
Conclusions
This approach combines elementary observations, methods from geometry of numbers and analytic number theory. It gives an effective tool for studying continued
fractions and lattice point problems. More applications can be found in the following articles.
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Reduced bases in two-dimensional lattices
Reduced bases are important in different number theory algorithms (fast point multiplication on elliptic curves, prediction of pseudo random generators, numerical
integration, . . . ). Work of these algorithms depends on properties of reduced basis (shorter vectors are better).
Let 1 6 l 6 a, (l, a) = 1 and e1 be the shortest vector of the lattice Λl = {(x, y) : lx ≡ y (mod a)}. Basis (e1, e2) is reduced iff e2 ∈ Ω(e1) where Ω(e1) is the plane
region defined by inequalities

‖e2‖ > ‖e1‖ and ‖e2 ± e1‖ > ‖e2‖.

Moreover vector e2 must lie on the line l(e1) defined by equation det(e1, e2) = a. By averaging over l we can get that vectors e2 distributed uniformly on Ω(e1) ∩ l(e1)
with weight ‖e2‖−1

2 . Suppose e1 =
√

a(α, β), e2 =
√

a(γ, δ).
For example in the case of the most popular ‖ · ‖∞-norm integration over e2 lead to the density function for e1:

α

β

β = 1
α − α

p(α, β) = 4
ζ(2)

p(α, β) = 4
ζ(2)

1−α2

αβ

p(α, β) = 4
ζ(2) min

{
1, 1−α2

αβ

}
(0 6 β 6 α 6 1)

p(α, β) = p(±α,±β) = p(β, α)

By integrating over e1 we can get density function for t = ‖e2‖/
√

a:

t

(1, 4/ζ(2))

p(t) =


0, if t ∈

[
0, 1/
√

2
]
;

4
ζ(2)

(
2t− 1

t +
(1

t − t
)
log
( 1

t2 − 1
))

, if t ∈
[
1/
√

2, 1
]
;

4
ζ(2)

(1
t +

(
t− 1

t

)
log
(
1− 1

t2

))
, if t ∈ [1,∞).
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Frobenius numbers
Let a, b, c be three positive integers with (a, b, c) = 1. It is well-known that all sufficiently large integers are representable as positive linear combinations of a, b,
c. Consider f(a, b, c), the positive Frobenius number of a, b, c, defined to be the largest integer not representable as a positive linear combination of a, b, c. Then
g(a, b, c) = f(a, b, c)− a− b− c is the usual Frobenius number, that is, the largest integer not representable as a non-negative linear combination a, b, c.
Conjecture 2 (Davison, 1994). Average value of normalized Frobenius numbers f(a,b,c)√

abc
over cube [1, N ]3 tends to some constant as N →∞.

Conjecture 3 (Arnold, 1999, 2005). There is weak asymptotic for Frobenius numbers: for arbitrary n average value of f(x1, . . . , xn) over small cube with a center in
(a1, . . . , an) approximately equal to cn

n−1
√

a1 . . . an for some constant cn > 0.
Let x1, x2 > 0 and Ma(x1, x2) = {(b, c) : 1 6 b 6 x1a, 1 6 c 6 x2a, (a, b, c) = 1}.

Theorem 9 (see [7]) Frobenius numbers f(a, b, c) have weak asymptotic 8
π

√
abc:

1

a3/2|Ma(x1, x2)|
∑

(b,c)∈Ma(x1,x2)

(
f(a, b, c)− 8

π

√
abc

)
= Oε,x1,x2

(a−1/6+ε).

Davison’s conjecture holds in a stronger form:
1

|Ma(x1, x2)|
∑

(b,c)∈Ma(x1,x2)

f(a, b, c)√
abc

=
8

π
+ Oε,x1,x2

(a−1/12+ε).

Theorem 10 (see [8]) Normalized Frobenius numbers of three arguments have limiting density function:

1

|Ma(x1, x2)|
∑

(b,c)∈Ma(x1,x2)

f(a,b,c)6τ
√

abc

1 =

∫ τ

0
p(t) dt + Oε,x1,x2,τ(a

−1/6+ε),

where

p(t) =


0, if t ∈ [0,

√
3];

12
π

(
t√
3
−
√

4− t2
)

, if t ∈ [
√

3, 2];

12
π2

(
t
√

3 arccos t+3
√

t2−4
4
√

t2−3
+ 3

2

√
t2 − 4 log t2−4

t2−3

)
, if t ∈ [2, +∞).(

2, 8
√

3/π
)

t√
3

lim
t→2−0

p′(t) = +∞, lim
t→2+0

p′(t) = −∞

p(t) = 18
π3 · 1

t3 + O
( 1

t5

)
(t→∞)

∫∞
0 p(t) dt = 1,

∫∞
0 tp(t) dt = 8

π

The existence of limiting distribution for normalized Frobenius numbers of arbitrary number of arguments was proved by Marklof (2010).
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There are three main Euclidean algorithms: standard, centered and odd. They are based respectively on standard division

a = bq + r, q = ba/bc, 0 6 r < b;

centered division

a = bq + εr, ε = ±1, q =

⌈
a

b
− 1

2

⌉
, 0 6 r 6

b

2
;

and odd division
a = bq + εr, ε = ±1, q = 2

⌈ a

2b

⌉
− 1, 0 6 r 6 b.

Let l(a/b) and h(a/b) be the lengths of centered and odd Euclidean algorithms. Elementary arguments allow to reduce both these algorithms to the classical one.

Theorem 6 (see [5,6]) Let b > 1, 1 6 a < b, (a, b) = 1, ϕ = 1+
√

5
2 . Then

l(a/b) = sϕ−1(a/b).

Moreover, if b/2 6 a, aa? ≡ 1 (mod b), 1 6 a? < b then

h

(
a?

b

)
+ h

(
b− a?

b

)
= sϕ

(a

b

)
+ sϕ−1

(a

b

)
.

Here we used “reasonable” extension of Gauss — Kuz’min statistics for arbitrary x > 0:

sx(a/b) = |{(j, t) : 0 6 j 6 s, 0 6 t < aj, [t; aj+1, . . . , as, 1] 6 x}| (a0 = +∞).

Theorem 6 implies theorems 7, 8. They improve result of Baladi and Vallée (2005) on the average value of l(a/b) and h(a/b).

Theorem 7 (see [5]) We have

1

ϕ(b)

b∑
a=1

(a,b)=1

l(a/b) =
2 log ϕ

ζ(2)
log b + Cl + O(b−1/6+ε),

2

R(R + 1)

∑
b6R

b∑
a=1

l(a/b) =
2 log ϕ

ζ(2)
log R + C̃l + O(R−1+ε),

where Cl = CP (ϕ− 1), C̃l = C̃P (ϕ− 1), and function CP (x), C̃P (x) are defined by (4) and (5).

Theorem 8 (see [6]) We have

1

ϕ(b)

b∑
a=1

(a,b)=1

h(a/b) =
3 log ϕ

ζ(2)
log b + Ch + O(b−1/6+ε),

2

R(R + 1)

∑
b6R

b∑
a=1

h(a/b) =
3 log ϕ

ζ(2)
log R + C̃h + O(R−1+ε),

where Ch = 1
2(CP (ϕ) + CP (ϕ− 1)), C̃h = 1

2(C̃P (ϕ) + C̃P (ϕ− 1)), and function CP (x), C̃P (x) are defined by (4) and (5).
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Gauss — Kuz’min statistics
Conjecture 1 (Arnold, 1993). Let Ω(R) = R · Ω (R → ∞) be extending region. Then elements of finite continued fractions for rational numbers a/b, (a, b) ∈ Ω(R)
asymptotically satisfy the Gauss — Kuz’min statistic.
For x ∈ [0, 1] and rational number (1) Gauss — Kuz’min statistics sx(a/b) can be defined in the following way: sx(a/b) = |{j : 1 6 j 6 s, [0; aj, . . . , as] 6 x}| . In
particular s1(a/b) = s(a/b) is the length of continued fraction (1).

Theorem 4 (see [3]) For a region Ω with “good” boundary

1

Vol(Ω(R))

∑
(a,b)∈Ω(R)

sx(a/b) =
2 log(x + 1)

ζ(2)
log R + CΩ(x) + O(R−1/5+ε).

Moreover formulae (2)–(3) can be generalized to the case of Gauss — Kuz’min statistics.

Theorem 5 (see [4])

1

ϕ(b)

b∑
a=1

(a,b)=1

sx(a/b) =
2 log(1 + x)

ζ(2)
log b + CP (x) + O(b−1/6+ε),

2

R(R + 1)

∑
b6R

b∑
a=1

sx(a/b) =
2 log(1 + x)

ζ(2)
log R + C̃P (x) + O(R−1+ε),

where

CP (x) =
2 log(1 + x)

ζ(2)

(
2γ − 2

ζ ′(2)

ζ(2)
− log(1 + x)

2
+ log x− 1

)
+

2

ζ(2)
(h1(x) + h2(x)) +

x2

x + 1
, (4)

C̃P (x) = CP (x) +
2 log(1 + x)

ζ(2)

(
ζ ′(2)

ζ(2)
− 1

2

)
, (5)

and h1(x), h2(x) are defined by singular series

h1(x) =
∞∑

n=1

1

n

(
n∑

m=1

x

n + mx
− log(1 + x)

)
, h2(x) =

∞∑
n=1

1

n

( ∑
n
x6m<n

x+n

1

m
− log(1 + x)

)
.
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Classical Euclidean algorithm
Let s(a/b) be the length of standard continued fraction expansion (or the length of Euclidean algorithm) for

a/b = [0; a1, . . . , as] ∈ (0, 1] with as = 1. (1)

First result about average length of Euclidean algorithm belongs to Heilbronn (1968), who proved that

1

ϕ(b)

∑
16a6b
(a,b)=1

s(a/b) =
2 log 2

ζ(2)
log b + O(log4 log b).

Later (1975) Porter has shown that
1

ϕ(b)

∑
16a6b
(a,b)=1

s(a/b) =
2 log 2

ζ(2)
log b + CP + O(b−1/6+ε), (2)

where

CP =
2 log 2

ζ(2)

(
3 log 2

2
+ 2γ − 2

ζ ′(2)

ζ(2)
− 1

)
− 1

2

now is known as Porter’s constant. We can get a better estimate of the error term for the average value of s(a/b) over a, b and by using elementary arguments.

Theorem 1 (see [1]) Let R > 2. Then

E(R) =
2

R(R + 1)

∑
b6R

∑
a6b

s(a/b) =
2 log 2

ζ(2)
log R + C̃P + O(R−1+ε), (3)

where

C̃P = CP +
2 log 2

ζ(2)

(
ζ ′(2)

ζ(2)
− 1

2

)
Asymptotic formula for the variance

D(R) =
2

R(R + 1)

∑
b6R

∑
a6b

(s(c/d)− E(R))2 .

is also known (Hensley 1994, Baladi and Vallée 2005)
D(R) = D1 · log R + D0 + O(R−β),

where β > 0 and D1 is Hensley’s constant.
Application of Kloosterman sums lead to the better error term and new formula for Hensley’s constant.

Theorem 2 (see [1]) For R > 2
D(R) = D1 · log R + D0 + O(R−1/4+ε).

Both constants D1 and D0 can be written in terms of complicated singular series.

Theorem 3 (see [2])
1

ϕ(b)

∑
16a6b
(a,b)=1

s(a/b) =
2 log 2

ζ(2)
log b + CP + O(b−5/24+ε).
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General idea
Let 1 6 l 6 a, (l, a) = 1, and Λl = {(x, y) : lx ≡ y (mod a)}. Reduced regular continued fraction

a

l
= 〈a0; a1, . . . , am〉 = a1 −

1

a2 − . . . −
1

am

,

where a1 = da/le = −b−a/lc, a2, . . . , am > 2, defines sequences {sj}, {qj} by

qj

qj−1
= 〈aj, . . . , a1〉 ,

sj−1

sj
= 〈aj+1, . . . , am〉 (−1 6 j 6 m).

1◦. Vectors en = (qn, sn) and en−1 = (qn−1, sn−1) form a basis of the lattice Λl.
2◦. Points (qn, sn) are vertices of a convex hull of the set {(x, y) ∈ Λl \ {0} : x, y > 0} (left picture).
3◦. There is one-to-one correspondence between the set of quadruples (qn, sn, qn−1, sn−1) (taken for all lattices Λl) and the solutions of the equation x1y1 − x2y2 = a

with 0 6 x2 < x1, 0 6 y2 < y1, (x1, x2) = (y1, y2) = 1: (qn, sn, qn−1, sn−1)←→ (x1, x2, y2, y1).
This observation allows to transform different problems concerned with continued fractions or integer lattices to the investigation of solutions of x1y1 − x2y2 = a with
additional restrictions.

a

l
=

13

8
= 2− 1

3− 1

3

Λl = {(b, c) : 8b ≡ c (mod 13)}

(q−1, s−1)

(q0, s0)

(q1, s1)

(q2, s2) (q3, s3) = (qm, sm)

a

l
=

13

5
= 2 +

1

1 +
1

1 +
1

2

(q−1, s−1)

(−q0, s0)

(−q2, s2)
(q1, s1)

(q3, s3)(−q4, s4)

The same arguments lead from classical continued fractions to the equation x1y1 + x2y2 = a (right picture).
From equation x1y1 ± x2y2 = a it follows that x1y1 ≡ a (mod x2), and Kloosterman sums

Kq(l,m, n) =

q∑
x,y=1

xy≡l (mod q)

e2πimx+ny
q

come into play. Solutions of the congruence xy ≡ l (mod q) are uniformly distributed due to the generalized Estermann bound (see [4])

|Kq(l,m, n)| 6 σ0(q) · σ0((l,m, n, q)) · (lm, ln, mn, q)1/2 · q1/2.

A combination of this estimate with van der Corput’s method of exponential sums leads to the following results.
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