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Frobenius numbers
The Diophantine Frobenius problem

Let a1, . . . , an be positive integers with ai ≥ 2 and (a1, . . . ,an) = 1.
The following naive questions is known as “Diophantine Frobenius
problem” (or “Coin exchange problem”):
Determine the largest number which is not of the form

a1x1 + · · ·+ anxn

where the coefficients xi are non-negative integers. This number is
denoted by g(a1, . . . ,an) and is called the Frobenius number.
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Frobenius numbers
The Diophantine Frobenius problem

Example
Let a = 3, b = 5. Then g(a,b) =?

It is known that
g(a,b) = ab − a− a.

The challenge is to find g(a1, . . . ,an) when n ≥ 3.

Example
g(3,5,7) = 4:

4 6= 3x + 5y + 7z (x , y , z ≥ 0).
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Frobenius numbers
positive Frobenius number

We shall consider

f (a,b, c) = g(a,b, c) + a + b + c,

the positive Frobenius number of a, b, c, defined to be the largest
integer not representable as a positive linear combination of a, b, c

ax + by + cz, x , y , z ≥ 1.

Positive Frobenius numbers are better because of Johnson’s formula:
for d | a, d | b

f (a,b, c) = d · f
(

a
d
,

b
d
, c
)
.
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Double loop network
b = 3 (red step), c = 5 (blue step), a = 7 (number of vertices)

0 3
5

6
1

2
4

0 3
5

6
8

9
11

n ≡ t (mod a) (number)

t(x , y) = bx + cy (time)

length(↑)= 3, length(↑)= 5

4

3

5

2

1

0

6

Alexey Ustinov (Khabarovsk) Distribution of Frobenius Numbers 5 / 40



Double loop network
b = 3 (red step), c = 5 (blue step), a = 7 (number of vertices)

0 3
5

6
1

2
4

0 3
5

6
8

9
11

n ≡ t (mod a) (number)

t(x , y) = bx + cy (time)

t0

4

3

5

2

1

0

6

Alexey Ustinov (Khabarovsk) Distribution of Frobenius Numbers 6 / 40



Double loop network
b = 3 (red step), c = 5 (blue step), a = 7 (number of vertices)

0 3
5

6
1

2
4

0 3
5

6
8

9
11

n ≡ t (mod a) (number)

t(x , y) = bx + cy (time)

t0 3

4

3

5

2

1

0

6

Alexey Ustinov (Khabarovsk) Distribution of Frobenius Numbers 7 / 40



Double loop network
b = 3 (red step), c = 5 (blue step), a = 7 (number of vertices)

0 3
5

6
1

2
4

0 3
5

6
8

9
11

n ≡ t (mod a) (number)

t(x , y) = bx + cy (time)

t0 3 5

4

3

5

2

1

0

6

Alexey Ustinov (Khabarovsk) Distribution of Frobenius Numbers 8 / 40



Double loop network
b = 3 (red step), c = 5 (blue step), a = 7 (number of vertices)

0 3
5

6
1

2
4

0 3
5

6
8

9
11

n ≡ t (mod a) (number)

t(x , y) = bx + cy (time)

t0 3 5 6

4

3

5

2

1

0

6

Alexey Ustinov (Khabarovsk) Distribution of Frobenius Numbers 9 / 40



Double loop network
b = 3 (red step), c = 5 (blue step), a = 7 (number of vertices)

0 3
5

6
1

2
4

0 3
5

6
8

9
11

n ≡ t (mod a) (number)

t(x , y) = bx + cy (time)

t0 3 5 6 8

4

3

5

2

1

0

6

Alexey Ustinov (Khabarovsk) Distribution of Frobenius Numbers 10 / 40



Double loop network
b = 3 (red step), c = 5 (blue step), a = 7 (number of vertices)

0 3
5

6
1

2
4

0 3
5

6
8

9
11

n ≡ t (mod a) (number)

t(x , y) = bx + cy (time)

t0 3 5 6 8 9

4

3

5

2

1

0

6

Alexey Ustinov (Khabarovsk) Distribution of Frobenius Numbers 11 / 40



Double loop network
b = 3 (red step), c = 5 (blue step), a = 7 (number of vertices)

0 3
5

6 2
4

0 3
5

6

1
3

8
10

9
11

n ≡ t (mod a) (number)

t(x , y) = bx + cy (time)

t0 3 5 6 8 95

4

3

5

2

1

0

6

Alexey Ustinov (Khabarovsk) Distribution of Frobenius Numbers 12 / 40



Double loop network
b = 3 (red step), c = 5 (blue step), a = 7 (number of vertices)

0 3
5

6
1

2
4

0 3
5

6
8

9
11

1
3

8
10

n ≡ t (mod a) (number)

t(x , y) = bx + cy (time)

0 3 5 6 8 9 t

4

3

5

2

1

0

6

Alexey Ustinov (Khabarovsk) Distribution of Frobenius Numbers 13 / 40



Double loop network
b = 3 (red step), c = 5 (blue step), a = 7 (number of vertices)

0 3
5

6
1

2
41

3

8
10

0 3
5

6
8

9
11

n ≡ t (mod a) (number)

t(x , y) = bx + cy (time)

diam = g(a,b, c) + a (= 11)

4

3

5

2

1

0

6

Alexey Ustinov (Khabarovsk) Distribution of Frobenius Numbers 14 / 40



Double loop network
b = 9 (red step), c = 5 (blue step), a = 17 (number of vertices)

Λ = {(x , y) : bx + cy ≡ 0 (mod a)}

(−c,b)

Alexey Ustinov (Khabarovsk) Distribution of Frobenius Numbers 15 / 40



Double loop network
b = 9 (red step), c = 5 (blue step), a = 17 (number of vertices)
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Rödseth’s formula

From obvious property

0 =
sm+1

qm+1
<

sm−1

qm−1
< . . . <

s1

q1
<

s0

q0
=∞

follows that for some n sn

qn
≤ c

b
<

sn−1

qn−1
.

Theorem (Ö. Rödseth, 1978)

f (a,b, c) = bsn−1 + cqn −min {bsn, cqn−1} .
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Rödseth’s formula

Rödseth’s formula can be written in terms of reduced regular continued
fraction. We want to find f (a,b, c) for (a,b) = (a, c) = (b, c) = 1.
Let l is such that

bl ≡ c (mod a), 1 ≤ l ≤ a.

Reduced regular continued fraction

a
l

= 〈a1, . . . ,am〉 = a1 −
1

a2 − . . . −
1

am

,

where a1, . . . , am ≥ 2, defines sequences
{

sj
}

,
{

qj
}

by

qj+1

qj
=
〈
aj , . . . ,a1

〉
,

sj

sj+1
=
〈
aj+1, . . . ,am

〉
(0 ≤ j ≤ m).
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General idea
Reduced regular continued fraction

We have one-to-one correspondence between the set of quadruples
(qn, sn,qn−1, sn−1) (taken for all lattices Λl ) and the solutions of the
equation

x1y1 − x2y2 = a

with 0 ≤ x2 < x1, 0 ≤ y2 < y1, (x1, x2) = (y1, y2) = 1:

(qn, sn,qn−1, sn−1)←→ (x1, x2, y2, y1).
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General idea
Kloosterman sums

From the equation
x1y1 − x2y2 = a

it follows that
x1y1 ≡ a (mod x2),

and Kloosterman sums

Kq(l ,m,n) =

q∑
x,y=1

xy≡l (mod q)

e2πi mx+ny
q

come into play. Solutions of the congruence xy ≡ l (mod q) are
uniformly distributed due to the bounds for Kloosterman sums.
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General idea
Kloosterman sums

This fact allows to calculate sums of the form∑
xy≡l (mod q)

F (x , y)

and ∑
x1y1−x2y2=a

F (x1, y1, x2, y2).

In particular it allows to study distribution of Frobenius numbers
f (a,b, c).
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Conjectures

Rödseth (1990) proved a lower bound for Frobenius numbers:

f (a1, . . . ,an) ≥ n−1
√

(n − 1)!a1 . . . an.

Conjecture (Davison, 1994)

Average value of normalized Frobenius numbers f (a,b,c)√
abc

over cube
[1,N]3 tends to some constant as N →∞.

Conjecture (Arnold, 1999, 2005)
There is weak asymptotic for Frobenius numbers: for arbitrary n
average value of f (x1, . . . , xn) over small cube with a center in
(a1, . . . ,an) approximately equal to cnn−1

√
a1 . . . an for some constant

cn > 0.
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Limiting density function

Theorem (Bourgain and Sinaı̆, 2007)

Normalized Frobenius numbers f (a,b,c)√
abc

(under some natural
assumption) have limiting density function.
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Weak asymptotic

Let x1, x2 > 0 and
Ma(x1, x2) = {(b, c) : 1 ≤ b ≤ x1a,1 ≤ c ≤ x2a, (a,b, c) = 1}.

Theorem (A.U., 2009)

Frobenius numbers f (a,b, c) have weak asymptotic 8
π

√
abc:

1
a3/2|Ma(x1, x2)|

∑
(b,c)∈Ma(x1,x2)

(
f (a,b, c)− 8

π

√
abc

)
= Oε,x1,x2(a−1/6+ε).

Davison’s conjecture holds in a stronger form:

1
|Ma(x1, x2)|

∑
(b,c)∈Ma(x1,x2)

f (a,b, c)√
abc

=
8
π

+ Oε,x1,x2(a−1/6+ε).
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Density function

Theorem (A.U., 2010)
Normalized Frobenius numbers of three arguments have limiting
density function:

1
|Ma(x1, x2)|

∑
(b,c)∈Ma(x1,x2)
f (a,b,c)≤τ

√
abc

1 =

∫ τ

0
p(t) dt + Oε,x1,x2,τ (a−1/6+ε),

where

p(t) =


0, if t ∈ [0,

√
3];

12
π

(
t√
3
−
√

4− t2
)
, if t ∈ [

√
3,2];

12
π2

(
t
√

3 arccos t+3
√

t2−4

4
√

t2−3
+ 3

2

√
t2 − 4 log t2−4

t2−3

)
, if t ∈ [2,+∞).
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Density function

(
2,8
√

3/π
)

t√
3

lim
t→2−0

p′(t) = +∞, lim
t→2+0

p′(t) = −∞

p(t) = 18
π3 · 1

t3 + O
( 1

t5

)
(t →∞)

∫∞
0 p(t) dt = 1,

∫∞
0 tp(t) dt = 8

π

Alexey Ustinov (Khabarovsk) Distribution of Frobenius Numbers 29 / 40



Density function

Triples (α, β, r), where

α =
qn√
a/ξ

, β =
sn−1√

aξ
, r =

sn√
aξ

(ξ = c/b)

(normalized edges of L-shaped diagram) have joint limiting density
function

p(α, β, r) =


2

ζ(2)r
, r ≤ min{α, β},1 ≤ αβ ≤ 1 + r2,

0 else.

It allows to study shortest cycles, average distances and another
characteristics of L-shaped diagrams (double loop networks).
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Weak asymptotic for genus

Let
n(a,b, c) = #(N \ 〈a,b, c〉)

be a genus of numerical semigroup 〈a,b, c〉 and let N(a,b, c) let be
modified genus:

N(a,b, c) = n(a,b, c) +
a
2

+
b
2

+
c
2
− 1

2
.

It is more convenient because for d | a, d | b we have

N(a,b, c) = d · N
(

a
d
,

b
d
, c
)
.

Theorem (Vorob’ev, 2016)

N(a,b, c) ≈ 64
5π2

√
abc.
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General idea
Kloosterman sums

For usual Kloosterman sums

Kq(1,m,n) =

q∑
x,y=1

xy≡1 (mod q)

e2πi mx+ny
q

Estermann bound is known

|Kq(1,m,n)| ≤ σ0(q) · (m,n,q)1/2 · q1/2.

This bound can be generalized for the case of sums Kq(l ,m,n).

Theorem (A.U., 2008)

|Kq(l ,m,n)| ≤ σ0(q) · σ0((l ,m,n,q)) · (lm, ln,mn,q)1/2 · q1/2.

This estimate allows to count solutions of the congruence xy ≡ l
(mod a) in different regions.
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General idea
Kloosterman sums

Corollary
Let q ≥ 1, 0 ≤ P1,P2 ≤ q. Then for any real Q1, Q2∑

Q1<x≤Q1+P1
Q2<y≤Q2+P2

δq(xy − 1) =
ϕ(q)

q2 · P1P2 + O
(
σ0(q) log2(q + 1)q1/2

)

and ∑
Q1<x≤Q1+P1
Q2<y≤Q2+P2

δq(xy − l) =
Kq(0,0, l)

q2 · P1P2 + O
(

q1/2+ε + (q, l)qε
)
.
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General idea
Kloosterman sums

A combination with van der Corput’s method of exponential sums
allows to count solutions under a graph of smooth function.

Let q ≥ 1, f be positive function and T [f ] be the number of solutions of
the congruence xy ≡ l (mod q) in the region P1 < x ≤ P2,
0 < y ≤ f (x):

T [f ] =
∑

P1<x≤P2

∑
0<y≤f (x)

δq(xy − l).

Let

S[f ] =
∑

P1<x≤P2

µq,l(x)

q
f (x),

where µq,l(x) is the number of solutions of the congruence xy ≡ l
(mod q) over y such that 1 ≤ y ≤ q.
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General idea
Kloosterman sums

Theorem (A.U., 2008)

Let P1, P2 be reals, P = P2 − P1 ≥ 2 and for some A > 0, w ≥ 1
function f (x) satisfies conditions

1
A
≤ |f ′′(x)| ≤ w

A
.

Then
T [f ] = S[f ]− P

2
· δq(l) + R[f ],

where
R[f ]�w (PA−1/3 + A1/2(l ,q)1/2 + q1/2)Pε.
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Recent results

The existence of limiting distribution for normalized Frobenius
numbers of arbitrary number of arguments was proved by
J. Marklof (2010).
Distribution of diameters and distribution of shortest cycles in
circulant graphs (often also called multi-loop networks) were
studied by J. Marklof and A. Strömbergsson (2011). They proved
existence of these distributions for arbitrary n and made some
interesting numerical computations.
For n = 3 Davison’s conjecture in a stronger form was proved by
D. Frolenkov (2011).
Aliev, Henk, Hinrichs (2011) and Strömbergsson(2012) studied
the properties of limiting distribution for normalized Frobenius
numbers of arbitrary number of arguments.
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Reduced bases in two-dimensional lattices

Let 1 ≤ l ≤ a, (l ,a) = 1 and e1 be the shortest vector of the lattice
Λl = {(x , y) : lx ≡ y (mod a)}.

Basis (e1,e2) is reduced iff e2 ∈ Ω(e1)
where Ω(e1) is the plane region defined by inequalities

‖e2‖ ≥ ‖e1‖ and ‖e2 ± e1‖ ≥ ‖e2‖.

Moreover vector e2 must lie on the line l(e1) defined by equation
det(e1,e2) = a. By averaging over l we can get that vectors e2
distributed uniformly on Ω(e1) ∩ l(e1) with weight ‖e2‖−1. Suppose
e1 =

√
a(α, β), e2 =

√
a(γ, δ).
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Reduced bases in two-dimensional lattices

By integrating over e1 we can get density function for t = ‖e2‖/
√

a:

p(t) =


0, if t ∈

[
0,1/

√
2
]

;

4
ζ(2)

(
2t − 1

t +
(1

t − t)
)

log
( 1

t2 − 1)
))
, if t ∈

[
1/
√

2,1
]

;

4
ζ(2)

(1
t +

(
t − 1

t )
)

log
(
1− 1

t2 )
))
, if t ∈ [1,∞].

t

(1,4/ζ(2))

t
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Questione?
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