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Frobenius numbers
The Diophantine Frobenius problem

Let ay, ..., a, be positive integers with a; > 2 and (ay,...,an) = 1.
The following naive questions is known as “Diophantine Frobenius
problem” (or “Coin exchange problem”):

Determine the largest number which is not of the form

aixXy + -+ anXn

where the coefficients x; are non-negative integers. This number is
denoted by g(ay, ..., an) and is called the Frobenius humber.
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Frobenius numbers

The Diophantine Frobenius problem

Leta=3, b=>5. Then g(a, b) =7 l
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Frobenius numbers
The Diophantine Frobenius problem

Leta=3,b=>5.Theng(a b)=7:

7 # 3x + 5y (x,y >0),

but for every m > 7 there are some x, y > 0 such that m = 3x + 5y.

Alexey Ustinov (Khabarovsk) Distribution of Frobenius Numbers 3/40



Frobenius numbers
The Diophantine Frobenius problem

Leta=3,b=>5.Theng(a b)=7:

7+#3x+5y  (x,y>0),

but for every m > 7 there are some x, y > 0 such that m = 3x + 5y.

It is known that
gla,b)=ab—a-a

The challenge is to find g(as, ..., an) when n > 3.
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Frobenius numbers
The Diophantine Frobenius problem

Leta=3,b=>5.Theng(a b)=7:

7+#3x+5y  (x,y>0),

but for every m > 7 there are some x, y > 0 such that m = 3x + 5y.

It is known that
gla,b)=ab—a-a

The challenge is to find g(as, ..., an) when n > 3.

9(3,5,7) = 4:

4+£3x+5y+7z (x,y,z>0).
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Frobenius numbers
positive Frobenius number

We shall consider
f(a,b,c)=g9g(a,b,c)+a+b+c,

the positive Frobenius number of a, b, ¢, defined to be the largest
integer not representable as a positive linear combination of a, b, ¢

ax + by + cz, X, y,z>1.

Positive Frobenius numbers are better because of Johnson’s formula:

ford|a, d|b
ab
f(a,b,c)_d-f(d,d,c>.
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Double loop network

b = 3 (red step), ¢ = 5 (blue step), a = 7 (number of vertices)

length(1)= 3, length(1)=5

t(x,y) = bx + cy (time) @
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Double loop network

b = 3 (red step), ¢ = 5 (blue step), a = 7 (number of vertices)

0 t
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t(x,y) = bx + cy (time) @
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Double loop network

b = 3 (red step), ¢ = 5 (blue step), a = 7 (number of vertices)

0 3 t
2
t(x,y) = bx + cy (time) 2 ©)
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Double loop network

b = 3 (red step), ¢ = 5 (blue step), a = 7 (number of vertices)

0 3 5 t
2
t(x,y) = bx + cy (time) 2 ®
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Double loop network

b = 3 (red step), ¢ = 5 (blue step), a = 7 (number of vertices)

0 3 56 ¢
2
t(x,y) = bx + cy (time) O @
5811
0/3/6/9 @
\@
-
n=t (mod a) (number) /
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Double loop network

b = 3 (red step), ¢ = 5 (blue step), a = 7 (number of vertices)

0 3 .56 8 .t
2
t(x,y) = bx + cy (time) 2 3
5(8]11
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Double loop network

b = 3 (red step), ¢ = 5 (blue step), a = 7 (number of vertices)

0 3 .56 .89t Q
2
t(x,y) = bx + cy (time) Y ®
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Double loop network

b = 3 (red step), ¢ = 5 (blue step), a = 7 (number of vertices)

0 3 .56 89 t @
2
t(x,y) = bx + cy (time) Y ®
10 =
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Double loop network

b = 3 (red step), ¢ = 5 (blue step), a = 7 (number of vertices)

0 3 .56 89 t ®
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Double loop network

b = 3 (red step), ¢ = 5 (blue step), a = 7 (number of vertices)

diam = g(a,b,c) +a (=11)

t(x,y) = bx + cy (time)

10

58|11

0/3/6/9 @
n=1t (mod a) (number)
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Double loop network

b = 9 (red step), ¢ = 5 (blue step), a = 17 (number of vertices)

AN={(x,y):bx+cy=0 (mod a)}

L

...........
|||||||||||
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Double loop network

b = 9 (red step), ¢ = 5 (blue step), a = 17 (number of vertices)

(=Sm+1, Gmi1 A= {(x,y) : bx+cy =0 (mod a)}

(—=Svi1, Qv

(_31:7 Qv)
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Double loop network

b = 9 (red step), ¢ = 5 (blue step), a = 17 (number of vertices)

(_Sm+1 ) Qm+1 :

AN={(x,y):bx+cy=0 (mod a)}

(—=Svi1, Qv

(_31:7 Qv)

Alexey Ustinov (Khabarovsk) Distribution of Frobenius Numbers 18/40



Double loop network

b = 9 (red step), ¢ = 5 (blue step), a = 17 (number of vertices)

(=Sm+1, Gmi1 A= {(x,y) : bx+cy =0 (mod a)}

(—=Svi1, Qv

(_31:7 Qv)
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Rodseth’s formula

From obvious property

0— Sm+1 Sm—1 ﬂ
Am+1 Am-1 a1
follows that for some n
Shn _C  Sp_1
- S — <
9 — b Qn_1

Alexey Ustinov (Khabarovsk) Distribution of Frobenius Numbers

20/ 40



Rodseth’s formula

From obvious property

S Sm— S S
Am+1 Gm—1 g1 Qo

follows that for some n

o0

Sn o
n

Sn—1

< .
an-1

olo

Theorem (O. Rddseth, 1978)

f(a,b,c) = bsp,_1 + cqn — min{bsp,cqn_1}.
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Rodseth’s formula

Rddseth’s formula can be written in terms of reduced regular continued
fraction. We want to find f(a, b, ¢) for (a, b) = (a,c) = (b,c) = 1.
Let / is such that

bl=c (mod a), 1</<a

Reduced regular continued fraction

oy ) :
- =\ay,..., am)=a - ———,
/ 1 ydm 1 a — ) 1 )
" am
where ay, ..., an > 2, defines sequences {s;}, {q;} by
. S i
g Sj+1
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Rodseth’s formula

Rddseth’s formula can be written in terms of reduced regular continued
fraction. We want to find f(a, b, ¢) for (a, b) = (a,c) = (b,c) = 1.
Let / is such that

bl=c (mod a), 1</<a.

Reduced regular continued fraction

- (a am) = a !
7 (@,...,am) = 1*ﬁ:
" an
where ay, ..., an > 2, defines sequences {s;}, {q;} by
. S i
£:<a,-,...,a1>, L ={(aj1,....am) (0<j< m).
9 Sj+1
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Rodseth’s formula

Rddseth’s formula can be written in terms of reduced regular continued
fraction. We want to find f(a, b, ¢) for (a, b) = (a,c) = (b,c) = 1.
Let / is such that

bl=c (mod a), 1</<a.

Reduced regular continued fraction

%@ am =g
S ={(a,...,am)=a - ———,
/ 1 m 1 2 — ) 1
am
where ay, ..., an > 2, defines sequences {s;}, {q;} by
. s. .,
£:<aj7"'7a1>7 7j:<aj+17"'aam> (Ogjgm)
qj Sj+1
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General idea

Reduced regular continued fraction

We have one-to-one correspondence between the set of quadruples

(9n, Sn, 9n—1, Sn—1) (taken for all lattices A;) and the solutions of the
equation

X1y1 — Xoy2 = a

with 0 < xo < X1, 0 < yo < yy, (X1, %2) = (Y1, )2) = 1:

(CIna Sn, Qn—1, Snf1) — (X1 » X2, Y2, Y1 )
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General idea

Kloosterman sums

From the equation
X1Y1 — Xey2 = a
it follows that
xiy1 =a (mod xp),

and Kloosterman sums

q - mx+ny
Ko(l.mn)y= > &

Xx,y=1
xy=I (mod q)

come into play. Solutions of the congruence xy =/ (mod q) are
uniformly distributed due to the bounds for Kloosterman sums.
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General idea
Kloosterman sums

This fact allows to calculate sums of the form
> Flxy)
xy=l (mod q)

and
Z F(X17Y1,X27Y2)-

X1y1—Xeyo=a

In particular it allows to study distribution of Frobenius numbers
f(a, b, c).
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Rddseth (1990) proved a lower bound for Frobenius numbers:

f(ai,...,an) > "/(n—1)la;...an.

Conjecture (Davison, 1994)

Average value of normalized Frobenius numbers f(a’T/bT’g) over cube

[1, N]® tends to some constant as N — oo.
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Rddseth (1990) proved a lower bound for Frobenius numbers:

f(ai,...,an) > "/(n—1)la;...an.

Conjecture (Davison, 1994)

Average value of normalized Frobenius numbers 1@b.0) oyer cube

v abc
[1, N]® tends to some constant as N — oo.

Conjecture (Arnold, 1999, 2005)

There is weak asymptotic for Frobenius numbers: for arbitrary n

average value of f(x1, ..., x,) over small cube with a center in
(a1,...,an) approximately equal to c,"+/a; ... a, for some constant
cn > 0.
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Limiting density function

Theorem (Bourgain and Sinal, 2007)

Normalized Frobenius numbers “a’T\/%’g) (under some natural

assumption) have limiting density function.
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Weak asymptotic

Let x4, xo > 0 and
Ma(x1,X%2) = {(b,c): 1 < b<xja,1 < c< xa,(ab,c)=1}.
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Weak asymptotic

Let x4, xo > 0 and
Ma(x1,x2) = {(b,c) : 1 <b<xja,1 <c<xa,(ab,c)=1}

Theorem (A.U., 2009)

Frobenius numbers f(a, b, ¢) have weak asymptotic % abc:

L — § — —1/6+¢
a3/2|Ma(x1, %) Z (f(a b, c) \/ab ) = O.x.x(a ).

(b7C)EMa(X1 7X2)

Davison’s conjecture holds in a stronger form:

1 f(a.b,c) 8 1/6
_— Z = —+0O: X1 Xz(a / +€)
|Ma(X‘| 9 XZ)‘ (b,C)EMa(X‘] ,X2) \/ﬁ "
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Density function

Theorem (A.U., 2010)

Normalized Frobenius numbers of three arguments have limiting
density function:

1 . e
W )] 2 ' /0 P(t) dlt + O- x, s, r(@/5+9),

(b,c)EMa(xq,x2)
f(a,b,c)<7Vabc

where

= O

, ift € [0,V3];
2(“ \/4—t2) ift € [V/3,2];

=\~
§<\farccos t+3\’ﬁv +3VE —4log 5 ), ift € [2,+00).

v

p(t) =
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Density function

________ (2.8v3/7)
Nim p(f) = +oo, lim p(t) = oo
Py =38 5+0(F)  (t—=)
e ptydt=1, [ p(t)dt = ¢
, fs: L
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Density function

Triples («, 8, r), where

_ Qn _ Sp—1 _ Sp .
= ae PCvm a7

(normalized edges of L-shaped diagram) have joint limiting density
function

r<min{a,8},1 <ap <1+r2

2
p(a,B,r) = {6(2)f’

0 else.

It allows to study shortest cycles, average distances and another
characteristics of L-shaped diagrams (double loop networks).
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Weak asymptotic for genus

Let
n(a,b,c) = #(N\ (a,b,c))

be a genus of numerical semigroup (a, b, c¢) and let N(a, b, c) let be
modified genus:

a b c¢c 1
N(a7b7c):n(avbac)'i‘é—i‘é—i-é—é,

It is more convenient because for d | a, d | b we have

ab
N(a,b,c)_d‘N<d,d,c>.

Theorem (Vorob’ev, 2016)
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General idea

Kloosterman sums

For usual Kloosterman sums

F mx+
Kq(1 .m, n) _ Z eZm’"an,V

x,y=1
xy=1 (mod q)
Estermann bound is known

12 1/2.

[Kq(1,m, n)| <oo(q)-(m,n,q)""-q

This bound can be generalized for the case of sums Ky(/, m, n).
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General idea
Kloosterman sums

For usual Kloosterman sums

q
F mx+
Kq(1 .m, n) _ Z e27rl’"any

Xx,y=1
xy=1 (mod q)

=5

Estermann bound is known

2

12 g1/2,

[Kq(1,m, n)| < o0(q) - (M, n, q)

This bound can be generalized for the case of sums Ky(/, m, n).

Theorem (A.U., 2008)

2

/2. gi/2,

|Kq(1,m, n)| < 00(q) - o0((/; m, n,q)) - (Im, In, mn, q)

This estimate allows to count solutions of the congruence xy =/
(mod a) in different regions.
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General idea

Kloosterman sums

Corollary

Letq>1,0< Py,P> < q. Then for any real Q;, Qo

Y. by -1)= % - P1P, + O (00(q)log’(qg + 1)q'/2)

Q1 <x<Qq+Py
02 <y< 02+P2

and

KQ(Ov 07 /)
2

S Gy 1) = PP, +0 (g% +(q,)q)

01 <XSQ1 +P1
02 <y§02+P2
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General idea

Kloosterman sums

A combination with van der Corput’s method of exponential sums
allows to count solutions under a graph of smooth function.
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General idea
Kloosterman sums

A combination with van der Corput’s method of exponential sums
allows to count solutions under a graph of smooth function.

Let g > 1, f be positive function and T[f] be the number of solutions of
the congruence xy =/ (mod q) in the region Py < x < P,

0 <y <f(x):
Tifl= Y > &by

Py <x<P> 0<y§f(x)
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General idea
Kloosterman sums

A combination with van der Corput’s method of exponential sums
allows to count solutions under a graph of smooth function.

Let g > 1, f be positive function and T[f] be the number of solutions of
the congruence xy =/ (mod q) in the region Py < x < P,

0 <y <f(x):
Tifl= Y > &by

Py <x<P> 0<y§f(x)
Let )
Haq, (X
Sifl= Y. == =f(x),

Pi<x<P> q

where 114 /(X) is the number of solutions of the congruence xy =/
(mod q) over y suchthat1 <y <gq.
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General idea

Kloosterman sums

Theorem (A.U., 2008)

Let Py, P> be reals, P = P, — P; > 2 and for some A > 0, w > 1
function f(x) satisfies conditions

1

2 <IF001 < 5
Then p
T(f] = S[fl = 5 - 44(1) + AL,
where

RIf]l <w (PA™'3 + AY2(1,q)'2 + q'/2)P=.
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Recent results

@ The existence of limiting distribution for normalized Frobenius
numbers of arbitrary number of arguments was proved by
J. Marklof (2010).

@ Distribution of diameters and distribution of shortest cycles in
circulant graphs (often also called multi-loop networks) were
studied by J. Marklof and A. Strémbergsson (2011). They proved
existence of these distributions for arbitrary n and made some
interesting numerical computations.

@ For n = 3 Davison’s conjecture in a stronger form was proved by
D. Frolenkov (2011).

@ Aliev, Henk, Hinrichs (2011) and Strombergsson(2012) studied
the properties of limiting distribution for normalized Frobenius
numbers of arbitrary number of arguments.
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Reduced bases in two-dimensional lattices

Let1 </ <@g, (/,a) =1 and ey be the shortest vector of the lattice
N={(x,y):Ix=y (mod a)}.
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Reduced bases in two-dimensional lattices

Let1 </ <@g, (/,a) =1 and ey be the shortest vector of the lattice
N ={(x,y):Ix=y (mod a)}. Basis (e1, e2) is reduced iff e; € Q(ey)
where Q(ey) is the plane region defined by inequalities

le2l] > [les]]  and  [lez £ es]| > ez
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Reduced bases in two-dimensional lattices

Let1 </ <@g, (/,a) =1 and ey be the shortest vector of the lattice
N ={(x,y):Ix=y (mod a)}. Basis (e1, e2) is reduced iff e; € Q(ey)
where Q(ey) is the plane region defined by inequalities

le2l] > [les]]  and  [lez £ es]| > ez

Moreover vector e, must lie on the line /(ey) defined by equation
det(er, ) = a.

Alexey Ustinov (Khabarovsk) Distribution of Frobenius Numbers 37 /40



Reduced bases in two-dimensional lattices

Let1 </ <@g, (/,a) =1 and ey be the shortest vector of the lattice
N ={(x,y):Ix=y (mod a)}. Basis (e1, e2) is reduced iff e; € Q(ey)
where Q(ey) is the plane region defined by inequalities

le2l] > [les]]  and  [lez £ es]| > ez

Moreover vector e, must lie on the line /(ey) defined by equation
det(eq, e2) = a. By averaging over / we can get that vectors e,
distributed uniformly on Q(e;) N /(ey) with weight ||es||~'. Suppose

e = va(a, B), & = va(v,9).
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Reduced bases in two-dimensional lattices

By integrating over e; we can get density function for t = ||es||/v/a:
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Reduced bases in two-dimensional lattices

By integrating over e; we can get density function for t = ||es||/v/a:

0, ifte |0,1/vV2|;
p(t) =< o Rt =1+ (F-t)log (g —-1)), ifte|1/v21];
aey (1 (t=1)log (1 - %)) if t € [1,00].
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Reduced bases in two-dimensional lattices

By integrating over e; we can get density function for t = ||es||/v/a:

0, if te|0,1/v2;
p(t) =< o (2t =1+ (1= 1)log (F 1)), ifte|1/V21
o (G (t=1)log(1-£))), if t € [1,00].
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