Why do we need Gauss — Kuz'min statistics?

Alexey Ustinov

Institute of Applied Mathematics (Khabarovsk) Russian Academy of Sciences (Far Eastern Branch)

July 7, 2011

Alexey Ustinov (IAM FEB RAS) Why do we need Gauss - Kuz'min statistics?

A B A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Why do we need Gauss — Kuz'min statistics?

Alexey Ustinov

Institute of Applied Mathematics (Khabarovsk) Russian Academy of Sciences (Far Eastern Branch)

July 7, 2011

Alexey Ustinov (IAM FEB RAS) Why do we need Gauss - Kuz'min statistics?

Let

$$\frac{a}{b} = [a_0; a_1, \dots, a_s] = a_0 + \frac{1}{a_1 + \dots + \frac{1}{a_s}},$$

be standard continued fraction expansion with $a_0 \in \mathbb{Z}$, $a_1, \ldots, a_s \in \mathbb{N}$. Standard assumption $a_s > 1$ (for s > 0) we replace by another one: $a_s = 1$.

Let

$$\frac{a}{b} = [a_0; a_1, \dots, a_s] = a_0 + \frac{1}{a_1 + \dots + \frac{1}{a_s}},$$

be standard continued fraction expansion with $a_0 \in \mathbb{Z}$, $a_1, \ldots, a_s \in \mathbb{N}$. Standard assumption $a_s > 1$ (for s > 0) we replace by another one: $a_s = 1$.

Length of continued fraction will be denoted by s(a/b).

For $x \in [0, 1]$ and rational number $a/b = [0; a_1, ..., a_s]$ we define **Gauss — Kuz'min statistics** $s_x(a/b)$ as

$$s_x(a/b) = \left| \left\{ j : 1 \le j \le s, [0; a_j, \dots, a_s] \le x
ight\}
ight|.$$

In particular $s_1(a/b) = s(a/b)$ is the length of continued fraction for a/b.

・ロト ・ 四ト ・ ヨト ・ ヨト

For $x \in [0, 1]$ and rational number $a/b = [0; a_1, ..., a_s]$ we define **Gauss — Kuz'min statistics** $s_x(a/b)$ as

$$s_x(a/b) = \left|\left\{j: 1 \leq j \leq s, [0; a_j, \ldots, a_s] \leq x\right\}\right|.$$

In particular $s_1(a/b) = s(a/b)$ is the length of continued fraction for a/b. Numbers

$$N_k(a/b) = \left| \left\{ j : 1 \le j \le s, a_j = k \right\} \right|$$

(also known as Gauss — Kuz'min statistics) can be expressed in terms of $s_x(a/b)$:

$$N_k(a/b) = s_{1/k}(a/b) - s_{1/(k+1)}(a/b).$$

For $x \in [0, 1]$ and rational number $a/b = [0; a_1, ..., a_s]$ we define **Gauss — Kuz'min statistics** $s_x(a/b)$ as

$$s_x(a/b) = \left|\left\{j: 1 \leq j \leq s, [0; a_j, \ldots, a_s] \leq x\right\}\right|.$$

In particular $s_1(a/b) = s(a/b)$ is the length of continued fraction for a/b. Numbers

$$N_k(a/b) = \left| \left\{ j : 1 \le j \le s, a_j = k \right\} \right|$$

(also known as Gauss — Kuz'min statistics) can be expressed in terms of $s_x(a/b)$:

$$N_k(a/b) = s_{1/k}(a/b) - s_{1/(k+1)}(a/b).$$

We prefer s_x instead of N_k because function $\log_2(1 + x)$ is more comfortable than a set of probabilities

$$p_k = \log_2\left(1 + \frac{1}{k(k+2)}\right).$$

Continued fractions and Kloosterman sums

From geometrical point of view Gauss — Kuz'min statistics describe asymptotic behaviour of \mathbb{Z}^2 points in a given direction.

Continued fractions and Kloosterman sums

From geometrical point of view Gauss — Kuz'min statistics describe asymptotic behaviour of \mathbb{Z}^2 points in a given direction. Nontrivial bounds for classical Kloosterman sums

$$K_q(1,m,n) = \sum_{\substack{x,y=1\\xy\equiv 1 \pmod{q}}}^{q} e^{2\pi i \frac{mx+ny}{q}}$$

explain isotropic properties of the lattice \mathbb{Z}^2 .

These two observations give the possibility to study different problems living on \mathbb{Z}^2 .

Continued fractions and Kloosterman sums

From geometrical point of view Gauss — Kuz'min statistics describe asymptotic behaviour of \mathbb{Z}^2 points in a given direction. Nontrivial bounds for classical Kloosterman sums

$$K_q(1,m,n) = \sum_{\substack{x,y=1\\xy\equiv 1 \pmod{q}}}^{q} e^{2\pi i \frac{mx+ny}{q}}$$

explain isotropic properties of the lattice \mathbb{Z}^2 .

These two observations give the possibility to study different problems living on \mathbb{Z}^2 .

More general Kloosterman sums

$$K_q(l,m,n) = \sum_{\substack{x,y=1\xy\equiv l \ (ext{mod } q)}}^q e^{2\pi i rac{mx+ny}{q}}$$

explain isotropic properties of sublattices in \mathbb{Z}^2 .

- (Trivial) Euclidean algorithm, calculation of $a^{-1} \pmod{n}$, lattice reduction, number recognition, parametrization of solution of the equation ad bc = N, calculation of convex hull of non-zero lattice points from first quadrant etc.
- Decomposition of prime p = 4n + 1 to the sum of two squares.
- Calculation of goodness (dicrepancy or something similar) of 2-dimesional lattice rules for numerical integration.
- Analysis of Lehmer pseudo-random number generator $(x_{n+1} = ax_n + b \pmod{m}).$

- (Trivial) Euclidean algorithm, calculation of $a^{-1} \pmod{n}$, lattice reduction, number recognition, parametrization of solution of the equation ad bc = N, calculation of convex hull of non-zero lattice points from first quadrant etc.
- Decomposition of prime p = 4n + 1 to the sum of two squares.
- Calculation of goodness (dicrepancy or something similar) of 2-dimesional lattice rules for numerical integration.
- Analysis of Lehmer pseudo-random number generator $(x_{n+1} = ax_n + b \pmod{m}).$

- (Trivial) Euclidean algorithm, calculation of $a^{-1} \pmod{n}$, lattice reduction, number recognition, parametrization of solution of the equation ad bc = N, calculation of convex hull of non-zero lattice points from first quadrant etc.
- Decomposition of prime p = 4n + 1 to the sum of two squares.
- Calculation of goodness (dicrepancy or something similar) of 2-dimesional lattice rules for numerical integration.
- Analysis of Lehmer pseudo-random number generator $(x_{n+1} = ax_n + b \pmod{m}).$

- (Trivial) Euclidean algorithm, calculation of $a^{-1} \pmod{n}$, lattice reduction, number recognition, parametrization of solution of the equation ad bc = N, calculation of convex hull of non-zero lattice points from first quadrant etc.
- Decomposition of prime p = 4n + 1 to the sum of two squares.
- Calculation of goodness (dicrepancy or something similar) of 2-dimesional lattice rules for numerical integration.
- Analysis of Lehmer pseudo-random number generator $(x_{n+1} = ax_n + b \pmod{m}).$

- Rödseth's formula for Frobenius numbers with three arguments (see below).
- Analysis of *Frieze Patterns* from *The Book of Numbers* (Conway and Guy)
- Calculation of Dedekind sums and Jacobi symbols.
- Algorithm for converting a segment into a nice-looking sequence of pixels. Another algorithms of integer linear programming: finding a "closest points" in a given halfplane.
- Calculation of the number of graded algebras (Arnold).

- Rödseth's formula for Frobenius numbers with three arguments (see below).
- Analysis of Frieze Patterns from The Book of Numbers (Conway and Guy)
- Calculation of Dedekind sums and Jacobi symbols.
- Algorithm for converting a segment into a nice-looking sequence of pixels. Another algorithms of integer linear programming: finding a "closest points" in a given halfplane.
- Calculation of the number of graded algebras (Arnold).

- Rödseth's formula for Frobenius numbers with three arguments (see below).
- Analysis of Frieze Patterns from The Book of Numbers (Conway and Guy)
- Calculation of Dedekind sums and Jacobi symbols.
- Algorithm for converting a segment into a nice-looking sequence of pixels. Another algorithms of integer linear programming: finding a "closest points" in a given halfplane.
- Calculation of the number of graded algebras (Arnold).

- Rödseth's formula for Frobenius numbers with three arguments (see below).
- Analysis of Frieze Patterns from The Book of Numbers (Conway and Guy)
- Calculation of Dedekind sums and Jacobi symbols.
- Algorithm for converting a segment into a nice-looking sequence of pixels. Another algorithms of integer linear programming: finding a "closest points" in a given halfplane.
- Calculation of the number of graded algebras (Arnold).

- Rödseth's formula for Frobenius numbers with three arguments (see below).
- Analysis of Frieze Patterns from The Book of Numbers (Conway and Guy)
- Calculation of Dedekind sums and Jacobi symbols.
- Algorithm for converting a segment into a nice-looking sequence of pixels. Another algorithms of integer linear programming: finding a "closest points" in a given halfplane.
- Calculation of the number of graded algebras (Arnold).

• Classification of rational tangles in knot theory (Conway).

- A criterion for a rectangle to be tilable by rectangles of a similar shape. Construction of alternating-current circuits with given properties (Skopenkov).
- Asymptotic behavior of a curve in ℝⁿ with constant curvature k₁, constant second curvature k₂, ... (till constant curvature k_{n-1}). (Arnold).
- Algorithm for converting a segment into a nice-looking sequence of pixels. Another algorithms of integer linear programming: finding a "closest points" in a given halfplane.

- Classification of rational tangles in knot theory (Conway).
- A criterion for a rectangle to be tilable by rectangles of a similar shape. Construction of alternating-current circuits with given properties (Skopenkov).
- Asymptotic behavior of a curve in ℝⁿ with constant curvature k₁, constant second curvature k₂, ... (till constant curvature k_{n-1}). (Arnold).
- Algorithm for converting a segment into a nice-looking sequence of pixels. Another algorithms of integer linear programming: finding a "closest points" in a given halfplane.

- Classification of rational tangles in knot theory (Conway).
- A criterion for a rectangle to be tilable by rectangles of a similar shape. Construction of alternating-current circuits with given properties (Skopenkov).
- Asymptotic behavior of a curve in ℝⁿ with constant curvature k₁, constant second curvature k₂, ... (till constant curvature k_{n-1}). (Arnold).
- Algorithm for converting a segment into a nice-looking sequence of pixels. Another algorithms of integer linear programming: finding a "closest points" in a given halfplane.

- Classification of rational tangles in knot theory (Conway).
- A criterion for a rectangle to be tilable by rectangles of a similar shape. Construction of alternating-current circuits with given properties (Skopenkov).
- Asymptotic behavior of a curve in ℝⁿ with constant curvature k₁, constant second curvature k₂, ... (till constant curvature k_{n-1}). (Arnold).
- Algorithm for converting a segment into a nice-looking sequence of pixels. Another algorithms of integer linear programming: finding a "closest points" in a given halfplane.

- The way to attack RSA public key crypto system with small private exponents (Wiener).
- Singularities resolution in toric surfaces. Slam dunking of rational surgery diagrams for a three-manifolds.

A (10) A (10) A (10)

- The way to attack RSA public key crypto system with small private exponents (Wiener).
- Singularities resolution in toric surfaces. Slam dunking of rational surgery diagrams for a three-manifolds.

A (10) A (10) A (10)

Let s(a/b) be the **length** of standard continued fraction expansion (or the length of Euclidean algorithm) for

$$a/b = [0; a_1, \dots, a_s] \in (0, 1]$$
 with $a_s = 1$.

Let s(a/b) be the **length** of standard continued fraction expansion (or the length of Euclidean algorithm) for

$$a/b = [0; a_1, \dots, a_s] \in (0, 1]$$
 with $a_s = 1$.

First result about average length of Euclidean algorithm belongs to Heilbronn (1968), who proved that

$$\frac{1}{\varphi(b)}\sum_{\substack{1\leq a\leq b\\ (a,b)=1}} s(a/b) = \frac{2\log 2}{\zeta(2)}\log b + O(\log^4\log b).$$

Let s(a/b) be the **length** of standard continued fraction expansion (or the length of Euclidean algorithm) for

$$a/b = [0; a_1, \dots, a_s] \in (0, 1]$$
 with $a_s = 1$.

First result about average length of Euclidean algorithm belongs to Heilbronn (1968), who proved that

$$\frac{1}{\varphi(b)}\sum_{\substack{1\leq a\leq b\\ (a,b)=1}} s(a/b) = \frac{2\log 2}{\zeta(2)}\log b + O(\log^4\log b).$$

Porter (1975) has shown that

$$\frac{1}{\varphi(b)} \sum_{\substack{1 \le a \le b \\ (a,b)=1}} s(a/b) = \frac{2\log 2}{\zeta(2)} \log b + C_P + O(b^{-1/6+\varepsilon}),$$
$$C_P = \frac{2\log 2}{\zeta(2)} \left(\frac{3\log 2}{2} + 2\gamma - 2\frac{\zeta'(2)}{\zeta(2)} - 1\right) - \frac{1}{2}.$$

We can get a better estimate of the error term for the average value of s(a/b) over *a*, *b* and by using elementary arguments.

Theorem (A.U., 2008)

Let $R \ge 2$. Then

$$E(R) = \frac{2}{R(R+1)} \sum_{b \leq R} \sum_{a \leq b} s(a/b) = \frac{2\log 2}{\zeta(2)} \log R + \widetilde{C}_P + O(R^{-1+\varepsilon}),$$

where

$$\widetilde{C}_{P}=C_{P}+rac{2\log 2}{\zeta(2)}\left(rac{\zeta'(2)}{\zeta(2)}-rac{1}{2}
ight)$$

• • • • • • • • • • • •

Conjecture (Arnold, 1993)

Let $\Omega(R) = R \cdot \Omega \ (R \to \infty)$ be extending region. Then elements of finite continued fractions for rational numbers a/b, $(a, b) \in \Omega(R)$ asymptotically satisfy the Gauss — Kuz'min statistic.

Conjecture (Arnold, 1993)

Let $\Omega(R) = R \cdot \Omega \ (R \to \infty)$ be extending region. Then elements of finite continued fractions for rational numbers a/b, $(a, b) \in \Omega(R)$ asymptotically satisfy the Gauss — Kuz'min statistic.

Theorem (Avdeeva — Bykovskii, 2002–2004)

If $\Omega(R)$ is a sector:

$$\Omega(R) = \{(a, b) : a, b > 0, a^2 + b^2 \le R^2\}$$

then

$$\frac{1}{\operatorname{Vol}(\Omega(R))}\sum_{(a,b)\in\Omega(R)}s_x(a/b)=\frac{2\log(x+1)}{\zeta(2)}\log R+O(1).$$

Gauss — Kuz'min statistics

Theorem (A.U., 2005)

For any region Ω with "good" boundary

$$\frac{1}{\operatorname{Vol}(\Omega(R))}\sum_{(a,b)\in\Omega(R)}s_x(a/b)=\frac{2\log(x+1)}{\zeta(2)}\log R+C_{\Omega}(x)+O(R^{-1/5+\varepsilon}).$$

But Arnold's conjecture satisfies general...

Gauss — Kuz'min statistics

Theorem (A.U., 2005)

For any region Ω with "good" boundary

$$\frac{1}{\operatorname{Vol}(\Omega(R))}\sum_{(a,b)\in\Omega(R)}s_x(a/b)=\frac{2\log(x+1)}{\zeta(2)}\log R+C_{\Omega}(x)+O(R^{-1/5+\varepsilon}).$$

But Arnold's conjecture satisfies general...

The Arnold Principle

If a notion bears a personal name, then this name is not the name of the discoverer.

even so general that...

Gauss — Kuz'min statistics

Theorem (A.U., 2005)

For any region Ω with "good" boundary

$$\frac{1}{\operatorname{Vol}(\Omega(R))}\sum_{(a,b)\in\Omega(R)}s_x(a/b)=\frac{2\log(x+1)}{\zeta(2)}\log R+C_{\Omega}(x)+O(R^{-1/5+\varepsilon}).$$

But Arnold's conjecture satisfies general...

The Arnold Principle

If a notion bears a personal name, then this name is not the name of the discoverer.

even so general that...

The Berry Principle

The Arnold Principle is applicable to itself.

Particular case of Arnold's conjecture was proved by Lochs.

Theorem (Lochs, 1961 (32 years before Arnold's conjecture).)

For triangle region

$$\Omega(R) = \{(a,b) : 0 < b < a \le R\}$$

$$\frac{1}{\operatorname{Vol}(\Omega(R))} \sum_{(a,b)\in\Omega(R)} s_x(a/b) = \frac{2\log(x+1)}{\zeta(2)}\log R + C_{\Omega}(x) + O(R^{-1/2+\varepsilon}).$$

Results on the average length of continued fractions can be generalized on Gauss — Kuz'min statistics.

Results on the average length of continued fractions can be generalized on Gauss — Kuz'min statistics.

Theorem (A.U., 2008)

$$\frac{1}{\varphi(b)} \sum_{\substack{a=1\\(a,b)=1}}^{b} s_x(a/b) = \frac{2\log(1+x)}{\zeta(2)}\log b + C_P(x) + O(b^{-1/6+\varepsilon}),$$
$$\frac{2}{R(R+1)} \sum_{b \le R} \sum_{a=1}^{b} s_x(a/b) = \frac{2\log(1+x)}{\zeta(2)}\log R + \widetilde{C}_P(x) + O(R^{-1+\varepsilon}),$$

with complicate functions $C_P(x)$ and $\widetilde{C}_P(x)$.

• • • • • • • • • • • •

Results on the average length of continued fractions can be generalized on Gauss — Kuz'min statistics.

Theorem (A.U., 2008)

$$\frac{1}{\varphi(b)} \sum_{\substack{a=1\\(a,b)=1}}^{b} s_x(a/b) = \frac{2\log(1+x)}{\zeta(2)}\log b + C_P(x) + O(b^{-1/6+\varepsilon}),$$
$$\frac{2}{R(R+1)} \sum_{b \le R} \sum_{a=1}^{b} s_x(a/b) = \frac{2\log(1+x)}{\zeta(2)}\log R + \widetilde{C}_P(x) + O(R^{-1+\varepsilon}),$$

with complicate functions $C_P(x)$ and $\widetilde{C}_P(x)$.

Applications: fast Euclidean algorithms.

$$a = bq + r$$
, $q = \lfloor a/b \rfloor$, $0 \le r < b$;

$$a = bq + r$$
, $q = \lfloor a/b \rfloor$, $0 \le r < b$;

centered division:

$$a = bq + \varepsilon r, \quad \varepsilon = \pm 1, \quad q = \left\lceil \frac{a}{b} - \frac{1}{2} \right\rceil, \quad 0 \le r \le \frac{b}{2};$$

・ 何 ト ・ ヨ ト ・ ヨ

$$a = bq + r$$
, $q = \lfloor a/b \rfloor$, $0 \le r < b$;

centered division:

$$a = bq + \varepsilon r$$
, $\varepsilon = \pm 1$, $q = \left\lceil \frac{a}{b} - \frac{1}{2} \right\rceil$, $0 \le r \le \frac{b}{2}$;

and odd division:

$$a = bq + \varepsilon r$$
, $\varepsilon = \pm 1$, $q = 2\left\lceil \frac{a}{2b} \right\rceil - 1$, $0 \le r \le b$.

$$a = bq + r$$
, $q = \lfloor a/b \rfloor$, $0 \le r < b$;

centered division:

$$a = bq + \varepsilon r$$
, $\varepsilon = \pm 1$, $q = \left\lceil \frac{a}{b} - \frac{1}{2} \right\rceil$, $0 \le r \le \frac{b}{2}$;

and odd division:

$$a = bq + \varepsilon r$$
, $\varepsilon = \pm 1$, $q = 2 \left\lceil \frac{a}{2b} \right\rceil - 1$, $0 \le r \le b$.

Let $s_{centered}(a/b)$ and $s_{odd}(a/b)$ be the lengths of centered and odd Euclidean algorithms. Elementary arguments allow to reduce both these algorithms to the classical one.

Gauss — Kuz'min statistics Fast Euclidean algorithms

Theorem (A.U., 2009–2010)

Let $b \ge 1$, $1 \le a < b$, (a, b) = 1, $\varphi = \frac{1 + \sqrt{5}}{2}$. Then

$$s_{centered}(a/b) = s_{\varphi-1}(a/b).$$

Gauss — Kuz'min statistics Fast Euclidean algorithms

Theorem (A.U., 2009–2010)

Let $b \ge 1$, $1 \le a < b$, (a, b) = 1, $\varphi = \frac{1 + \sqrt{5}}{2}$. Then

$$s_{centered}(a/b) = s_{\varphi-1}(a/b).$$

Moreover, if $b/2 \le a$, $aa^* \equiv 1 \pmod{b}$, $1 \le a^* < b$ then

$$s_{odd}\left(rac{a^{\star}}{b}
ight)+s_{odd}\left(rac{b-a^{\star}}{b}
ight)=s_{arphi}\left(rac{a}{b}
ight)+s_{arphi-1}\left(rac{a}{b}
ight).$$

Gauss — Kuz'min statistics Fast Euclidean algorithms

Theorem (A.U., 2009–2010)

Let $b \ge 1$, $1 \le a < b$, (a, b) = 1, $\varphi = \frac{1 + \sqrt{5}}{2}$. Then

$$s_{centered}(a/b) = s_{\varphi-1}(a/b).$$

Moreover, if $b/2 \le a$, $aa^* \equiv 1 \pmod{b}$, $1 \le a^* < b$ then

$$s_{odd}\left(rac{a^{\star}}{b}
ight)+s_{odd}\left(rac{b-a^{\star}}{b}
ight)=s_{arphi}\left(rac{a}{b}
ight)+s_{arphi-1}\left(rac{a}{b}
ight).$$

Here we used "reasonable" extension of Gauss — Kuz'min statistics for arbitrary x > 0:

$$s_x(a/b) = \left| \{(j,t) : 0 \le j \le s, 0 \le t < a_j, [t; a_{j+1}, \dots, a_s, 1] \le x\} \right|$$

 $a_0 = +\infty$).

Last theorem allows to improve some results of Baladi and Vallée (2005) on the average value of $s_{centered}(a/b)$ and $s_{odd}(a/b)$.

Last theorem allows to improve some results of Baladi and Vallée (2005) on the average value of $s_{centered}(a/b)$ and $s_{odd}(a/b)$.

Corollary

We have

$$\frac{1}{\varphi(b)} \sum_{\substack{a=1\\(a,b)=1}}^{b} s_{centered}(a/b) = \frac{2\log\varphi}{\zeta(2)}\log b + C_1 + O(b^{-1/6+\varepsilon}),$$
$$\frac{2}{R(R+1)} \sum_{b \le R} \sum_{a=1}^{b} s_{centered}(a/b) = \frac{2\log\varphi}{\zeta(2)}\log R + \widetilde{C}_1 + O(R^{-1+\varepsilon}),$$

where constants C_1 and C_1 can be written in terms of singular series.

▲ 同 ▶ | ▲ 三 ▶

Corollary

We have

$$\frac{1}{\varphi(b)} \sum_{\substack{a=1\\(a,b)=1}}^{b} s_{odd}(a/b) = \frac{3\log\varphi}{\zeta(2)}\log b + C_2 + O(b^{-1/6+\varepsilon}),$$
$$\frac{2}{R(R+1)} \sum_{b \le R} \sum_{a=1}^{b} s_{odd}(a/b) = \frac{3\log\varphi}{\zeta(2)}\log R + \widetilde{C}_2 + O(R^{-1+\varepsilon}),$$

where constants C_2 and C_2 can be written in terms of singular series.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Let a_1, \ldots, a_n be positive integers with $a_i \ge 2$ and $(a_1, \ldots, a_n) = 1$. The following naive questions is known as "**Diophantine Frobenius problem**" (or "**Coin exchange problem**"):

Let a_1, \ldots, a_n be positive integers with $a_i \ge 2$ and $(a_1, \ldots, a_n) = 1$. The following naive questions is known as "**Diophantine Frobenius problem**" (or "**Coin exchange problem**"): Determine the largest number which is not of the form

 $a_1x_1+\cdots+a_nx_n$

where the coefficients x_i are non-negative integers. This number is denoted by $g(a_1, \ldots, a_n)$ and is called the **Frobenius number**.

Frobenius numbers

The Diophantine Frobenius problem

Example

Let a = 3, b = 5. Then g(a, b) = ?

Alexey Ustinov (IAM FEB RAS) Why do we need Gauss - Kuz'min statistics?

• • • • • • • • • • • •

Frobenius numbers

The Diophantine Frobenius problem

Example

Let a = 3, b = 5. Then g(a, b) =? Answer: g(a, b) = 7:

$$7\neq 3x+5y \qquad (x,y\geq 0),$$

but for every m > 7 there are some $x, y \ge 0$ such that

$$m = 3x + 5y$$
.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Frobenius numbers

The Diophantine Frobenius problem

Example

Let a = 3, b = 5. Then g(a, b) =? Answer: g(a, b) = 7:

$$7\neq 3x+5y \qquad (x,y\geq 0),$$

but for every m > 7 there are some $x, y \ge 0$ such that

$$m = 3x + 5y$$
.

It is known that

$$g(a,b)=ab-a-a.$$

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The challenge is to find *g* when $n \ge 3$.

- For n = 2 problem is easy: g(a, b) = ab a b.
- For *n* = 3 problem is rather complicated (see Rödseth's formula below).
- For *n* > 3 general formula is unknown). We have only different algorithms for claculation Frobenius numbers.
- Kannan (1992) gave a polynomial time algorithm for **FP** for any fixed *n*.
- But there is no hope for a fast (polynomial time) algorithm that solves general **FP**, unless $\mathcal{P} = \mathcal{NP}$.

- For n = 2 problem is easy: g(a, b) = ab a b.
- For *n* = 3 problem is rather complicated (see Rödseth's formula below).
- For *n* > 3 general formula is unknown). We have only different algorithms for claculation Frobenius numbers.
- Kannan (1992) gave a polynomial time algorithm for **FP** for any fixed *n*.
- But there is no hope for a fast (polynomial time) algorithm that solves general **FP**, unless $\mathcal{P} = \mathcal{NP}$.

- For n = 2 problem is easy: g(a, b) = ab a b.
- For *n* = 3 problem is rather complicated (see Rödseth's formula below).
- For *n* > 3 general formula is unknown). We have only different algorithms for claculation Frobenius numbers.
- Kannan (1992) gave a polynomial time algorithm for **FP** for any fixed *n*.
- But there is no hope for a fast (polynomial time) algorithm that solves general **FP**, unless $\mathcal{P} = \mathcal{NP}$.

- For n = 2 problem is easy: g(a, b) = ab a b.
- For *n* = 3 problem is rather complicated (see Rödseth's formula below).
- For *n* > 3 general formula is unknown). We have only different algorithms for claculation Frobenius numbers.
- Kannan (1992) gave a polynomial time algorithm for **FP** for any fixed *n*.
- But there is no hope for a fast (polynomial time) algorithm that solves general **FP**, unless *P* = *NP*.

- For n = 2 problem is easy: g(a, b) = ab a b.
- For *n* = 3 problem is rather complicated (see Rödseth's formula below).
- For *n* > 3 general formula is unknown). We have only different algorithms for claculation Frobenius numbers.
- Kannan (1992) gave a polynomial time algorithm for **FP** for any fixed *n*.
- But there is no hope for a fast (polynomial time) algorithm that solves general **FP**, unless $\mathcal{P} = \mathcal{NP}$.

We shall consider

$$f(a,b,c) = g(a,b,c) + a + b + c,$$

the **positive Frobenius number** of *a*, *b*, *c*, defined to be the largest integer not representable as a **positive** linear combination of *a*, *b*, *c*

$$ax + by + cz, \quad x, y, z \ge 1.$$

Positive Frobenius numbers are better because of Johnson's formula: for $d \mid a, d \mid b$

$$f(a,b,c) = d \cdot f\left(rac{a}{d},rac{b}{d},c
ight).$$

Example

Let a = 3, b = 5, c = 7. Then g(a, b, c) = ?

Alexey Ustinov (IAM FEB RAS) Why do we need Gauss — Kuz'min statistics?

2

イロト イポト イヨト イヨ

Example

Let a = 3, b = 5, c = 7. Then g(a, b, c) =? Answer: g(3, 5, 7) = 4:

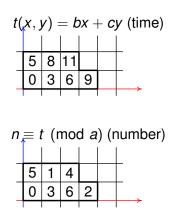
$$4 \neq 3x + 5y + 7z \qquad (x, y, z \ge 0),$$

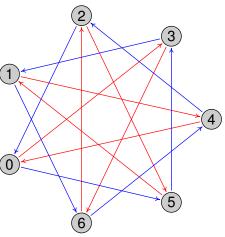
but for any m > 4 we can find $x, y, z \ge 0$ such that

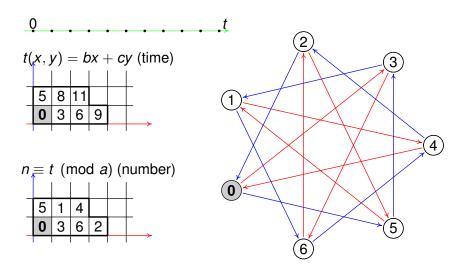
$$m \neq 3x + 5y + 7z$$
.

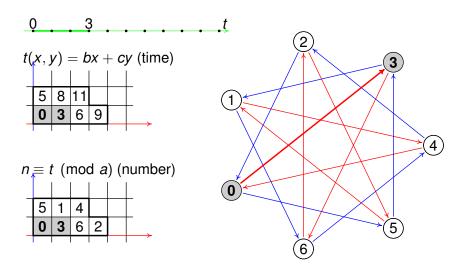
A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

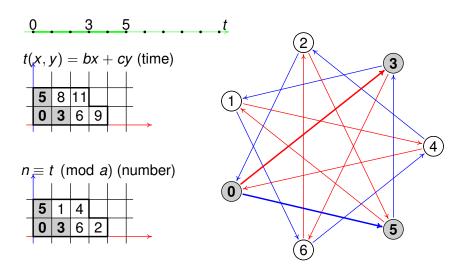
 $length(\uparrow) = 3$, $length(\uparrow) = 5$

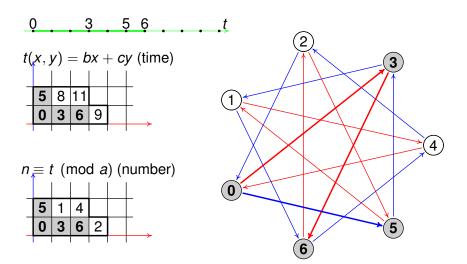


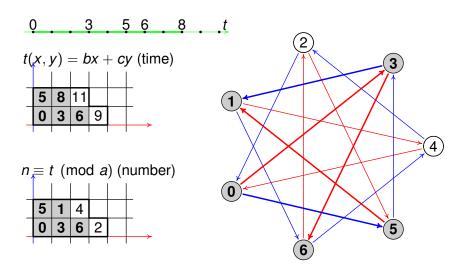


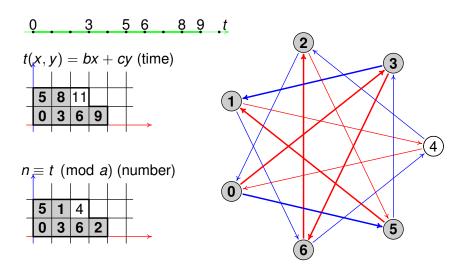


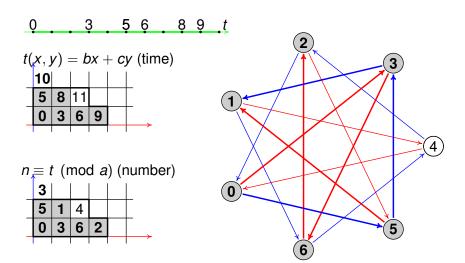


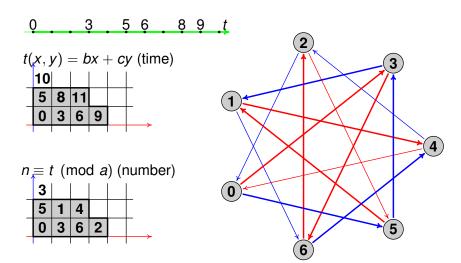




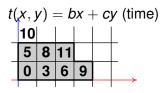


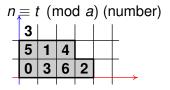


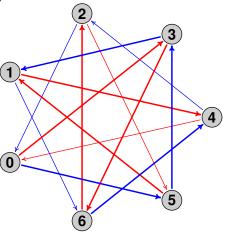




diam =
$$g(a, b, c) + a$$
 (= 11)







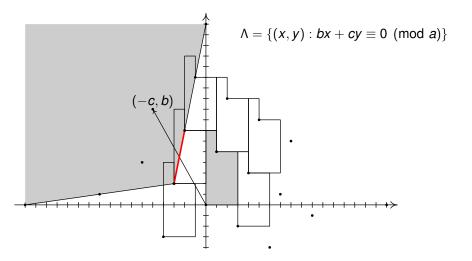
- Minimum distance diagram is always L-shaped (Wong, Coppersmith, 1974).
- L-shape always tessellates the plane.
- Form of L-shape depends on the properties of the lattice $\Lambda = \{(x, y) : bx + cy \equiv 0 \pmod{a}\}.$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

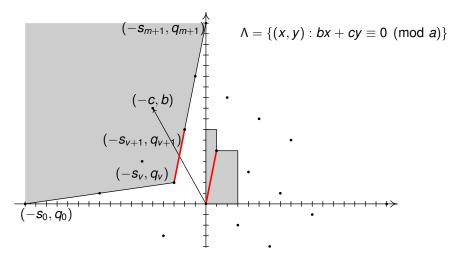
- Minimum distance diagram is always L-shaped (Wong, Coppersmith, 1974).
- L-shape always tessellates the plane.
- Form of L-shape depends on the properties of the lattice $\Lambda = \{(x, y) : bx + cy \equiv 0 \pmod{a}\}.$

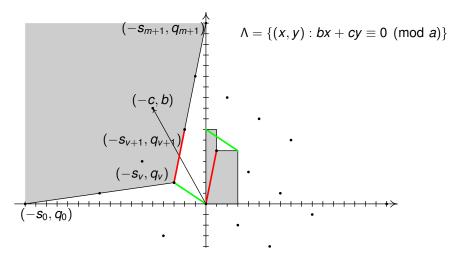
- Minimum distance diagram is always L-shaped (Wong, Coppersmith, 1974).
- L-shape always tessellates the plane.
- Form of L-shape depends on the properties of the lattice $\Lambda = \{(x, y) : bx + cy \equiv 0 \pmod{a}\}$

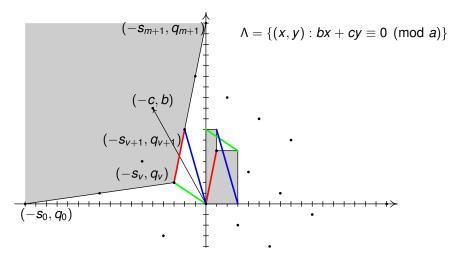
< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

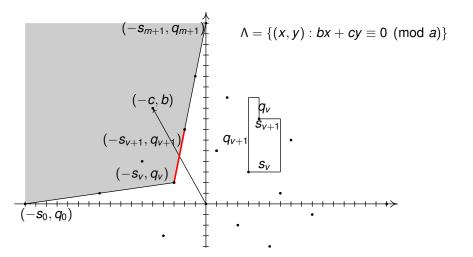


< 🗐 🕨









From obvious property

$$0 = \frac{s_{m+1}}{q_{m+1}} < \frac{s_{m-1}}{q_{m-1}} < \ldots < \frac{s_1}{q_1} < \frac{s_0}{q_0} = \infty$$

follows that for some n

$$rac{s_n}{q_n} \leq rac{c}{b} < rac{s_{n-1}}{q_{n-1}}.$$

From obvious property

$$0 = \frac{s_{m+1}}{q_{m+1}} < \frac{s_{m-1}}{q_{m-1}} < \ldots < \frac{s_1}{q_1} < \frac{s_0}{q_0} = \infty$$

follows that for some n

$$rac{s_n}{q_n} \leq rac{c}{b} < rac{s_{n-1}}{q_{n-1}}.$$

Theorem (Ö. Rödseth, 1978)

$$f(a, b, c) = bs_{n-1} + cq_n - \min\{bs_n, cq_{n-1}\}.$$

Rödseth's formula can be written in terms of reduced regular continued fraction. We want to find f(a, b, c) for (a, b) = (a, c) = (b, c) = 1. Let *I* is such that

$$bl \equiv c \pmod{a}, \quad 1 \leq l \leq a.$$

Reduced regular continued fraction

$$\frac{a}{l} = \langle a_1, \ldots, a_m \rangle = a_1 - \frac{1}{a_2 - \ldots - \frac{1}{a_m}},$$

where $a_1, \ldots, a_m \ge 2$, defines sequences $\{s_j\}, \{q_j\}$ by

$$\frac{q_{j+1}}{q_j} = \langle a_j, \ldots, a_1 \rangle, \qquad \frac{s_j}{s_{j+1}} = \langle a_{j+1}, \ldots, a_m \rangle \qquad (0 \le j \le m).$$

く 同 ト く ヨ ト く ヨ ト -

Frobenius numbers Rödseth formula

Rödseth's formula can be written in terms of reduced regular continued fraction. We want to find f(a, b, c) for (a, b) = (a, c) = (b, c) = 1. Let *I* is such that

$$bl \equiv c \pmod{a}, \qquad 1 \leq l \leq a.$$

Reduced regular continued fraction

$$\frac{a}{l} = \langle a_1, \ldots, a_m \rangle = a_1 - \frac{1}{a_2 - \ldots - \frac{1}{a_m}},$$

where $a_1, \ldots, a_m \ge 2$, defines sequences $\{s_j\}, \{q_j\}$ by

$$\frac{q_{j+1}}{q_j} = \langle a_j, \ldots, a_1 \rangle, \qquad \frac{s_j}{s_{j+1}} = \langle a_{j+1}, \ldots, a_m \rangle \qquad (0 \le j \le m).$$

く 同 ト く ヨ ト く ヨ ト -

Frobenius numbers Rödseth formula

Rödseth's formula can be written in terms of reduced regular continued fraction. We want to find f(a, b, c) for (a, b) = (a, c) = (b, c) = 1. Let *I* is such that

$$bl \equiv c \pmod{a}, \qquad 1 \leq l \leq a.$$

Reduced regular continued fraction

$$\frac{a}{l} = \langle a_1, \ldots, a_m \rangle = a_1 - \frac{1}{a_2 - \ldots - \frac{1}{a_m}},$$

where $a_1, \ldots, a_m \ge 2$, defines the same sequences $\{s_j\}, \{q_j\}$ by

$$\frac{q_{j+1}}{q_j} = \langle a_j, \ldots, a_1 \rangle, \qquad \frac{s_j}{s_{j+1}} = \langle a_{j+1}, \ldots, a_m \rangle \qquad (0 \le j \le m).$$

< ロ > < 同 > < 回 > < 回 > .

we have one-to-one correspondence between the set of quadruples $(q_n, s_n, q_{n-1}, s_{n-1})$ (taken for all lattices Λ_l) and the solutions of the equation

 $\begin{aligned} x_1y_1 - x_2y_2 &= a \\ \text{with } 0 \leq x_2 < x_1, \, 0 \leq y_2 < y_1, \, (x_1, x_2) = (y_1, y_2) = 1: \\ (q_n, s_n, q_{n-1}, s_{n-1}) \longleftrightarrow (x_1, x_2, y_2, y_1). \end{aligned}$

A (10) A (10)

From the equation

$$x_1y_1 - x_2y_2 = a$$

it follows that

$$x_1y_1 \equiv a \pmod{x_2},$$

and Kloosterman sums

$$\mathcal{K}_q(l,m,n) = \sum_{\substack{x,y=1\xy\equiv l \pmod{q}}}^q e^{2\pi i rac{mx+ny}{q}}$$

come into play. Solutions of the congruence $xy \equiv l \pmod{q}$ are uniformly distributed due to the bounds for Kloosterman sums.

< 回 > < 三 > < 三 >

This fact allows to calculate sums of the form

$$\sum_{xy\equiv l \pmod{q}} F(x,y)$$

and

$$\sum_{x_1y_1-x_2y_2=a}F(x_1,y_1,x_2,y_2).$$

In particular it allows to study distribution of Frobenius numbers f(a, b, c).

Rödseth (1990) proved a lower bound for Frobenius numbers:

$$f(a_1,\ldots,a_n) \geq \sqrt[n-1]{(n-1)!a_1\ldots a_n}.$$

Conjecture (Davison, 1994)

Average value of normalized Frobenius numbers $\frac{f(a,b,c)}{\sqrt{abc}}$ over cube $[1, N]^3$ tends to some constant as $N \to \infty$.

Rödseth (1990) proved a lower bound for Frobenius numbers:

$$f(a_1,\ldots,a_n)\geq \sqrt[n-1]{(n-1)!a_1\ldots a_n}.$$

Conjecture (Davison, 1994)

Average value of normalized Frobenius numbers $\frac{f(a,b,c)}{\sqrt{abc}}$ over cube $[1, N]^3$ tends to some constant as $N \to \infty$.

Conjecture (Arnold, 1999, 2005)

There is weak asymptotic for Frobenius numbers: for arbitrary *n* average value of $f(x_1, \ldots, x_n)$ over small cube with a center in (a_1, \ldots, a_n) approximately equal to $c_n \sqrt[n-1]{a_1 \ldots a_n}$ for some constant $c_n > 0$.

Bourgain and Sinaĭ in 2007 proved (with a little gap: they used one natural assumption which was proved later) that normalized Frobenius numbers $\frac{f(a,b,c)}{\sqrt{abc}}$ have limiting density function.

Frobenius numbers Weak asymptotic

Let $x_1, x_2 > 0$ and $M_a(x_1, x_2) = \{(b, c) : 1 \le b \le x_1 a, 1 \le c \le x_2 a, (a, b, c) = 1\}.$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Frobenius numbers Weak asymptotic

Let $x_1, x_2 > 0$ and $M_a(x_1, x_2) = \{(b, c) : 1 \le b \le x_1 a, 1 \le c \le x_2 a, (a, b, c) = 1\}.$

Theorem (A.U., 2009)

Frobenius numbers f(a, b, c) have weak asymptotic $\frac{8}{\pi}\sqrt{abc}$:

$$\frac{1}{a^{3/2}|M_a(x_1,x_2)|}\sum_{(b,c)\in M_a(x_1,x_2)}\left(f(a,b,c)-\frac{8}{\pi}\sqrt{abc}\right)=O_{\varepsilon,x_1,x_2}(a^{-1/6+\varepsilon}).$$

Davison's conjecture holds in a stronger form:

$$\frac{1}{|M_a(x_1, x_2)|} \sum_{(b,c) \in M_a(x_1, x_2)} \frac{f(a, b, c)}{\sqrt{abc}} = \frac{8}{\pi} + O_{\varepsilon, x_1, x_2}(a^{-1/12 + \varepsilon}).$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem (A.U., 2010)

Normalized Frobenius numbers of three arguments have limiting density function:

$$\frac{1}{|M_a(x_1, x_2)|} \sum_{(b,c) \in M_a(x_1, x_2) \atop f(a,b,c) \le \tau \sqrt{abc}} 1 = \int_0^\tau p(t) \, dt + O_{\varepsilon, x_1, x_2, \tau}(a^{-1/6 + \varepsilon}),$$

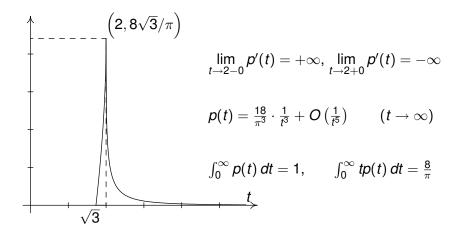
where

$$p(t) = \begin{cases} 0, & \text{if } t \in [0, \sqrt{3}]; \\ \frac{12}{\pi} \left(\frac{t}{\sqrt{3}} - \sqrt{4 - t^2} \right), & \text{if } t \in [\sqrt{3}, 2]; \\ \frac{12}{\pi^2} \left(t \sqrt{3} \arccos \frac{t + 3\sqrt{t^2 - 4}}{4\sqrt{t^2 - 3}} + \frac{3}{2}\sqrt{t^2 - 4} \log \frac{t^2 - 4}{t^2 - 3} \right), & \text{if } t \in [2, +\infty). \end{cases}$$

2

・ロト ・ 四ト ・ ヨト ・ ヨト

Frobenius numbers Density function



A (10) A (10) A (10)

Triples (α, β, r) , where

$$\alpha = \frac{q_n}{\sqrt{a/\xi}}, \quad \beta = \frac{s_{n-1}}{\sqrt{a\xi}}, \quad r = \frac{s_n}{\sqrt{a\xi}} \qquad (\xi = c/b)$$

(normalized edges of L-shaped diagram) have joint limiting density function

$$p(\alpha, \beta, r) = egin{cases} rac{2}{\zeta(2)r}, & r \leq \min\{lpha, eta\}, 1 \leq lphaeta \leq 1 + r^2, \\ 0 & \textit{else.} \end{cases}$$

It allows to study shortest cycles, average distances and another characteristics of L-shaped diagrams (double loop networks).

< 回 > < 三 > < 三 >

For usual Kloosterman sums

$$\mathcal{K}_q(1,m,n) = \sum_{\substack{x,y=1 \ xy \equiv 1 \pmod{q}}}^q e^{2\pi i rac{mx+ny}{q}}$$

Estermann bound is known

$$|K_q(1, m, n)| \le \sigma_0(q) \cdot (m, n, q)^{1/2} \cdot q^{1/2}.$$

This bound can be generalized for the case of sums $K_q(I, m, n)$.

For usual Kloosterman sums

$$\mathcal{K}_q(1,m,n) = \sum_{\substack{x,y=1 \ xy \equiv 1 \pmod{q}}}^q e^{2\pi i rac{mx+ny}{q}}$$

Estermann bound is known

$$|K_q(1, m, n)| \le \sigma_0(q) \cdot (m, n, q)^{1/2} \cdot q^{1/2}.$$

This bound can be generalized for the case of sums $K_q(I, m, n)$.

Theorem (A.U., 2008)

$$|\mathcal{K}_q(I,m,n)| \leq \sigma_0(q) \cdot \sigma_0((I,m,n,q)) \cdot (Im,In,mn,q)^{1/2} \cdot q^{1/2}$$

This estimate allows to count solutions of the congruence $xy \equiv l \pmod{a}$ in different regions.

Alexey Ustinov (IAM FEB RAS) Why do we need Gauss — Kuz'min statistics?

Corollary

Let $q \ge 1$, $0 \le P_1, P_2 \le q$. Then for any real Q_1 , Q_2

$$\sum_{\substack{Q_1 < x \le Q_1 + P_1 \\ Q_2 < y \le Q_2 + P_2}} \delta_q(xy - 1) = \frac{\varphi(q)}{q^2} \cdot P_1 P_2 + O\left(\sigma_0(q) \log^2(q + 1)q^{1/2}\right)$$

and

C

$$\sum_{\substack{P_1 < x \leq Q_1 + P_1 \\ P_2 < y \leq Q_2 + P_2}} \delta_q(xy - l) = \frac{K_q(0, 0, l)}{q^2} \cdot P_1 P_2 + O\left(q^{1/2 + \varepsilon} + (q, l)q^{\varepsilon}\right).$$

큰

イロト イ団ト イヨト イヨト

A combination with **van der Corput's method** of exponential sums allows to count solutions under a graph of smooth function.

A combination with **van der Corput's method** of exponential sums allows to count solutions under a graph of smooth function. Let $q \ge 1$, f be positive function and T[f] be the number of solutions of the congruence $xy \equiv l \pmod{q}$ in the region $P_1 < x \le P_2$, $0 < y \le f(x)$:

$$T[f] = \sum_{P_1 < x \le P_2} \sum_{0 < y \le f(x)} \delta_q(xy - l).$$

A combination with **van der Corput's method** of exponential sums allows to count solutions under a graph of smooth function. Let $q \ge 1$, *f* be positive function and T[f] be the number of solutions of the congruence $xy \equiv I \pmod{q}$ in the region $P_1 < x \le P_2$, $0 < y \le f(x)$:

$$T[f] = \sum_{P_1 < x \le P_2} \sum_{0 < y \le f(x)} \delta_q(xy - l).$$

Let

$$S[f] = \sum_{P_1 < x \leq P_2} \frac{\mu_{q,l}(x)}{q} f(x),$$

where $\mu_{q,l}(x)$ is the number of solutions of the congruence $xy \equiv l \pmod{q}$ over *y* such that $1 \leq y \leq q$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (A.U., 2008)

Let P_1 , P_2 be reals, $P = P_2 - P_1 \ge 2$ and for some A > 0, $w \ge 1$ function f(x) satisfies conditions

$$\frac{1}{A}\leq |f''(x)|\leq \frac{w}{A}.$$

Then

$$T[f] = S[f] - \frac{P}{2} \cdot \delta_q(I) + R[f],$$

where

$$R[f] \ll_w (PA^{-1/3} + A^{1/2}(I,q)^{1/2} + q^{1/2})P^{\varepsilon}.$$

< ロ > < 回 > < 回 > < 回 > < 回</p>

- The existence of limiting distribution for normalized Frobenius numbers of arbitrary number of arguments was proved by J. Marklof (2010).
- Distribution of diameters and distribution of shortest cycles in *circulant graphs* (often also called multi-loop networks) were studied by J. Marklof and A. Strömbergsson (2011). They proved existence of these distributions for arbitrary *n* and made some interesting numerical computations.
- For n = 3 Davison's conjecture in a stronger form was proved by D. Frolenkov (2011).

- The existence of limiting distribution for normalized Frobenius numbers of arbitrary number of arguments was proved by J. Marklof (2010).
- Distribution of diameters and distribution of shortest cycles in *circulant graphs* (often also called multi-loop networks) were studied by J. Marklof and A. Strömbergsson (2011). They proved existence of these distributions for arbitrary *n* and made some interesting numerical computations.
- For n = 3 Davison's conjecture in a stronger form was proved by D. Frolenkov (2011).

- The existence of limiting distribution for normalized Frobenius numbers of arbitrary number of arguments was proved by J. Marklof (2010).
- Distribution of diameters and distribution of shortest cycles in *circulant graphs* (often also called multi-loop networks) were studied by J. Marklof and A. Strömbergsson (2011). They proved existence of these distributions for arbitrary *n* and made some interesting numerical computations.
- For n = 3 Davison's conjecture in a stronger form was proved by D. Frolenkov (2011).

Sinai problem

Let $0 < h < \frac{1}{8}$, T > 0 and $\Omega_h(T)$ is the set of angles $\varphi \in [0, 2\pi)$ such that the ray

$$\{(t\cos\varphi,t\sin\varphi):t\geq 0\}$$

intersects *h*-neighborhood of some integer point $(m, n) \neq (0, 0)$ from the circle

$$\left\{(x,y)\in\mathbb{R}^2:x^2+y^2\leq T^2\right\}.$$

Denote by $G_h(T)$ normalized measure of $\Omega_h(T)$:

$$G_h(T) = rac{1}{2\pi} \operatorname{mes} \Omega_h(T) \in [0, 1].$$

In 1918 Polya proved that

$$G_h(T)=1$$

for all $T \ge h^{-1}$.

- 4 伺 ト 4 ヨ ト 4 ヨ ト -

Boca, Gologan and Zaharescu (2003) proved that for all $\varepsilon > 0$ uniformly over $T \in [0, h^{-1}]$

$$G_h(T) = \int_0^{h \cdot T} \sigma(t) \, dt + O_{\varepsilon}(h^{1/8-\varepsilon}),$$

where

$$\sigma(t) = \begin{cases} \frac{12}{\pi^2}, & \text{if } 0 \le t \le \frac{1}{2}; \\ \frac{12}{\pi^2} \left(\frac{1}{t} - 1\right) \left(1 - \log\left(\frac{1}{t} - 1\right)\right), & \text{if } \frac{1}{2} < t \le 1. \end{cases}$$

From physical point of view $G_h(T)$ is the density function for free path lengths in 2-dimensional Lorentz gas.

We considered more general situation when trajectories start from *h*-neighborhood of the origin. Let $v \in (-1, 1)$ be the fixed number and the particle moves along the ray

$$\left\{ (-hv\sin\varphi + t\cos\varphi, hv\cos\varphi + t\sin\varphi) \in \mathbb{R}^2 : t \ge 0 \right\}.$$
 (1)

Let $(m(\varphi), n(\varphi))$ be the center of the first *h*-neighborhood intersected by the ray.

< 回 > < 三 > < 三 >

In other words $(m(\varphi), n(\varphi))$ is the nearest to the origin point such that

```
R(m,n) > 0 and |U(m,n)| < h
```

where

$$R(x, y) = x \cos \varphi + y \sin \varphi,$$

$$U(x, y) = x \sin \varphi - y \cos \varphi + hv.$$

We denote by

$$r(\varphi) = h \cdot R(m(\varphi), n(\varphi)), \quad u(\varphi) = h^{-1} \cdot U(m(\varphi), n(\varphi)).$$

normalized free path length and normalized sighting (aiming?) parameter.

Sinai problem

Suppose

$$0 < r_0 < \frac{1}{1 - |v|}$$
 and $-1 < u_- < u_+ < 1$.

Theorem (Bykovskii, A.U., 2007–2008)

Let |v| < c < 1. Then for all $\varepsilon > 0$ for the distribution function

$$\Phi_{\nu}(h) = \Phi_{\nu}(h; \varphi_0, r_0, u_-, u_+) =$$

=
$$\int_0^{\varphi_0} \chi_{[0, r_0]}(r(\varphi)) \chi_{[u_-, u_+]}(u(\varphi)) d\varphi$$

following asymptotic formula holds $(h \rightarrow 0)$

$$\Phi_{\mathbf{v}}(h) = \int_{0}^{\varphi_{0}} \int_{0}^{r_{0}} \int_{u_{-}}^{u_{+}} \rho(\varphi, \mathbf{r}, \mathbf{v}, u) \, d\varphi \, d\mathbf{r} \, du + O_{\varepsilon, \mathbf{c}} \left(h^{\frac{1}{2}-\varepsilon}\right)$$

Density function has following symmetries

$$\rho(\varphi, \mathbf{r}, \mathbf{v}, \mathbf{u}) = \rho(\mathbf{r}, \mathbf{v}, \mathbf{u}) = \rho(\mathbf{r}, \mathbf{u}, \mathbf{v}) = \rho(\mathbf{r}, -\mathbf{u}, -\mathbf{v}),$$

for $u \ge |v|$ is equal to

$$\rho(r, u, v) = \begin{cases} \frac{6}{\pi^2}, & \text{if } 0 \le r \le \frac{1}{u+1}; \\ \frac{6}{\pi^2} \cdot \frac{1}{u-v} \left(\frac{1}{r} - 1 - v\right), & \text{if } \frac{1}{u+1} \le r \le \frac{1}{1+v}; \\ 0, & \text{if } \frac{1}{1+v} \le r. \end{cases}$$

From physical point of view $\frac{1}{2\pi}\rho(\varphi, r, v, u)$ is the density of the particles moving along the ray (1), with unit speed after first reflection in *h*-neighborhood of the origin and passing distance $R = h^{-1} \cdot r$ before next reflection with sighting parameter $h \cdot u$.

Reduced (2-dimensional) bases are important in different number theory algorithms:

- fast point multiplication on elliptic curves;
- prediction of pseudo random generators, numerical integration;
- combinatorial optimization...

Reduced (2-dimensional) bases are important in different number theory algorithms:

- fast point multiplication on elliptic curves;
- prediction of pseudo random generators, numerical integration;
- combinatorial optimization...

Reduced (2-dimensional) bases are important in different number theory algorithms:

- fast point multiplication on elliptic curves;
- prediction of pseudo random generators, numerical integration;
- combinatorial optimization...

Work of these algorithms depends on properties of reduced basis (shorter vectors are better).

Let $1 \le l \le a$, (l, a) = 1 and e_1 be the shortest vector of the lattice $\Lambda_l = \{(x, y) : lx \equiv y \pmod{a}\}.$

Let $1 \le l \le a$, (l, a) = 1 and e_1 be the shortest vector of the lattice $\Lambda_l = \{(x, y) : lx \equiv y \pmod{a}\}$. Basis (e_1, e_2) is reduced iff $e_2 \in \Omega(e_1)$ where $\Omega(e_1)$ is the plane region defined by inequalities

 $\|e_2\| \ge \|e_1\|$ and $\|e_2 \pm e_1\| \ge \|e_2\|$.

Let $1 \le l \le a$, (l, a) = 1 and e_1 be the shortest vector of the lattice $\Lambda_l = \{(x, y) : lx \equiv y \pmod{a}\}$. Basis (e_1, e_2) is reduced iff $e_2 \in \Omega(e_1)$ where $\Omega(e_1)$ is the plane region defined by inequalities

$$\|e_2\| \ge \|e_1\|$$
 and $\|e_2 \pm e_1\| \ge \|e_2\|$.

Moreover vector e_2 must lie on the line $l(e_1)$ defined by equation $det(e_1, e_2) = a$.

Let $1 \le l \le a$, (l, a) = 1 and e_1 be the shortest vector of the lattice $\Lambda_l = \{(x, y) : lx \equiv y \pmod{a}\}$. Basis (e_1, e_2) is reduced iff $e_2 \in \Omega(e_1)$ where $\Omega(e_1)$ is the plane region defined by inequalities

$$\|e_2\| \ge \|e_1\|$$
 and $\|e_2 \pm e_1\| \ge \|e_2\|$.

Moreover vector e_2 must lie on the line $I(e_1)$ defined by equation $det(e_1, e_2) = a$. By averaging over I we can get that vectors e_2 distributed uniformly on $\Omega(e_1) \cap I(e_1)$ with weight $||e_2||_2^{-1}$. Suppose $e_1 = \sqrt{a}(\alpha, \beta), e_2 = \sqrt{a}(\gamma, \delta)$.

< 回 > < 三 > < 三 >

For example in the case of the most popular $\|\cdot\|_{\infty}$ -norm integration over e_2 lead to the density function for e_1 :

For example in the case of the most popular $\|\cdot\|_{\infty}$ -norm integration over e_2 lead to the density function for e_1 :

$$p(\alpha,\beta) = p(\pm\alpha,\pm\beta) = p(\beta,\alpha);$$
$$p(\alpha,\beta) = \frac{4}{\zeta(2)} \min\left\{1, \frac{1-\alpha^2}{\alpha\beta}\right\} \qquad (0 \le \beta \le \alpha \le 1).$$

For example in the case of the most popular $\|\cdot\|_{\infty}$ -norm integration over e_2 lead to the density function for e_1 :

$$p(\alpha,\beta) = p(\pm\alpha,\pm\beta) = p(\beta,\alpha);$$

$$p(\alpha,\beta) = \frac{4}{\zeta(2)} \min\left\{1,\frac{1-\alpha^2}{\alpha\beta}\right\} \quad (0 \le \beta \le \alpha \le 1).$$

$$\uparrow^{\beta}$$

$$p(\alpha,\beta) = \frac{4}{\zeta(2)}\beta = \frac{1}{\alpha} - \alpha$$

$$q(\alpha,\beta) = \frac{4}{\zeta(2)}\beta = \frac{1}{\alpha} - \alpha$$

By integrating over e_1 we can get density function for $t = ||e_2||/\sqrt{a}$:

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

By integrating over e_1 we can get density function for $t = ||e_2||/\sqrt{a}$:

$$p(t) = \begin{cases} 0, & \text{if } t \in \left[0, 1/\sqrt{2}\right]; \\ \frac{4}{\zeta(2)} \left(2t - \frac{1}{t} + \left(\frac{1}{t} - t\right)\right) \log\left(\frac{1}{t^2} - 1\right)\right), & \text{if } t \in \left[1/\sqrt{2}, 1\right]; \\ \frac{4}{\zeta(2)} \left(\frac{1}{t} + \left(t - \frac{1}{t}\right)\right) \log\left(1 - \frac{1}{t^2}\right)\right), & \text{if } t \in [1, \infty]. \end{cases}$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

By integrating over e_1 we can get density function for $t = ||e_2||/\sqrt{a}$: $p(t) = \begin{cases} 0, & \text{if } t \in \left[0, 1/\sqrt{2}\right]; \\ \frac{4}{\zeta(2)} \left(2t - \frac{1}{t} + \left(\frac{1}{t} - t\right)\right) \log\left(\frac{1}{t^2} - 1\right)\right), & \text{if } t \in \left[1/\sqrt{2}, 1\right]; \\ \frac{4}{\zeta(2)} \left(\frac{1}{t} + \left(t - \frac{1}{t}\right)\right) \log\left(1 - \frac{1}{t^2}\right)\right), & \text{if } t \in [1, \infty]. \end{cases}$ $\left[- - - - (1, 4/\zeta(2)) \right]$