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Let S be a subset of R2
>0. Consider the boundary of the set

S ⊕ R2
>0 = {s + r | s ∈ S, r ∈ R2

>0}.

In other words, this broken line is the boundary of the union of copies
of the positive quadrant shifted by vertices of the set S.
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Let S be a subset of R3
>0. The Voronoi-Minkowski polyhedron for S is

the boundary of the set

S ⊕ R3
>0 = {s + r | s ∈ S, r ∈ R3

>0}.

In other words, the Voronoi-Minkowski polyhedron is the boundary of
the union of copies of the positive octant shifted by vertices of the set
S.

We assume that
(1) S has no accumulation points;
(2) S is in general position: each plane parallel to a coordinate plane
contains at most one point of S.
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Voronoi-Minkowski complex

y

z

x
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For a nonempty point set T ⊂ Rs Box(T ) is the least possible
parallelepiped circumscribed about T .

More formally: if

|T |i = max{|xi | : x = (x1, . . . , xs) ∈ T} (i = 1, . . . , s),

then
Box(T ) = [−|T |1, |T |1]× . . .× [−|T |s, |T |s].
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A point γ in a lattice Γ is called a relative (local) minimum of the lattice
Γ in the sense of Voronoi (or simply a minimum) if the Box(γ) is free (it
contains no points of the lattice Γ different from its vertices and the
origin).

2-D example:
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The Box(γ1, γ2) is called extreme if it is free and if, at the same time, it
has on each of its faces at least one lattice point.
In other words it is impossible to extend this parallelepiped in any
coordinate direction so that the resulting parallelepiped still contains no
nonzero lattice points.

γ1

γ2

γ3

Box(γ1, γ2)

Box(γ1, γ3)

Box(γ1)
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When we consider local minima or extreme parallelepipeds signs are
not important for us. We can remove them.

Instead of lattice Γ we can consider a set |Γ| ⊂ Rs where

|Γ| = {(|x |, |y |, |z|) : (x , y , z) ∈ Γ} .
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As it was proved by Voronoi, we can consider a classical continued
fraction as a sequence of local minima (halls) or extreme
parallelepipeds (hills)
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Local minima and Klein polyhedron: (in 2-D case)

local minima=vertices of Klein polyhedron
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In 3-D case vertices of Klein polyhedron are always local minima, but
converse is not true (Bykovski, 2006).
In other words local minima have more rich structure (they can lie on
the faces of Klein polyhedron.
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3-D definitions

The Box(γ1, γ2, γ3) is called extreme if it is free (it contains no lattice
points other than the origin) and if, at the same time, it has on each of
its faces at least one lattice point.

It is impossible to extend this parallelepiped in any coordinate direction
so that the resulting parallelepiped still contains no nonzero lattice
points.
A set of vectors (s.t. vi 6= vj ) S in the lattice Γ is said to be minimal if
the Box(S) contains no points of Γ except the origin. In particular, a
minimal system of order 1 is a local minimum, minimal systems of
order 3 gives extreme parallelepiped.
If {γ1, γ2} is a minimal system of order 2 then γ1 and γ2 are
neighbours.
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Minkowski graph
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x
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Minkowski graph
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Voronoi (=Minkowski∗) graph

γy

γz

γx

γ3γ4

γ1

γ2

γz

γx γy

γ3

γ2
γ1

γ4

Here coordinates of vertices in space and on the plane x + y + z = 0
are concordant
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Some reasons

Why do this objects are interesting and important?

Good algorithms.
Periodicity for algebraic numbers.
“Vahlen’s theorem”.
“Gauss measure”.
Possibility to apply “hard” (analytical) methods based on
Kloosterman sums.

Alexey Ustinov (Khabarovsk) Voronoi – Minkowski 3-D continued fractions 20 / 37



Some reasons
Good algorithms

Minkowski and Voronoi proposed algorithms for finding fundamental
units in cubic fields. (All pictures above correspond to the case of
totally real cubic fields. In the case of complex cubic fields
parallelepiped must be replaced by cylinders.)

Minkowski’s algorithm goes from one extreme parallelepiped to
another one.
Voronoi considered chains of local minima.
They were able to do all calculations by hand ,
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Some reasons
Periodicity

Theorem (Lagrange’s Continued Fraction Theorem.)
The real roots of quadratic expressions with integral coefficients have
periodic continued fractions.

Two main examples (the beginning of Markov spectrum) are

1 +
√
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2
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√
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Some reasons
Periodicity

With quadratic irrational α we can associate a lattice Γ(α) with basis
(1,1) and (α, β) where β is conjugate of α (second root of the same
quadratic equation.)
Periodical continued fraction of α describes periodical structure of local
minima of Γ(α).

With cubic irrationality α (from totally real cubic field) we can associate
3-D lattice with basis (1,1,1), (α, β, γ), (α2, β2, γ2), where β and γ are
conjugates of α.
Voronoi–Minkowski graph for such lattices is doubly periodic (totally
real cubic field has 2 fundamental units).
Two mains examples arise from cubic numbers α = 2 cos 2π

7 and
α = 2 cos 2π

9 (associated with first two extremal Davenport cubic
forms).
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Some reasons
Periodicity

The Voronoi graph for α = 2 cos 2π
7

α2 − α− 1

α

−1− α

1− α2
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−α2 − α + 1

α2 − 2

α2 + α− 2
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Some reasons
Periodicity

The Voronoi graph for α = 2 cos 2π
9

Alexey Ustinov (Khabarovsk) Voronoi – Minkowski 3-D continued fractions 25 / 37



Some reasons
Vahlen’s theorem

Denote by pn
qn

= [a0; a1, . . . ,an] convergents to a given number
α = [a0; a1, . . . ,an, . . .].
Vahlen’s theorem: for p/q = pn−1/qn−1 or p/q = pn/qn∣∣∣∣α− p

q

∣∣∣∣ 6 1
2q2

can be translated to the lattice language. The equivalent statement:
γa = (a1,a2), γb = (b1,b2) is a minimal system on lattice Γ, then

min{|a1a2|, |b1b2|} 6
1
2

det Γ.

Vahlen’s theorem has a stronger form:

|a1a2|+ |b1b2| 6 det Γ,
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Some reasons
3-D Vahlen’s theorem

Theorem (Avdeeva and Bykovskii, 2006)
If

γa = (a1,a2,a3), γb = (b1,b2,b3), γc = (c1, c2, c3),

is a minimal system on lattice Γ, then

|a1a2a3|+ |b1b2b3|+ |c1c2c3| 6 det Γ.

This theorem can be regarded as a sharpening of the estimate

|a1a2a3|+ |b1b2b3|+ |c1c2c3| 6 3 det Γ,

which follows from Minkowskis convex body theorem.
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Some reasons
Gauss measure

In 2-D case minimal couple γa = (a1,a2), γb = (b1,b2) is always a
basis of a given lattice (Voronoi):

γa

γbBox(γa, γb)
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Some reasons
Gauss measure

We can associate with minimal system γa = (a1,a2), γb = (b1,b2) the
matrix

( a1 b1
a2 b2

)
with diagonal dominance: |a1| > |b1|, |b2| > |a2|.

The following elementary transformations do not change the geometry
of a picture:

permutation of rows or columns (renumbering of the vectors or of
the coordinates axes);
changing the signs of all elements in a column (changing the
direction of a coordinate axis);
multiplication of a row by a nonzero number (rescaling one of the
coordinate axes, possibly in combination with changing the
orientation of this axis).( a1 b1

a2 b2

)
→
( 1 x
−y 1

)
where 0 < x < 1, 0 < y < 1. Box(γa, γb)→ [−1,1]2.
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Some reasons
Gauss measure

Gaussian measure

dµ =
dx dy

(1 + xy)2 =
dxdy∣∣∣∣ 1 x
−y 1

∣∣∣∣2
defined for (x , y) ∈ [0,1]2 describes typical behavior of classical
continued fractions. From geometrical point of view this density
function describes distribution of vectors from bases

( 1 x
−y 1

)
on the

sides of unit square.

(x ,1)

(1,−y)

Alexey Ustinov (Khabarovsk) Voronoi – Minkowski 3-D continued fractions 30 / 37



Some reasons
Gauss measure

In 2-D case minimal couple γa = (a1,a2), γb = (b1,b2) is always a
basis of a given lattice and

( a1 b1
a2 b2

)
∼
( 1 x
−y 1

)
where 0 < x < 1,

0 < y < 1.

3-D surprise (Minkowski): either minimal triple γa = (a1,a2,a3),
γb = (b1,b2,b3), γc = (c1, c2, c3) is a basis and corresponding matrix
equivalent to  1 x2 ±x3

−y2 1 y3
z1 −z2 1


or it is degenerate (det(γa, γb, γc) = 0) and for some combination of

signs
γa ± γb ± γc = 0.

For bases (x2, x3, y1, y3, z1, z2) ∈ subset of [0,1]6 defined by some
simple liner inequalities depending on the sign before x3.
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−y 1

)
where 0 < x < 1,

0 < y < 1.
3-D surprise (Minkowski): either minimal triple γa = (a1,a2,a3),
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equivalent to  1 x2 ±x3

−y2 1 y3
z1 −z2 1



or it is degenerate (det(γa, γb, γc) = 0) and for some combination of
signs

γa ± γb ± γc = 0.

For bases (x2, x3, y1, y3, z1, z2) ∈ subset of [0,1]6 defined by some
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Some reasons
Gauss measure

The 3-D analogue of Gaussian measure

dµ =
dx2 dx3 . . . dz2∣∣∣∣∣∣
1 x2 ±x3
−y2 1 y3

z1 −z2 1

∣∣∣∣∣∣
3

describes distribution of basis vector on some subset of [0,1]6.

The same measure describes behavior of Klein polyhedrons. The
difference is in measure space. Measure space varies for different
types of 3-D continued fractions.
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Some reasons
Analytical tool: Kloosterman sums

In 2-D problems we study 2× 2 matrices with fixed determinant:

det
(

a b
−c d

)
= N, where a2 6 b2,b1 6 a1

We can fix a and consider a congruence

bc ≡ N (mod a).

For each solution (b, c) a pair (zb, z−1c) where zz−1 ≡ 1 (mod a) is
also a solution.
Propagating a solution we have 3 degrees of freedom (u, t , z ∈ Z):∣∣∣∣ a b

−c d

∣∣∣∣ = N ⇒
∣∣∣∣ a zb + ua
−z−1c + ta ∗

∣∣∣∣ = N
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Some reasons
Analytical tool: Kloosterman sums

In such a situation ∣∣∣∣ a zb + ua
−z−1c + ta ∗

∣∣∣∣ = N

we can average over z and apply estimations of Kloosterman sums

Ka(m,n) =
a∑

z=1
(a,z)=1

e2πi mz+nz−1
a .
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Some reasons
Analytical tool: Kloosterman sums and 3-D → 2-D reduction

Let A =
(

a b
c d

)
, q = det A 6= 0 and∣∣∣∣∣∣ A x1

x2
x3 x4 x5

∣∣∣∣∣∣ = N.

Propagating a solution we have 5 degrees of freedom (u, v , s, t ,
z ∈ Z):

∣∣∣∣∣∣ A z−1x1 + ua + vb
z−1x2 + uc + vd

zx3 + sa + tc zx4 + sb + td ∗

∣∣∣∣∣∣ = P,

where zz−1 ≡ 1 (mod q).
Averaging over z we can apply Kloosterman sums again.
Linnik and Skubenko (1964) used this argument studying distribution
of points on a variety defined by equation det(xij) = N (i , j = 1,2,3).
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Open problems

Number theory:

3-D Markov spectrum;

study 3-D reduced (in any sense) bases by analytical tools.

Geometry:

characterize possible Minkowski (Voronoi) graphs arising from 3-D
lattices;
characterize possible PERIODIC Minkowski (Voronoi) graphs
arising from 3-D ALGEBRAIC lattices;
is it always possible to draw infinite Voronoi graph without
accumulation points, keeping its geometry and using edges of 3
directions?
Are there any connections with singularity resolutions in toric
geometry?
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Thank you for your attention!
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