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The Farey Fraction Spin Chain

Consider the following simple model of a magnet: a chain composed of
some molecules (spins), each of which can point either up ↑ or down ↓

↑↑↑↓↓↑↑↑↑=↑3↓2↑4 .

In statistical physics we need to define the probability of a given
configuration. Usually it depends on the energy E and the temperature
T :

p =
e−E/T

Z
,

where Z is just the normalizing factor.
There are different ways to assign an energy to each state of a spin
chain.

Alexey Ustinov (IAM FEB RAS) Farey Fraction Spin Chain 3 / 27



The Farey Fraction Spin Chain

Consider the following simple model of a magnet: a chain composed of
some molecules (spins), each of which can point either up ↑ or down ↓

↑↑↑↓↓↑↑↑↑=↑3↓2↑4 .

In statistical physics we need to define the probability of a given
configuration. Usually it depends on the energy E and the temperature
T :

p =
e−E/T

Z
,

where Z is just the normalizing factor.
There are different ways to assign an energy to each state of a spin
chain. .

Alexey Ustinov (IAM FEB RAS) Farey Fraction Spin Chain 3 / 27



The Farey Fraction Spin Chain

Kleban and Özlük (1999) introduced Farey Fraction Spin Chain model
based on the products of matrices

A =

(
1 0
1 1

)
, B =

(
1 1
0 1

)
.

In this model ↑= A, ↓= B. For example

↑↑↑↓↓↑↑↑↑=↑3↓2↑4= A3B2A4.

For a given configuration they proposed to assign the energy

E(↑a1↓a2↑a3 . . .) = log
(
Tr (Aa1Ba2Aa3 . . .)

)
.

In particular

E(An) = log 2, E((AB)n) � n (typical).
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Notation
Continued fractions

Several authors (Kallies, Özlük, Peter, Snyder, Boca, Fiala) considered
the following problem: determine the number of states with energy
bounded by N. Let

Ψ(N) =
∣∣{C ∈ 〈A,B〉 : 3 6 Tr C 6 N

}∣∣.
Kallies, Özlük, Peter, Snyder (2001):

Ψ(N) =
N2 log N
ζ(2)

+ O(N2 log log N).
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Boca (2007):

Ψ(N) = N2(c1 log N + c0) + Oε

(
N7/4+ε

)
,

where

c1 =
1
ζ(2)

, c2 =
1
ζ(2)

(
γ − 3

2
− ζ ′(2)

ζ(2)

)
.

Theorem (AU, 2012)

Ψ(N) = N2(c1 log N + c0) + Oε

(
N3/2+ε

)
.

This result follows from Weil’s (+ Estermann) bound

|Kq(m,n)| 6 σ0(q) · (m,n,q)1/2 · q1/2.

for Kloosterman sums

Kq(m,n) =

q∑
x,y=1

xy≡1 (mod q)

e2πi mx+ny
q .
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It is better to split a problem in two parts

Ψ(N) = 2
(
Ψev (N) + Ψodd (N)

)
and consider even and odd spin chains separately:

Ψev (N) =
∣∣{C = Aa1Ba2 . . .Ba2n : 3 6 Tr C 6 N

}∣∣
Ψodd (N) =

∣∣{C = Aa1Ba2 . . .Aa2n+1 : 3 6 Tr C 6 N
}∣∣.

Asymptotic formula for Ψ(N) follows from

Ψev (N) =
log 2
2ζ(2)

N2 + O(N3/2+ε)

Ψodd (N) =
N2

2ζ(2)

(
log N − log 2 + γ − 3

2
− ζ ′(2)

ζ(2)

)
+ O(N3/2+ε).

Alexey Ustinov (IAM FEB RAS) Farey Fraction Spin Chain 7 / 27



It is better to split a problem in two parts

Ψ(N) = 2
(
Ψev (N) + Ψodd (N)

)
and consider even and odd spin chains separately:

Ψev (N) =
∣∣{C = Aa1Ba2 . . .Ba2n : 3 6 Tr C 6 N

}∣∣
Ψodd (N) =

∣∣{C = Aa1Ba2 . . .Aa2n+1 : 3 6 Tr C 6 N
}∣∣.

Asymptotic formula for Ψ(N) follows from

Ψev (N) =
log 2
2ζ(2)

N2 + O(N3/2+ε)

Ψodd (N) =
N2

2ζ(2)

(
log N − log 2 + γ − 3

2
− ζ ′(2)

ζ(2)

)
+ O(N3/2+ε).

Alexey Ustinov (IAM FEB RAS) Farey Fraction Spin Chain 7 / 27



Quadratic irrationals
Notation

Let
a
b

= [a0; a1, . . . ,as + . . .] = a0 +
1

a1 + . . . +
1

as + . . .

,

be standard continued fraction expansion with a0 ∈ Z, a1, . . . , as,
. . .∈ N.

If ω is a quadratic number, its conjugate will be denoted by ω∗.

A quadratic number ω ∈ (0,1) is said to be reduced if its continued
fraction expansion is such that ω = [0; a1, . . . ,an].
Let R be the set of all reduced quadratic numbers and ρ(ω) is the
length of ω (the length of corresponding closed geodesics of upper
half-plane).
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Faivre, 1992: ∑
ρ(ω)<x

1 ∼ ex log 2
2ζ(2)

It is the special type of prime geodesic theorems studied by Linnik,
Skubenko, Margulis, Sarnak, Duke, Pollicott. . .
Boca’s result

Ψev (N) =
log 2
2ζ(2)

N2 + O(N7/4+ε)

equivalent to ∑
ρ(ω)<x

1 =
ex log 2
2ζ(2)

+ Oε

(
e( 7

8 +ε)x
)
.

Better error term O(N3/2+ε) in asymptotic formula for Ψev (N) gives
better error term O

(
e( 3

4 +ε)x
)

in last formula.
We need Gauss — Kuz’min statistics to look inside spin chains.
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Gauss —Kuz’min statistics

Let α ∈ (0,1), α = [0; a1,a2, . . . ,an, . . .].

Theorem (Gauss — Kuz’min, 1800 + 1928)

mes {α ∈ (0,1) : [0; an,an+1, . . .] 6 x} → log2(1+x) =
1

log 2

∫ x

0

dt
1 + t

(n→∞).

This theorem has following generalization:

mes {α ∈ (0,1) : [0; an,an+1, . . .] 6 x , [0; an−1, . . . ,a2,a1] 6 y} →

→ log2(1 + xy) =
1

log 2

∫ x

0

∫ x

0

dt1dt2
(1 + t1t2)2 (n→∞).
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Gauss — Kuz’min statistics
Arnold’s problem

Conjecture (Arnold, 1993)
Rational numbers and quadratic irrationals satisfy Gauss — Kuz’min
law.

Gauss — Kuz’min statistics for rational numbers were studied by
Avdeeva — Bykovskii (2002–2004).

Theorem (A.U., 2005)
For any region Ω with “good” boundary

1
R2Vol(Ω)

∑
(a/R,b/R)∈Ω

sx (a/b) =
2 log(x + 1)

ζ(2)
log R+CΩ(x)+O(R−1/5+ε).

The same law holds for even spin chains and reduced quadratic
irrationals (after suitable definitions).
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Continued fractions and 2× 2 matrices

LetM be the set of integer matrices

S =

(
p p′

q q′

)
=

(
p(S) p′(S)
q(S) q′(S)

)
such that det S = ±1, and

1 6 q 6 q′, 0 6 p 6 q, 1 6 p′ 6 q′.

The following map

[0; a1,a2, . . . ,an] 7→
(

p p′

q q′

)
=

(
0 1
1 a1

)
. . .

(
0 1
1 an

)
.

is one-to-one correspondence between rationales α ∈ (0,1) and
matrices S ∈M.
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Continued fractions and 2× 2 matrices

If (
p p′

q q′

)
=

(
0 1
1 a1

)
. . .

(
0 1
1 an

)
.

then partial quotients a− 1, . . . , an can be reconstructed by
expansions

p
q

= [0; a1, . . . ,an−1],
p′

q′
=[0; a1, . . . ,an],

or

p
p′

= [0; an, . . . ,a2],
q
q′

=[0; an, . . . ,a1].

M =M+ tM− (depending on sign of determinant).
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Even spin chains

Equivalent definition of number of spin chains with bounded energy:

Ψev (N) =

∣∣∣∣{S =

(
p p′

q q′

)
∈M+ : Tr(S) = p + q′ 6 N

}∣∣∣∣ .
Gauss — Kuz’min statistics for even spin chains are counted by the
function

Ψev (x , y ; N) =

∣∣∣∣{(p p′

q q′

)
∈M+ :

p′

q′
6 x ,

q
q′

6 y ,p + q′ 6 N
}∣∣∣∣ .

Theorem (AU, 2012)

Ψev (x , y ; N) =
log(1 + xy)

2ζ(2)
N2 + O(N3/2+ε).
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Odd spin chains

Theorem (AU, 2012)

Ψodd (x , y ; N) =
N2

2ζ(2)

(
log N + log

xy
x + y

+ γ − 3
2
− ζ ′(2)

ζ(2)

)
+

+ O
(
N3/2+ε

)
+ O

(x + y
xy

N1+ε
)
.

Main term here is constructed from matrices
(

p p′

q q′

)
with p′ = o(q′),

q = o(q′) and has nothing common with Gauss — Kuz’min statistics.
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The main tool

Lemma

Let q > 1, 0 6 P1,P2 6 q. Then∑
0<x6P2

∑
0<y6P2

xy≡1 (mod q)

1 =
ϕ(q)

q2 P1P2 + O(q1/2+ε).

Lemma

Let q > 1, 0 6 P1,P2 6 q, f (x) = a± x is a linear function such that
0 6 f (P1), f (P2) 6 q. Then

∑
P1<x6P2

∑
0<y6f (x)

xy≡1 (mod q)

1 =
ϕ(q)

q2

P2∫
P1

f (x)dx + O(q1/2+ε).
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The length of a quadratic irrational

Let H = {(x , y); y > 0} be the hyperbolic plane with its classical
complete metric

ds2 = y−2(dx2 + dy2).

For this metric the curvature of H is constant and equal to −1.

Elements of PSL(2,R) are isometries of H.

Let M = H/PSL(2,Z) be the modular surface.
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The length of a quadratic irrational

The geodesics γ : R→ H for the hyperbolic metric are supported by
vertical half-lines and the half-circles centered on the real axis. The
geodesics of M are by definition the p ◦ γ where γ : R→ H is a
geodesic of H and p : H→ M the canonical projection.

The following theorem is known and gives the closed geodesics (i.e.
periodic geodesics) on the modular surface.

Theorem
(i) Let γ be a geodesic of H joining a quadratic number ω and its
conjugate ω∗. Then p ◦ γ is a closed geodesic of M and all the closed
geodesics on M arise in this way.
(ii) The length of p ◦ γ is given by ρ(ω) = 2 log ε0(ω).
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closed geodesics

Theorem
(i) Let γ be a geodesic of H joining a quadratic number ω and its
conjugate ω∗. Then p ◦ γ is a closed geodesic of M and all the closed
geodesics on M arise in this way.
(ii) The length of p ◦ γ is given by ρ(ω) = 2 log ε0(ω).

Let AX 2 + BX + C ∈ Z[X ] be the minimal equation of quadratic
irrational ω in Z (A > 0, (A,B,C) = 1) and ∆ = B2 − 4AC. Then
ε0(ω) = 1

2(x0 +
√

∆y0) is the fundamental solution of the Pell equation

X 2 −∆Y 2 = 4.

In the field Q(
√

∆) number ω has trace tr(ω) = ω + ω∗ = −B/A and
norm N (ω) = ωω∗ = C/A.
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closed geodesics

Theorem
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Let ω be reduced and

ω = [0; a1,a2, . . . ,an]

with period n = per(ω). Due to Galois theorem

−1/ω∗ = [0; an, . . . ,a1].

For reduced ω = [0; a1, . . . ,an] denote by

pere(ω) =

{
n, if n = per(ω) is even;
2n, if n = per(ω) is odd

even period of ω.
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Fundamental unit ε0 is the same for numbers

ω1 =[0; a1,a2, . . . ,an],

ω2 =[0; a2,a3, . . . ,a1],

ω3 =[0; a3,a4, . . . ,a2], . . .

because (Smith’s formula)

ε−1
0 (ω) = ω1ω2 . . . ωpere(ω)−1.

If A is any statement that can be true or false, then we’ll use the
following bracketed notation

[A] =

{
1, if A is true;
0, else
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The following sum counts Gauss — Kuz’min statistics for reduced
quadratic irrationals

r(x , y ; N) =
∑
ω∈R

ε0(ω)6N

[ω 6 x , −1/ω∗ 6 y ].

Numbers ω1, ω2, . . . , ωn presented in the sum r(x , y ; N)
simultaneously.

r(x , y ; N) =

=
∑
ω∈R

ε0(ω)6N

1
pere(ω)

pere(ω)∑
j=1

[
[0; aj+1,aj+2, . . .] 6 x , [0; aj ,aj−1, . . .] 6 y ]

]
.

It means that for number ω we count Gauss — Kuz’min statistics for
each place in the period. From geometrical point of view we study local
behavior of closed geodesics.

Alexey Ustinov (IAM FEB RAS) Farey Fraction Spin Chain 22 / 27



The following sum counts Gauss — Kuz’min statistics for reduced
quadratic irrationals

r(x , y ; N) =
∑
ω∈R

ε0(ω)6N

[ω 6 x , −1/ω∗ 6 y ].

Numbers ω1, ω2, . . . , ωn presented in the sum r(x , y ; N)
simultaneously.

r(x , y ; N) =

=
∑
ω∈R

ε0(ω)6N

1
pere(ω)

pere(ω)∑
j=1

[
[0; aj+1,aj+2, . . .] 6 x , [0; aj ,aj−1, . . .] 6 y ]

]
.

It means that for number ω we count Gauss — Kuz’min statistics for
each place in the period. From geometrical point of view we study local
behavior of closed geodesics.

Alexey Ustinov (IAM FEB RAS) Farey Fraction Spin Chain 22 / 27



Theorem

Let 0 6 x , y 6 1 and N > 2. Then

r(x , y ; N) =Ψev (x , y ; N) + O(N3/2+ε) =

=
log(1 + xy)

2ζ(2)
N2 + O(N3/2+ε).

We can construct the map from even spin chains to the set of reduced
quadratic irrationals:

Ba1Aa2 . . .Aa2m 7→ ω = [0; a1, . . . ,a2m].

It is not one-to-one correspondence:

B2A3B2A3 7→ ω = [0; 2,3,2,3] = [0; 2,3],

B2A3 7→ ω = [0; 2,3].

But exceptions are rare (continued fraction is at least twice shorter)
and fall inside error term.
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Main reasons

Traces for spin chains and for quadratic irrationals are concordant:
if ω = [0; a1, . . . ,a2m], l = pere(ω), 2m = kl , then

Tr(Ba1Aa2 . . .Aa2m ) = tr(εk
0(ω)).

This map preserves trace and Gauss — Kuz’min statistics:

ω = [0; a1, . . . ,a2m] ≈ [0; a1, . . . ,a2m],

−1/ω∗ = [0; a2m, . . . ,a1] ≈ [0; a2m, . . . ,a1].
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Main reasons

For k > 1
0 < tr(εk

0(ω))− εk
0(ω) < 1/2

(ε0 is Pisot number).
In the simplest case (x = y = 1)

Ψev (x , y ; N) =
∞∑

k=1

∑
ω∈R

tr(εk
0(ω))6N

1 ≈
∑
ω∈R

tr(ε0(ω))6N

1 ≈
∑
ω∈R

ε0(ω)6N

1 = r(x , y ; N)
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Thank you for your attention!
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