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On the Number of Summands in the Asymptotic Formula for the Number
of Solutions to Waring’s Equation

A. V. Ustinov UDC 511.3

ABSTRACT. In the paper, an estimate of the number of summands in the asymptotic formula for the number of
solutions to Waring’s equation is obtained. This is achieved by means of a recurrent process leading to a greater
reduction than that in Vinogradov’s mean value theorem.
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81. Introduction

Let N,gp)()\l, ..+, An) be the number of solutions of the system
Tt T -y~ — Yk = Al
.................................. ngl’,_,,yk<P_
el TR = A,

(Here and subsequently the variables take only integer values.) By Vinogradov’s mean value theorem, for
k > n7t the estimate holds:

n(n 7,,2 T
Ne(P) = NP(0, ... 0) < P2E="5 45 (1-0)" (1)
Denote by I (P) the number of solutions of Hardy’s equation
af+ 4 -yl — - —yp =0, 0<zy,...,9p < P.

Formula (1) allows us to obtain the estimate for Ij(P):

wP)< 3 o S NP A, 0) < PROEN(P) < PR (ST ()
IA|<kP  |Ap_1|<kPm-1
Let I(N) be the number of solutions to Waring’s equation
204+ 2l =N, 0<mz,...,2 < NY"
In [1] it was proved that for n >4 and k > 2[n?(2Inn + Inlnn + 5)] the asymptotic formula is valid:
I(N) = o(N)yN*/m=1 4 O(NF/n=1-1/(20nInn)y (3)

where v = (T(1+1/n))*/T(k/n), o(N) > co(n, k) > 0.
In the present paper we prove that for k > n(n — 1) + n7 the estimate holds:

Iy(P) < P-rt3(1-3)"
This result refines the estimate (2); this helps prove that formula (3) is valid for
n>4 and k> 2n%(nn+ Inlnn + 6)].
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§2. Properties of the Fourier coefficients of some functions

In [2] the following assertion was proved.

LEMMA 1. Suppose Ni,..., N, are nonnegative integers and F(aq,...,a,) is a nonnegative real
function defined on the cube E, = [0,1]" and Lebesgue integrable. Suppose that the Fourier coefficients
c(Ay ...y, ) of Flag,...,ay) are also nonnegative real numbers. Then, for any integers i, ..., tin,

the is valid:
Do DT et A ) AT DT > (M ).

AI<SN1 [ Aa]<N, [Ad[SN1 |An|SN,
In subsequent arguments we shall need Lemmas 2 and 3, whose proof is similar to that of Lemma 1.

LEMMA 2. Suppose that N is a monnegative real number, a and b are integers, and q 1is a positive
integer. Suppose also that F(a) is a nonnegative real function that can be expressed as a finite Fourier
series with nonnegative coefficients c¢(\). Then the inequalities are valid:

Z clad+b) < 4q/0 F(a)®(a) da < 4q Z clagX), (4)

A<N [AN<Ng—!

A —2miaaq
o= ¥ (=)o

[\[<Ng~?

where

PROOF. Let us prove the lemma in the case @ = 1. For arbitrary a, the proof is the same. Let
N; = [Ng~ ']+ 1. Then
-1
Z (@A +pu+b)=> o(w), (5)
M<N n=0

Q

> e(A+Db) S

A<V

I MQ

where
o(p) = Z c(gA + p+b).
<N

Let us estimate (u):

Z > dgA+az—y)+ptd) < Z > gtz —y)+pu+b)

z,y=1 |\ z—y|<N; z,y=1|A|<2N;—1

Z 3 / Je—2mialaOctz—y)+uth) o

T, y= 1|)\\<2N1 1

1
=— | F
Nf/o “

Estimating the last sum trivially, we obtain
4 1 Nl
o < — Fla
<5 | Pl

Zef%riaqz
4 1 Q — e~ 2mieaN o = 1 a)®(a) da
JRACIDSC ) do=4 [ F(a)®(0) do.

z=1
Ny
[A[<N1—1

—2miaqx

E 6727ria(q/\+u+b) da.
[A]<2N;—-1

2
do

Hence we have

O(u)S4/Ol F(a)®(a)da=4 ) < )0(qk)§4 > el

A <Np—1 IN|<Ng—1

Substituting the inequalities obtained into (5), we obtain the assertion of the lemma. O
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COROLLARY. Let the assumptions of Lemma 2 and Nq=' = O(1) be satisfied. Then the following
estimate is valid:

Z clag)) < ¢(0). (6)

[A|[<Ng—?
PROOF. Substituting Ng=!, aq, N1,0 for N, a,q, b, respectively, in the estimate (4), we obtain

Z clagh) < 4N, Z c(agN1A) = 4N1¢(0) < ¢(0). O
[A<Ng—! [AN<SN(gNu)~*

The proofs of Lemma 3 and its corollary are similar to the one above.

LEMMA 3. For any integers ai,1,01,2,.-.,0n,n,b1,...,b, and positive integers qi, ..., qn, let

n n
— E [ E —
lu— al,,j)\j, lV— al,yjq])\j, V—].,...,’/l.
j=1 j=1

Next, suppose that Ny, ..., N, are nonnegative real numbers and F(aq,...,ay) is a nonnegative real

function expressed as a finite Fourier series with nonnegative coefficients c(A1, ..., An). Then the following
estimate s valid:

1 1
Z Z c(l1+b1,...,ln+bn)§4”q1~~qn/~~~/ Flay,...,an)®day - - day,
0 0

[A1|<Ny [An|<Np
n § : 2 : I /
§4Q1"'Qn C(lla"'7ln)7
M<Nigr ' [Aal<Nagy!

where

b = Z Z (1 — [|)‘1|> (1 — [|)‘”|>e—2ﬂi(a1li+'“+anlﬁb) > 0.

1 1
Pal<Nigr ' Anl<Nnga Nigy ]+ Nogn']+

COROLLARY. Let the assumptions of Lemma 3 be satisfied, and let qu;1 = O(1) for some j, 1 <
J <mn. In that case, if calculations are carried out up to constants, then it can be assumed that A; takes
only the zero value.

83. Main lemmas

LEMMA 4. Suppose that 1 <r <n, H, Q, fr,...,tn_1, a are integers, and H = H —a@Q . Then
the system

=y =0,

Cral + - —yp) = 1Q,
Crtt @™+ =y ™) e H = e Q,
Cr a4 =y + a2 H = 1y Q,
Crl@y + - = yi) + b = iy
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18 equivalent to the system

(r1+a)+ - = (yr +a) =0,
(r14+a) = (g +a)" =0,
Cr((@i+a) +-— (g +a)") = 1Q, (8)
Cit (@)™ = (g +0)™ ) b = 0 Q,
CoM (w4 a)" ™ e = (g + )" ) + o H = 1), Q,
Cr((@r+a)" +-- = (ye +0)") + ppy H = 41y,

where

l
l*‘ s
M;:ZCn_Jj_lal j,ujv l:r,...,n—L M;:Mn

PrOOF. The first r — 1 equations in system (8) readily follow from system (7). Set p,—1 = 0. Let
r<l<n-—1. Then

Chlmi+a) + = (g +a)) +p_H — jQ

l
=CLY Cla (@] 4+ —yl) + i H = 1iQ
Jj=r

I
de
QN
d
=
~
O
=
~
L
=
+
T
\
=)
)
Je
[
—
QN
Jd
L
=
<$
\
O
:Q“‘
[ <
)—‘g{\‘
<
=
<$

j=r j=r
For [ = n, the proof can be carried out in reverse order in a similar way. O

REMARK. If in system (7) ., ..., tin—1 assume integer values independently of one another, then in
system (8) the expressions p.., ..., ul,_; also assume integer values independently of one another.

LEMMA 5. Suppose that 1 <r <n, H, Q, 8 are integers, 0 < S <r+1, p is a prime, (Q,p) =1,
H =p%h, (h,p)=1, y=min(1l,«), and o =0. Then the system

1+ =y =0,

s equivalent to the system

(10)
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where fhy, ..., hn—1 and Ap, ..., Ap—1 are related by

Hr = p(TJrl)iﬁi’y/\T: ©y Mn—1= pniﬁiﬂo\n—l- (11)
PROOF. relations (9) that g, ..., pp—1 must be of the form (11). After the substitution of these
expressions into system (9) and cancellations we obtain system (10). The arguments in reverse order

prove that relations (10) yield system (9). O

LEMMA 6. Consider the system of congruences

T1 4+ —yp = A1 (modp),
........................... 0<r . g <Np -1,
ay 4 =y = A (modp”) N e
xs Zxy (modp), s#t, 1<s,t<n, p>d4dn.
x4 =y = Ay (modp'),
If T(A1, ..., \n) is the number of solutions of this system, then the inequalities are valid:
4

7N2nprn+r(r71)/2 <T— T(O o O) < n|N2nprn+r(r71)/2
9 < s s <n: .

The proof of these is contained in [3].

84. The number of solutions to Hardy’s equation and Waring’s

Consider the positive integers

Py=P, P =[P/ +1, ..., Piyi=[P"3""+1
Choose primes pi, ..., pn—1 so that the inequalities are valid:
P2 <p <2p)?, PP <p,<2p® .. PY<p,,<2P/n
For v=1,...,n—1, the relations are valid:
pPy 2Py, Py PYUTY =l pep, < PV < By

Let 0 <r<n-1. Set Q- =p1---pr (Qo =1). By Ty .(P") denote the number of solutions of the
system

w§+..._y£:0,
Crt—i_l(m?rl + = szrl) = MT+1QT7

C:L+2(z7£+2 + = y£+2) + pry12r = ,U’T+2Q7"7

C;z—l(‘r;l*l S — yzil) + Un—22p = /Jnlerv

Cr(l + - —yp) + pn—12- =0,
0<zi,....,ys <P, 0<2 <Q,,
in which g,41, ..., p—1 may take arbitrary integer values. For r = 0, we obtain the relation T} o(Fp) =

I(P).
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THEOREM 1. Suppose that n > 2, k2n2/2, 1<r<n-—1, and p, > 4n. Then

Tk,,r—l(P ) < p2(k n)—1— 'r(r+1)/2p2n Tk " 74(1:)7”)
PROOF. Let us denote the integral over the unit n-dimensional cube as follows:

1 1
// F(al,...,an)da1-~-dan:/ Flag,...,a,)da.
0 0 B,

Let

f@) =z + -+ a2+, Cla” + -+ a,Cla",

P.—1 pr—1
S(a) — Z eQ‘n’if(aJ,»pTQ?)7 S _ Z S(a)
=0 a=0
According to Lemma 3, we have
QT 1— 1
Tk = 1(Pr 1) < Tk ST 1(prPr < Z / |S|2k¢ dOé (12)
Zpr—1= =0

where ] | |
_ Hor Hn—11\ —ori(arpmrQr 14 +an(—pn_12+_1))
(P_ 1_7 . 1_76 rHr&dr—1 n Hn—12r—1 20
Z ( Ny ) ( Np—1 )
Mooy Bn—1
with some nonnegative N,., ..., N,_1. Set z, = z,_1 + aQ,_1. For each z._1, there exists exactly one

value of a for which (z,, p,) = p,. Denote this value by ag. Moreover,

2%
2 = ‘S(ao) + Y 5| <IS@)F+| S s@)|

a#ag a#ag

Tr—1(Pro1) < Th + T, (13)

where

@cﬁ.

T1:Z/ 1S(ao)|P*®da, Ty = Z/
P

Expressing ® as a sum, taking the summation sign outside the integral sign, and discarding factors of the

o [far | [n—1]
Mo Hn—1
ST Lo B TR (O el |

( Nr> < Nos )

we see that the value of 77 does not exceed the number of solutions of the system

> S(a)

a#ag

Ey

(ao +prr1) + -+ — (a0 + pryx) = 0,
(ao +Pr$1)T71 +o = (a0 +pryk)ril = 07
Ch((ag + pra1)” + -+ — (a0 + pryk)") = prQr—1,
Cy ((ao + pran)™ + -+ = (a0 + pryr)™) + pn-12-1 =0,
ngla"'ayk<PT7 OSZT’—1<Q7’—1-
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Using successively Lemmas 4 and 5, we see that 77 does not exceed the number of solutions of the system

T+ — Yk = Oa
1'171 4. _ y£71 =0,
Ch(xy +- —yp) = rQr_1,
Cr(al + -+ —yp) + tn—12rp, - =0,

0§$13~-~7yk<Pra Zr:Zr—1+aOQr—1a OSZT—1<QT‘—1'
According to Lemma 3, we have T} < p;~"T5, where T3 is the number of solutions of the system

Bt =g =0,

z; "+ —y o =0, (14)

Cr?(x?+"'_y1?)+ﬂn—lzr =0

under the same constraints on the s. Since py -+ p, < PI, p, = O(1) and, by the corollary of Lemma 3,

we can assume that u, = 0. Discarding the condition (z,, p.) = p,, we obtain the relation
Tl < p?_er,r(Pr) < p?_TPEHTk—n,T(PT)~ (15)

Let us now estimate the value 75. Let us transform the integrand appearing in the definition of T5:

2k 2
d S| =|> > Slar)S(ax) (16)
a#ao ai#ao  agFao
We shall assign the collection aq,...,ax to the first class if among the numbers ai,...,ar we can

find n distinct ones. All the other collections will be assigned to the second class. Let us divide the
multiple sum on the right-hand side of the relation (16) into two sums o7 and og over all collections
belonging to the first and second classes, respectively. Moreover,

> S(a)

aFag

2%
= |o1 + oa|* < |o1|? + |oaf?, T <Ty+ 15, (17)

where

n:2/|ﬂ%w, R:Z/|M%M
Zr—1 En Zr—1 En

Each summand in the sum over all collections of the first class can be rearranged so that n distinct
numbers from the collection aq, ..., a occupy the first n places. Therefore,
*
> S(ar)--- S(an)
an

H<Z/ > S(a)
Zr_1 E A1 yeens a#ag
<<p72”(k7n)71 /

2 2(k—n)

o da

n

2
> 1S(@)P* e da,
a#ag

> S(ar) - S(an)

at,...,

n
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where summation in " is taken over all collections a1, ..., a, in which as # a; for s #t, 1 < s,t <n.
Treating the function ®, as above, we see that

Ty < p2=m 1y, (18)

where Ty is the number of solutions of the system

w14 = yn+ (@ +prangr) +- = (a+pryk) = 0,
o1y (@ praa) T = (et peg) T =0,
Cr(@i+- —yn+ (a+prana) +- = (a+poyr)) = 1rQr1,

Cr(al+- —yr 4+ (a+prans)” + - — (a+pryi)”) + pin—12r-1 =0,
0<21,...,Yn <prPp, rs #Z ¢ (modp,), ys #yr (modp,) fors#t,
ngn+1a~'~7yk<PT7 0§a<p7"7 [17&(10, OSZT’—1<QT—1'

According to Lemma 3, we have
Ty < p Ty, (19)

where T7 is the number of solutions of the system

14— yn + (@ +propgr) + - = (a+pryr) =0,
iy (@ prwag) T 4 = (et o) =0,
C':AL(J:?{ + = yTT:L + (a +pr13n+1)r = (CL +pryk¢)r) = ﬂr+1Qr—1p:+1,
Cr (a4 = yp + (a+prnn)" + - = (a+pryp)") + pn—120-1p, 1 =0

under the same constraints on the variables. According to Lemma 4, the last system can be rewritten in

the form
(r1—a)+ -~ (Yo —a) +pr(Tpy1+-- —yx) =0,

(1—a) "+ = (Y —a) T @ ) =0,
Ch((mi—a) +- = (yn—a) +pi(ahyr + =) = e Qro1pi ™,

C;zl((xl - a)n + = (yn - a)n +p?($2+1 + = yl?)) + Nn—lzrp:Jrl =Y,

where z, = z._1 + aQ,_1 and the variables vary within the same limits. Denote by N(A1,..., A,) the
number of solutions of the system

—a<x1, ., Yo <prPr—a,
Ts F Ty (modpr), Ys Z Yt (HlOde) for s # t.

Then we can write

T7 = Z N:(/\lpT7 cety >‘T+1p:+17 DR )‘np:Jrl)TS()‘lZ)TW ey >‘7‘+1p7r"+17 DR Anp:+1)a
A1,y An
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where Tg(A1, ..., An) is the number of solutions of the system

pr(xl'i_"'_ykfn)"'_)\l 207

prt @y =y D) N =0,
C; (pT(zl +eee = y;;—n) + AT) - ﬂrQT lpTJrl

Cg(p:}(m? +oo = ygfn) +A ) +/~Ln 1err+1 = 0

ngla"'ayk—n<PT7 OSZT<QT‘5 (ZT7pT):1-
Let Ty = T5(0,...,0). In view of Lemma 6, we can write
T7; < Ty Z Ny Maprs - Aoy Ay < PRy D2 D (e (20)
ALy An

According to Lemma 5, Ty does not exceed the number of solutions of the system

Tyt = Yo =0,

under the same constraints on the variables. Since p;---p, < PI, we have u, = O(1). By the corollary
of Lemma 3 we can take u, = 0. Discarding the condition (z,,p,) = 1, we obtain the inequality

Ty < Then r(Pr). (21)
Combining the estimates (18)—(21), we obtain

Ty, < p2th—m=i=r+D/2p2n 1 (P). (22)

Let us estimate the number T5. The number of collections of the second class does not exceed n*pr—1

Treating the function ® as above, we see that

<<prn 22 Z/ |2kq)d04 <<p3n 2P2n Z Z/ |2(k n) dda <<p2n 21:)2717197

Zr—1 aFag Zr—1 a#ag

where Ty is the number of solutions of the system

(Cl —|—p,~$1) + - (@ +pryk—n) =0,
(a+px) P+ —(a+pryp_n) =0,
C;((G, +prr1) 4= (a +pryk—n)r) = prQr,
Cr((a+prx)” + - — (a+ pryp—n)") + pn-12r-1 =0,
0<z1,....9kn<PF, 052 1<Q_1, 0<a<p,, a#ap.
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Using Lemmas 4 and 5 in succession, we see that Ty does not exceed the number of solutions of the system

:171+"'7yk—n:05

Cr(al +- —yi_p) + ln-12r =0
under the same constraints on the variables. Again replacing w, by 0, we obtain the estimates
Ty € Tg—n »(Pyr), Ts < pr" P Ty o (Pr). (23)
the estimates (15), (22), and (23) that
Tierr(Proa) < (p) 77 P2 4 ppb WD p2ny 4 202 PR Ty o (P). (24)

Since k > n?/2, in (24) the second summand in parentheses is the leading term. Therefore,

Tk,r—l(Pr—l) < pvzﬂ(kin)717T(T+1)/2Py~2f1Tk—n,T(Pr)- 0

THEOREM 2. Suppose that n > 2, k> n2/2 and the estimate
Nk(P) << P2k:7n(n+1)/2+60'
holds. Then, for k1 > n(n — 1) + k, the following estimate is valid:
Ik1 (P) < P2k1—n+ao/n'
PRrOOF. It suffices to prove the theorem for k1 = n(n — 1) + k. Let us assume that P > (4n)"2 . This

ensures the validity of the inequality p,_1 > 4n. Let us show that for 7 = 0,...,n — 1 the following
estimate is valid:

Tk+nT7n—T—1(PTL—T—1) < PyQL(_kian)7n(n+1)/2+7—(‘r+1)/2p1 o 'pn—‘r—IPsO/n- (25)

For 7 = 0, we must estimate the number T} ,—1(P,—1) that is equal to the number of solutions of the
system

Nyl =, O<zi,...;0n <Pno1, 0< 21 <pr--ppn-1
Cp(@i +--—yp) =0,

The variable z,_1 does not appear in the system; therefore,
2k— 1)/2
Thon1(Pa1) < Ni(Pact)p1 -+ pro1 < Pty "0 2p g poo/m,

Let the estimate (25) be valid for some 7, 0 < 7 < n — 2. Let us prove its validity for 7 + 1. By
Theorem 1, we have

2(k:+n‘r)7177("_7_;)("_7) on
Tk+n(7—+1),n—7—2(Pn—T—2) L Pp_roa Pn—T—QTk+TLT,TL—T—1(PTL—T—l)'

Using inequality (25), we obtain

2(k4n(r+41))— 2ot 4 (T4 (742)
Tk+n(‘r+1),n7772(Pn77-72) < Pn(_T_nQ(T 2 2 2 p1-- 'pnf‘r72P60/n-

For 7 =n —1, formula (25) yields the estimate

I, (P) = Ty, o(Ry) < P2 —mt=o/n (26)
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COROLLARY. Suppose that n > 2, 7 >n/2, and k > n(n—1) +nr. Then

Ii(P) < Phnt3(1=3) (27)
The proof follows directly from Theorem 2 and the estimate (1).

REMARK. The same method can be used to obtain estimates of the number of solutions and asymptotic
formulas for systems of the form

i+ —yp =0, 0<z1,...,9. <P, v=ry,ro,....715, 1<ri<rog<---<rg=n.

Thus, for example, for the number I , ,(P) equal to the number of solutions of the system

$§+"‘_y£:07
0<zy,...,y. < P,

where n > 2, 7 >n/2, k> n(n— 1) + nr, the following estimate is valid:

Lin o (P) < PPt (1-3)7

THEOREM 3. Let n > 4. Then the asymptotic formula (3) is valid for k > 2[n*(Inn + Inlnn + 6)].

The proof of the theorem is similar to that of Theorem 1 from [1, Chap. 6] with the substitution of (27)
for (1) in estimating the integral over the region of the second class.

The author wishes to thank N. M. Korobov for setting the problem and supervising his work
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