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Notations
Continued fractions

Let
a
b

= [a0; a1, . . . , as] = a0 +
1

a1 + . . . +
1
as

,

be standard continued fraction expansion with a0 ∈ Z, a1, . . . , as ∈ N.
Standard assumption as > 1 (for s > 0) we replace by another one:
as = 1.

Length of continued fraction will be denoted by s(a/b).
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Notations
Gauss — Kuz’min statistics

For x ∈ [0, 1] and rational number a/b = [0; a1, . . . , as] we define
Gauss — Kuz’min statistics sx(a/b) as

sx(a/b) =
∣∣{j : 1 ≤ j ≤ s, [0; aj , . . . , as] ≤ x

}∣∣ .

In particular s1(a/b) = s(a/b) is the length of continued fraction for
a/b.

Numbers

Nk (a/b) =
∣∣{j : 1 ≤ j ≤ s, aj = k

}∣∣
(also known as Gauss — Kuz’min statistics) can be expressed in terms
of sx(a/b):

Nk (a/b) = s1/k (a/b)− s1/(k+1)(a/b).

We prefer sx instead of Nk because function log2(1 + x) is more
comfortable than a set of probabilities

pk = log2

(
1 +

1
k(k + 2)

)
.
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Continued fractions and Kloosterman sums

From geometrical point of view Gauss — Kuz’min statistics describe
asymptotic behaviour of Z2 points in a given direction.

Nontrivial bounds for classical Kloosterman sums

Kq(1, m, n) =

q∑
x,y=1

xy≡1 (mod q)

e2πi mx+ny
q

explain isotropic properties of the lattice Z2.
These two observations give the possibility to study different problems
living on Z2.
More general Kloosterman sums

Kq(l , m, n) =

q∑
x,y=1

xy≡l (mod q)

e2πi mx+ny
q

explain isotropic properties of sublattices in Z2.
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Applications of finite continued fractions
Usual applications

(Trivial) Euclidean algorithm, calculation of a−1 (mod n), lattice
reduction, number recognition, parametrization of solution of the
equation ad − bc = N, calculation of convex hull of non-zero
lattice points from first quadrant etc.
Decomposition of prime p = 4n + 1 to the sum of two squares.
Calculation of goodness (dicrepancy or something similar) of
2-dimesional lattice rules for numerical integration.
Analysis of Lehmer pseudo-random number generator
(xn+1 = axn + b (mod m)).
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Applications of finite continued fractions
Not so usual elementary applications

Rödseth’s formula for Frobenius numbers with three arguments
(see below).
Analysis of Frieze Patterns from The Book of Numbers (Conway
and Guy)
Calculation of Dedekind sums and Jacobi symbols.
Algorithm for converting a segment into a nice-looking sequence
of pixels. Another algorithms of integer linear programming:
finding a “closest points” in a given halfplane.
Calculation of the number of graded algebras (Arnold).
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Applications of finite continued fractions
More geometrical applications

Classification of rational tangles in knot theory (Conway).
A criterion for a rectangle to be tilable by rectangles of a similar
shape. Construction of alternating-current circuits with given
properties (Skopenkov).
Asymptotic behavior of a curve in Rn with constant curvature k1,
constant second curvature k2, . . . (till constant curvature kn−1).
(Arnold).
Algorithm for converting a segment into a nice-looking sequence
of pixels. Another algorithms of integer linear programming:
finding a “closest points” in a given halfplane.
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Applications of finite continued fractions
The rest part

The way to attack RSA public key crypto system with small private
exponents (Wiener).
Singularities resolution in toric surfaces. Slam dunking of rational
surgery diagrams for a three-manifolds.
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Classical Euclidean algorithm
Expectation

Let s(a/b) be the length of standard continued fraction expansion (or
the length of Euclidean algorithm) for

a/b = [0; a1, . . . , as] ∈ (0, 1] with as = 1.

First result about average length of Euclidean algorithm belongs to
Heilbronn (1968), who proved that

1
ϕ(b)

∑
1≤a≤b
(a,b)=1

s(a/b) =
2 log 2
ζ(2)

log b + O(log4 log b).

Porter (1975) has shown that
1

ϕ(b)

∑
1≤a≤b
(a,b)=1

s(a/b) =
2 log 2
ζ(2)

log b + CP + O(b−1/6+ε),

CP =
2 log 2
ζ(2)

(
3 log 2

2
+ 2γ − 2

ζ ′(2)

ζ(2)
− 1

)
− 1

2
.
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Classical Euclidean algorithm
Expectation

We can get a better estimate of the error term for the average value of
s(a/b) over a, b and by using elementary arguments.

Theorem (A.U., 2008)
Let R ≥ 2. Then

E(R) =
2

R(R + 1)

∑
b≤R

∑
a≤b

s(a/b) =
2 log 2
ζ(2)

log R + C̃P + O(R−1+ε),

where

C̃P = CP +
2 log 2
ζ(2)

(
ζ ′(2)

ζ(2)
− 1

2

)
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Gauss — Kuz’min statistics
Arnold’s problem

Conjecture (Arnold, 1993)
Let Ω(R) = R · Ω (R →∞) be extending region. Then elements of
finite continued fractions for rational numbers a/b, (a, b) ∈ Ω(R)
asymptotically satisfy the Gauss — Kuz’min statistic.

Theorem (Avdeeva — Bykovskii, 2002–2004)
If Ω(R) is a sector:

Ω(R) = {(a, b) : a, b > 0, a2 + b2 ≤ R2}

then

1
Vol(Ω(R))

∑
(a,b)∈Ω(R)

sx(a/b) =
2 log(x + 1)

ζ(2)
log R + O(1).
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Gauss — Kuz’min statistics
Arnold’s problem

Theorem (A.U., 2005)
For any region Ω with “good” boundary

1
Vol(Ω(R))

∑
(a,b)∈Ω(R)

sx(a/b) =
2 log(x + 1)

ζ(2)
log R+CΩ(x)+O(R−1/5+ε).

But Arnold’s conjecture satisfies general. . .

The Arnold Principle
If a notion bears a personal name, then this name is not the name of
the discoverer.

even so general that. . .

The Berry Principle
The Arnold Principle is applicable to itself.
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Gauss — Kuz’min statistics
Arnold’s problem

Particular case of Arnold’s conjecture was proved by Lochs.

Theorem (Lochs, 1961 (32 years before Arnold’s conjecture).)
For triangle region

Ω(R) = {(a, b) : 0 < b < a ≤ R}

1
Vol(Ω(R))

∑
(a,b)∈Ω(R)

sx(a/b) =
2 log(x + 1)

ζ(2)
log R+CΩ(x)+O(R−1/2+ε).
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Gauss — Kuz’min statistics

Results on the average length of continued fractions can be
generalized on Gauss — Kuz’min statistics.

Theorem (A.U., 2008)

1
ϕ(b)

b∑
a=1

(a,b)=1

sx(a/b) =
2 log(1 + x)

ζ(2)
log b + CP(x) + O(b−1/6+ε),

2
R(R + 1)

∑
b≤R

b∑
a=1

sx(a/b) =
2 log(1 + x)

ζ(2)
log R + C̃P(x) + O(R−1+ε),

with complicate functions CP(x) and C̃P(x).

Applications: fast Euclidean algorithms.
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Gauss — Kuz’min statistics
Fast Euclidean algorithms

There are three main Euclidean algorithms: standard, centered and
odd. They are based respectively on

standard division:

a = bq + r , q = ba/bc, 0 ≤ r < b;

centered division:

a = bq + εr , ε = ±1, q =

⌈
a
b
− 1

2

⌉
, 0 ≤ r ≤ b

2
;

and odd division:

a = bq + εr , ε = ±1, q = 2
⌈ a

2b

⌉
− 1, 0 ≤ r ≤ b.

Let scentered(a/b) and sodd(a/b) be the lengths of centered and odd
Euclidean algorithms. Elementary arguments allow to reduce both
these algorithms to the classical one.
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Gauss — Kuz’min statistics
Fast Euclidean algorithms

Theorem (A.U., 2009–2010)

Let b ≥ 1, 1 ≤ a < b, (a, b) = 1, ϕ = 1+
√

5
2 . Then

scentered(a/b) = sϕ−1(a/b).

Moreover, if b/2 ≤ a, aa? ≡ 1 (mod b), 1 ≤ a? < b then

sodd

(
a?

b

)
+ sodd

(
b − a?

b

)
= sϕ

(a
b

)
+ sϕ−1

(a
b

)
.

Here we used “reasonable” extension of Gauss — Kuz’min statistics
for arbitrary x > 0:

sx(a/b) =
∣∣{(j , t) : 0 ≤ j ≤ s, 0 ≤ t < aj , [t ; aj+1, . . . , as, 1] ≤ x}

∣∣
(a0 = +∞).
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Gauss — Kuz’min statistics
Fast Euclidean algorithms

Last theorem allows to improve some results of Baladi and Vallée
(2005) on the average value of scentered(a/b) and sodd(a/b).

Corollary
We have

1
ϕ(b)

b∑
a=1

(a,b)=1

scentered(a/b) =
2 log ϕ

ζ(2)
log b + C1 + O(b−1/6+ε),

2
R(R + 1)

∑
b≤R

b∑
a=1

scentered(a/b) =
2 log ϕ

ζ(2)
log R + C̃1 + O(R−1+ε),

where constants C1 and C̃1 can be written in terms of singular series.

Alexey Ustinov (IAM FEB RAS) Why do we need Gauss — Kuz’min statistics? 18 / 66



Gauss — Kuz’min statistics
Fast Euclidean algorithms

Last theorem allows to improve some results of Baladi and Vallée
(2005) on the average value of scentered(a/b) and sodd(a/b).

Corollary
We have

1
ϕ(b)

b∑
a=1

(a,b)=1

scentered(a/b) =
2 log ϕ

ζ(2)
log b + C1 + O(b−1/6+ε),

2
R(R + 1)

∑
b≤R

b∑
a=1

scentered(a/b) =
2 log ϕ

ζ(2)
log R + C̃1 + O(R−1+ε),

where constants C1 and C̃1 can be written in terms of singular series.

Alexey Ustinov (IAM FEB RAS) Why do we need Gauss — Kuz’min statistics? 18 / 66



Gauss — Kuz’min statistics
Fast Euclidean algorithms

Corollary
We have

1
ϕ(b)

b∑
a=1

(a,b)=1

sodd(a/b) =
3 log ϕ

ζ(2)
log b + C2 + O(b−1/6+ε),

2
R(R + 1)

∑
b≤R

b∑
a=1

sodd(a/b) =
3 log ϕ

ζ(2)
log R + C̃2 + O(R−1+ε),

where constants C2 and C̃2 can be written in terms of singular series.
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Frobenius numbers
The Diophantine Frobenius problem

Let a1, . . . , an be positive integers with ai ≥ 2 and (a1, . . . , an) = 1.
The following naive questions is known as “Diophantine Frobenius
problem” (or “Coin exchange problem”):

Determine the largest number which is not of the form

a1x1 + · · ·+ anxn

where the coefficients xi are non-negative integers. This number is
denoted by g(a1, . . . , an) and is called the Frobenius number.
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Frobenius numbers
The Diophantine Frobenius problem

Example
Let a = 3, b = 5. Then g(a, b) =?

Answer: g(a, b) = 7:

7 6= 3x + 5y (x , y ≥ 0),

but for every m > 7 there are some x , y ≥ 0 such that

m = 3x + 5y .

It is known that
g(a, b) = ab − a− a.

The challenge is to find g when n ≥ 3.
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Frobenius numbers
The Diophantine Frobenius problem

The difficulty of the Diophantine Frobenius problem (FP) grows very
fast with the number of arguments.

For n = 2 problem is easy: g(a, b) = ab − a− b.
For n = 3 problem is rather complicated (see Rödseth’s formula
below).
For n > 3 general formula is unknown). We have only different
algorithms for claculation Frobenius numbers.
Kannan (1992) gave a polynomial time algorithm for FP for any
fixed n.
But there is no hope for a fast (polynomial time) algorithm that
solves general FP, unless P = NP.
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Frobenius numbers
positive Frobenius number

We shall consider

f (a, b, c) = g(a, b, c) + a + b + c,

the positive Frobenius number of a, b, c, defined to be the largest
integer not representable as a positive linear combination of a, b, c

ax + by + cz, x , y , z ≥ 1.

Positive Frobenius numbers are better because of Johnson’s formula:
for d | a, d | b

f (a, b, c) = d · f
(

a
d

,
b
d

, c
)

.
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Example
Let a = 3, b = 5, c = 7. Then g(a, b, c) =?

Answer: g(3, 5, 7) = 4:

4 6= 3x + 5y + 7z (x , y , z ≥ 0),

but for any m > 4 we can find x , y , z ≥ 0 such that

m 6= 3x + 5y + 7z.
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Double loop network
b = 3 (red step), c = 5 (blue step), a = 7 (number of vertices)
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n ≡ t (mod a) (number)

t(x , y) = bx + cy (time)

length(↑)= 3, length(↑)= 5
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Double loop network
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Double loop network
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Double loop network
Properties

Minimum distance diagram is always L-shaped (Wong,
Coppersmith, 1974).
L-shape always tessellates the plane.
Form of L-shape depends on the properties of the lattice
Λ = {(x , y) : bx + cy ≡ 0 (mod a)}.
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Double loop network
b = 9 (red step), c = 5 (blue step), a = 17 (number of vertices)

Λ = {(x , y) : bx + cy ≡ 0 (mod a)}

(−c, b)
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Double loop network
b = 9 (red step), c = 5 (blue step), a = 17 (number of vertices)

Λ = {(x , y) : bx + cy ≡ 0 (mod a)}
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Double loop network
b = 9 (red step), c = 5 (blue step), a = 17 (number of vertices)
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Frobenius numbers
Rödseth formula

From obvious property

0 =
sm+1

qm+1
<

sm−1

qm−1
< . . . <

s1

q1
<

s0

q0
=∞

follows that for some n sn

qn
≤ c

b
<

sn−1

qn−1
.

Theorem (Ö. Rödseth, 1978)

f (a, b, c) = bsn−1 + cqn −min {bsn, cqn−1} .
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Frobenius numbers
Rödseth formula

Rödseth’s formula can be written in terms of reduced regular continued
fraction. We want to find f (a, b, c) for (a, b) = (a, c) = (b, c) = 1.
Let l is such that

bl ≡ c (mod a), 1 ≤ l ≤ a.

Reduced regular continued fraction

a
l

= 〈a1, . . . , am〉 = a1 −
1

a2 − . . . −
1

am

,

where a1, . . . , am ≥ 2, defines sequences
{

sj
}

,
{

qj
}

by

qj+1

qj
=

〈
aj , . . . , a1

〉
,

sj

sj+1
=

〈
aj+1, . . . , am

〉
(0 ≤ j ≤ m).
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General idea
Reduced regular continued fraction

we have one-to-one correspondence between the set of quadruples
(qn, sn, qn−1, sn−1) (taken for all lattices Λl ) and the solutions of the
equation

x1y1 − x2y2 = a

with 0 ≤ x2 < x1, 0 ≤ y2 < y1, (x1, x2) = (y1, y2) = 1:

(qn, sn, qn−1, sn−1)←→ (x1, x2, y2, y1).
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General idea
Kloosterman sums

From the equation
x1y1 − x2y2 = a

it follows that
x1y1 ≡ a (mod x2),

and Kloosterman sums

Kq(l , m, n) =

q∑
x,y=1

xy≡l (mod q)

e2πi mx+ny
q

come into play. Solutions of the congruence xy ≡ l (mod q) are
uniformly distributed due to the bounds for Kloosterman sums.
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General idea
Kloosterman sums

This fact allows to calculate sums of the form∑
xy≡l (mod q)

F (x , y)

and ∑
x1y1−x2y2=a

F (x1, y1, x2, y2).

In particular it allows to study distribution of Frobenius numbers
f (a, b, c).

Alexey Ustinov (IAM FEB RAS) Why do we need Gauss — Kuz’min statistics? 45 / 66



Frobenius numbers
Conjectures

Rödseth (1990) proved a lower bound for Frobenius numbers:

f (a1, . . . , an) ≥ n−1
√

(n − 1)!a1 . . . an.

Conjecture (Davison, 1994)

Average value of normalized Frobenius numbers f (a,b,c)√
abc

over cube
[1, N]3 tends to some constant as N →∞.

Conjecture (Arnold, 1999, 2005)
There is weak asymptotic for Frobenius numbers: for arbitrary n
average value of f (x1, . . . , xn) over small cube with a center in
(a1, . . . , an) approximately equal to cnn−1

√
a1 . . . an for some constant

cn > 0.
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Frobenius numbers

Bourgain and Sinaı̆ in 2007 proved (with a little gap: they used one
natural assumption which was proved later) that normalized Frobenius
numbers f (a,b,c)√

abc
have limiting density function.
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Frobenius numbers
Weak asymptotic

Let x1, x2 > 0 and
Ma(x1, x2) = {(b, c) : 1 ≤ b ≤ x1a, 1 ≤ c ≤ x2a, (a, b, c) = 1}.

Theorem (A.U., 2009)

Frobenius numbers f (a, b, c) have weak asymptotic 8
π

√
abc:

1
a3/2|Ma(x1, x2)|

∑
(b,c)∈Ma(x1,x2)

(
f (a, b, c)− 8

π

√
abc

)
= Oε,x1,x2(a

−1/6+ε).

Davison’s conjecture holds in a stronger form:

1
|Ma(x1, x2)|

∑
(b,c)∈Ma(x1,x2)

f (a, b, c)√
abc

=
8
π

+ Oε,x1,x2(a
−1/12+ε).
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Frobenius numbers
Density function

Theorem (A.U., 2010)
Normalized Frobenius numbers of three arguments have limiting
density function:

1
|Ma(x1, x2)|

∑
(b,c)∈Ma(x1,x2)

f (a,b,c)≤τ
√

abc

1 =

∫ τ

0
p(t) dt + Oε,x1,x2,τ (a−1/6+ε),

where

p(t) =


0, if t ∈ [0,

√
3];

12
π

(
t√
3
−
√

4− t2
)

, if t ∈ [
√

3, 2];

12
π2

(
t
√

3 arccos t+3
√

t2−4

4
√

t2−3
+ 3

2

√
t2 − 4 log t2−4

t2−3

)
, if t ∈ [2,+∞).
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Frobenius numbers
Density function

(
2, 8
√

3/π
)

t√
3

lim
t→2−0

p′(t) = +∞, lim
t→2+0

p′(t) = −∞

p(t) = 18
π3 · 1

t3 + O
( 1

t5

)
(t →∞)

∫∞
0 p(t) dt = 1,

∫∞
0 tp(t) dt = 8

π
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Frobenius numbers
Density function

Triples (α, β, r), where

α =
qn√
a/ξ

, β =
sn−1√

aξ
, r =

sn√
aξ

(ξ = c/b)

(normalized edges of L-shaped diagram) have joint limiting density
function

p(α, β, r) =


2

ζ(2)r
, r ≤ min{α, β}, 1 ≤ αβ ≤ 1 + r2,

0 else.

It allows to study shortest cycles, average distances and another
characteristics of L-shaped diagrams (double loop networks).
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General idea
Kloosterman sums

For usual Kloosterman sums

Kq(1, m, n) =

q∑
x,y=1

xy≡1 (mod q)

e2πi mx+ny
q

Estermann bound is known

|Kq(1, m, n)| ≤ σ0(q) · (m, n, q)1/2 · q1/2.

This bound can be generalized for the case of sums Kq(l , m, n).

Theorem (A.U., 2008)

|Kq(l , m, n)| ≤ σ0(q) · σ0((l , m, n, q)) · (lm, ln, mn, q)1/2 · q1/2.

This estimate allows to count solutions of the congruence xy ≡ l
(mod a) in different regions.
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General idea
Kloosterman sums

Corollary
Let q ≥ 1, 0 ≤ P1, P2 ≤ q. Then for any real Q1, Q2∑

Q1<x≤Q1+P1
Q2<y≤Q2+P2

δq(xy − 1) =
ϕ(q)

q2 · P1P2 + O
(
σ0(q) log2(q + 1)q1/2

)

and ∑
Q1<x≤Q1+P1
Q2<y≤Q2+P2

δq(xy − l) =
Kq(0, 0, l)

q2 · P1P2 + O
(

q1/2+ε + (q, l)qε
)

.
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General idea
Kloosterman sums

A combination with van der Corput’s method of exponential sums
allows to count solutions under a graph of smooth function.

Let q ≥ 1, f be positive function and T [f ] be the number of solutions of
the congruence xy ≡ l (mod q) in the region P1 < x ≤ P2,
0 < y ≤ f (x):

T [f ] =
∑

P1<x≤P2

∑
0<y≤f (x)

δq(xy − l).

Let

S[f ] =
∑

P1<x≤P2

µq,l(x)

q
f (x),

where µq,l(x) is the number of solutions of the congruence xy ≡ l
(mod q) over y such that 1 ≤ y ≤ q.
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General idea
Kloosterman sums

Theorem (A.U., 2008)

Let P1, P2 be reals, P = P2 − P1 ≥ 2 and for some A > 0, w ≥ 1
function f (x) satisfies conditions

1
A
≤ |f ′′(x)| ≤ w

A
.

Then
T [f ] = S[f ]− P

2
· δq(l) + R[f ],

where
R[f ]�w (PA−1/3 + A1/2(l , q)1/2 + q1/2)Pε.
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Recent results

The existence of limiting distribution for normalized Frobenius
numbers of arbitrary number of arguments was proved by
J. Marklof (2010).
Distribution of diameters and distribution of shortest cycles in
circulant graphs (often also called multi-loop networks) were
studied by J. Marklof and A. Strömbergsson (2011). They proved
existence of these distributions for arbitrary n and made some
interesting numerical computations.
For n = 3 Davison’s conjecture in a stronger form was proved by
D. Frolenkov (2011).
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existence of these distributions for arbitrary n and made some
interesting numerical computations.
For n = 3 Davison’s conjecture in a stronger form was proved by
D. Frolenkov (2011).

Alexey Ustinov (IAM FEB RAS) Why do we need Gauss — Kuz’min statistics? 56 / 66



Sinai problem

Let 0 < h < 1
8 , T > 0 and Ωh(T ) is the set of angles ϕ ∈ [0, 2π) such

that the ray
{(t cos ϕ, t sin ϕ) : t ≥ 0}

intersects h-neighborhood of some integer point (m, n) 6= (0, 0) from
the circle {

(x , y) ∈ R2 : x2 + y2 ≤ T 2
}

.

Denote by Gh(T ) normalized measure of Ωh(T ):

Gh(T ) =
1

2π
mes Ωh(T ) ∈ [0, 1].

In 1918 Polya proved that
Gh(T ) = 1

for all T ≥ h−1.
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Sinai problem

Boca, Gologan and Zaharescu (2003) proved that for all ε > 0
uniformly over T ∈ [0, h−1]

Gh(T ) =

∫ h·T

0
σ(t) dt + Oε(h1/8−ε),

where

σ(t) =

{
12
π2 , if 0 ≤ t ≤ 1

2 ;
12
π2

(1
t − 1

) (
1− log

(1
t − 1

))
, if 1

2 < t ≤ 1.

From physical point of view Gh(T ) is the density function for free path
lengths in 2-dimensional Lorentz gas.
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Sinai problem

We considered more general situation when trajectories start from
h-neighborhood of the origin. Let v ∈ (−1, 1) be the fixed number and
the particle moves along the ray{

(−hv sin ϕ + t cos ϕ, hv cos ϕ + t sin ϕ) ∈ R2 : t ≥ 0
}

. (1)

Let (m(ϕ), n(ϕ)) be the center of the first h-neighborhood intersected
by the ray.
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Sinai problem

In other words (m(ϕ), n(ϕ)) is the nearest to the origin point such that

R(m, n) > 0 and |U(m, n)| < h

where

R(x , y) = x cos ϕ + y sin ϕ,

U(x , y) = x sin ϕ− y cos ϕ + hv .

We denote by

r(ϕ) = h · R (m(ϕ), n(ϕ)) , u(ϕ) = h−1 · U (m(ϕ), n(ϕ)) .

normalized free path length and normalized sighting (aiming?)
parameter.
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Sinai problem

Suppose

0 < r0 <
1

1− |v |
and − 1 < u− < u+ < 1.

Theorem (Bykovskii, A.U., 2007–2008)
Let |v | < c < 1. Then for all ε > 0 for the distribution function

Φv (h) = Φv (h;ϕ0, r0, u−, u+) =

=

∫ ϕ0

0
χ[0,r0] (r(ϕ))χ[u−,u+] (u(ϕ)) dϕ

following asymptotic formula holds (h→ 0)

Φv (h) =

∫ ϕ0

0

∫ r0

0

∫ u+

u−
ρ(ϕ, r , v , u) dϕ dr du + Oε,c

(
h

1
2−ε

)
.
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Sinai problem

Density function has following symmetries

ρ(ϕ, r , v , u) = ρ(r , v , u) = ρ(r , u, v) = ρ(r ,−u,−v),

for u ≥ |v | is equal to

ρ(r , u, v) =


6
π2 , if 0 ≤ r ≤ 1

u+1 ;
6
π2 · 1

u−v

(1
r − 1− v

)
, if 1

u+1 ≤ r ≤ 1
1+v ;

0, if 1
1+v ≤ r .

From physical point of view 1
2πρ(ϕ, r , v , u) is the density of the particles

moving along the ray (1), with unit speed after first reflection in
h-neighborhood of the origin and passing distance R = h−1 · r before
next reflection with sighting parameter h · u.
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Reduced bases in two-dimensional lattices

Reduced (2-dimensional) bases are important in different number
theory algorithms:

fast point multiplication on elliptic curves;
prediction of pseudo random generators, numerical integration;
combinatorial optimization. . .

Work of these algorithms depends on properties of reduced basis
(shorter vectors are better).
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Reduced bases in two-dimensional lattices

Let 1 ≤ l ≤ a, (l , a) = 1 and e1 be the shortest vector of the lattice
Λl = {(x , y) : lx ≡ y (mod a)}.

Basis (e1, e2) is reduced iff e2 ∈ Ω(e1)
where Ω(e1) is the plane region defined by inequalities

‖e2‖ ≥ ‖e1‖ and ‖e2 ± e1‖ ≥ ‖e2‖.

Moreover vector e2 must lie on the line l(e1) defined by equation
det(e1, e2) = a. By averaging over l we can get that vectors e2
distributed uniformly on Ω(e1) ∩ l(e1) with weight ‖e2‖−1

2 . Suppose
e1 =

√
a(α, β), e2 =

√
a(γ, δ).
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Reduced bases in two-dimensional lattices

For example in the case of the most popular ‖ · ‖∞-norm integration
over e2 lead to the density function for e1:

p(α, β) = p(±α,±β) = p(β, α);

p(α, β) =
4

ζ(2)
min

{
1,

1− α2

αβ

}
(0 ≤ β ≤ α ≤ 1).

α

β

β = 1
α − α

p(α, β) = 4
ζ(2)

p(α, β) = 4
ζ(2)

1−α2

αβ
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Reduced bases in two-dimensional lattices

By integrating over e1 we can get density function for t = ‖e2‖/
√

a:

p(t) =


0, if t ∈

[
0, 1/

√
2
]
;

4
ζ(2)

(
2t − 1

t +
(1

t − t)
)

log
( 1

t2 − 1)
))

, if t ∈
[
1/
√

2, 1
]
;

4
ζ(2)

(1
t +

(
t − 1

t )
)

log
(
1− 1

t2 )
))

, if t ∈ [1,∞].

t

(1, 4/ζ(2))

t
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p(t) =


0, if t ∈

[
0, 1/

√
2
]
;

4
ζ(2)

(
2t − 1

t +
(1

t − t)
)

log
( 1

t2 − 1)
))

, if t ∈
[
1/
√

2, 1
]
;

4
ζ(2)

(1
t +

(
t − 1

t )
)

log
(
1− 1

t2 )
))

, if t ∈ [1,∞].

t

(1, 4/ζ(2))

t
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