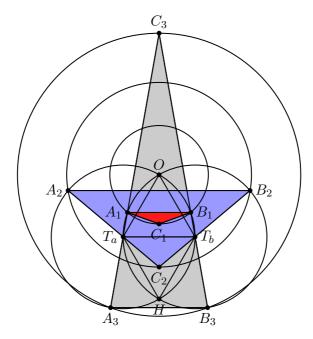


Рис. 3

В явном виде корни уравнения (3) могут быть найдены с помощью тригонометрических замен (методом Виета), см., например, [1, зад. 9.25–26]. Отрицательность величины c_1 означает, что вместо биссектрис внутренних углов нужно рассматривать биссектрисы внешних углов треугольника (прямые A_3C_3 и B_3C_3 на рис. 3).

Ключом к решению задачи 136 служит та же идея использования правильного треугольника.

Теорема 4. В общем случае восстановление треугольника по основаниям двух биссектрис и ортоцентру с помощью циркуля и линейки невозможно.

Доказательство. Снова докажем, что треугольник ABC нельзя построить, если треугольник HT_aT_b — равносторонний, и $|HT_a|=|HT_b|=|T_aT_b|=1$. Из соотношений $|CH|=2R|\cos\gamma|$, $|CT_a|=\frac{ab}{b+c},\,|CT_b|=\frac{ab}{a+c}$ выводятся формулы

$$|HT_a|^2 = 4R^2 \cos^2 \gamma + \left(\frac{ab}{b+c}\right)^2 - \frac{2ab^2|\cos \gamma|}{b+c},$$

$$|HT_b|^2 = 4R^2 \cos^2 \gamma + \left(\frac{ab}{a+c}\right)^2 - \frac{2a^2b|\cos \gamma|}{a+c}.$$

Из них следует, что равенство $|HT_a|=|HT_b|$ возможно только при a=b. Для равнобедренного треугольника (a=b) получаем соотношения

$$1 = |T_a T_b| = \frac{ac}{a+c},$$

$$1 = |HT_a|^2 = |HT_b|^2 = \left(\frac{ac}{a+c}\right)^2 + \frac{(ac)^2}{4a^2 - c^2} - \frac{c^3}{a+c}.$$

Исключая неизвестную c, находим, что число a является корнем уравнения (3). (В частности, треугольник HT_aT_b является равносторонним тогда и только тогда, когда треугольник OT_aT_b —

равносторонний.) Отсюда, как и при доказательстве теоремы 3 следует, что построение треугольника ABC невозможно. Три возможные конфигурации описываются в той же таблице 3 и также изображены на рис. 3.

Теорема 5. В общем случае восстановление треугольника по основаниям двух биссектрис и центру масс с помощью циркуля и линейки невозможно.

Доказательство снова будет строиться исходя из того, что треугольник GT_aT_b — правильный. Однако основная трудность здесь заключается в обосновании равнобедренности треугольника ABC.

Лемма 3. Если GT_aT_b — правильный треугольник, то треугольник ABC — равнобедренный (a = b).

Доказательство. (Вычисления проведены в программе Mathematica.) Предположим, что ABC не является равнобедренным (a > b). Выразим стороны данного треугольника через a, b, c:

$$|GT_a|^2 = \frac{4(bm_b^2 + cm_c^2)}{9(b+c)} - \frac{a^2bc}{(b+c)^2},$$

$$|GT_b|^2 = \frac{4(am_a^2 + cm_c^2)}{9(a+c)} - \frac{ab^2c}{(a+c)^2},$$

$$|T_aT_b|^2 =$$

$$= \frac{abc\left(a(b^2 + c^2 - a^2) + b(a^2 + c^2 - b^2) - c(a^2 + b^2 - c^2) + 3abc\right)}{(a+c)^2(b+c)^2}.$$

Переходя в равенствах

$$|GT_a|^2 = |GT_b|^2$$
, $|GT_a|^2 + |GT_b|^2 = 2|T_aT_b|^2$

к переменным u=a-b>0, v=a+b>0 (для простоты считаем, что c=1), получаем соотношения

$$u^{4}(v+2) + u^{2}(-2v^{3} + 24v + 20) +$$

$$+(v^{5} - 2v^{4} - 8v^{3} - 4v^{2} - 16v - 16) = 0,$$

$$u^{6} - u^{4}(v^{2} + 92v + 120) + u^{2}(-v^{4} + 96v^{3} + 192v^{2} + 232v + 192) +$$

$$+(v+2)^{3}(v^{3} - 10v^{2} + 8v - 8) = 0.$$

Исключая из них неизвестную v, находим уравнение для u:

$$(u^3 + 3u^2 - 3)(u^3 - 3u^2 + 3) = 0.$$

Первый сомножитель на отрезке [0,1] не имеет корней, а второй — имеет единственный корень $u_0 = 2\cos\frac{\pi}{9} - 1$. Исключая неизвестную u, можно получить уравнение для v:

$$(v+1)^3(v+2)(4v^3+2v^2-3v+24)(v^3-3v^2-6v-1)=0.$$

Здесь положительный корень имеет только последний сомножитель $v^3-3v^2-6v-1=0$. Это число $v_0=2\sqrt{3}\cos\frac{\pi}{18}+1$. Проверка показывает, что (u_0,v_0) — постороннее решение $(|GT_a|\neq |GT_b|)$. Значит, предположение, что $a\neq b$ неверно, и треугольник ABC должен быть равнобедренным.

Доказательство теоремы 5. Как уже было сказано раньше, будем рассматривать случай, когда GT_aT_b — правильный треугольник (со стороной 1). Согласно лемме 3, треугольник ABC — равнобедренный (a=b). В этом случае

$$1 = |T_a T_b| = \frac{ac}{a+c},$$

$$1 = |GT_a| = |GT_b| = \left(\frac{a^2}{a+c}\right)^2 + \left(\frac{2h}{3}\right)^2 - \frac{4ah^2}{3(a+c)},$$

где $h=\sqrt{a^2-c^2/4}$ — длина высоты, опущенной на основание треугольника ABC. Исключая переменную c, приходим к уравнению

$$a^3 - 8a^2 + 15a - 9 = 0, (4)$$

не имеющему рациональных корней. По теореме 1 отрезок длины a, а вместе с ним и треугольник ABC нельзя построить циркулем и линейкой. Проверка показывает, что треугольник с нужными свойствами действительно существует. Уравнение (4) имеет единственный действительный корень

$$a = \frac{8}{3} + \frac{2\sqrt{19}}{3} \operatorname{ch}\left(\frac{1}{3}\operatorname{Arch}\left(\frac{187}{38\sqrt{19}}\right)\right) = 5.61\dots,$$

для которого получается треугольник с основанием $c=1.21\ldots$

Задача 3. B каких случаях из равнобедренности треугольника GT_aT_b следует равнобедренность треугольника ABC?

Задача 4. Исследуйте нерешённые задачи из списка Верника.

Список литературы

- [1] Алфутова Н. Б., Устинов А. В. Алгебра и теория чисел. Сборник задач.- М., МЦНМО, 2009.
- [2] Балк М. Б., Болтянский В. Г. *Геометрия масс.* (Библиотечка «Квант», вып. 61.) Изд-во «Наука», Москва, 1987.
- [3] Курант Р., Роббинс Г. Что такое математика. М.: МЦНМО, 2001.
- [4] EULER L. Solutio facilis problematum quorumdam geometricorum difficillimorum. Novi commentarii academiae scientiarum imperialis Petropolitanae, 11 (1767) 103-123.
- [5] Marinković V., Janičić P. Towards Understanding Triangle Construction Problems. — Intelligent Computer Mathematics, 7362 (2012), 127–142.
- [6] MEYERS L. F. Update on William Wernick's "Triangle Constructions with Three Located Points" *Math. Mag.*, **69** (1996), 46–49.

- [7] SANDIFER E. How Euler Did It. The Euler line. MAA Online. 2009. http://www.maa.org/editorial/euler/HEDI%2063%20Euler%20line.pdf
- [8] USTINOV A. V. On the Construction of a Triangle from the Feet of Its Angle Bisectors. Forum Geometricorum, 9 (2009), 279–280.
- [9] WERNICK W. Triangle Constructions with Three Located Points. *Math. Mag.*, **55** (1982), 227–230.
- [10] Yiu P. Conic construction of a triangle from the feet of its angle bisectors. -J. Geom. Graph., 12 (2008), 171–182.

Алексей Устинов, 680000, г. Хабаровск, ул. Дзержинского, 54. Хабаровское отделение Института прикладной математики ДВО РАН.

E-mail address: ustinov@iam.khv.ru