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Abstract—The first part of this paper is concerned with the proof of a discrete analog of
the Poisson summation formula. In the second part, we describe an elementary proof of a
functional equation for the function θ(t) , based on the summation formula derived in the
paper.
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1. INTRODUCTION

Suppose that S is the space of infinitely differentiable functions f : R → C , decreasing faster
than any positive power, i.e., for any positive integer n ,

lim
x→±∞ |x|

nf(x) = 0.

We define the Fourier transform f̂ of a function f ∈ S by the formula

f̂(y) =

∫ ∞
−∞
e2πixyf(x) dx.

Such an integral is convergent for all real values of y and determines the function f̂(y) ∈ S .
It is well known that the sum of the values of a function at points of a uniform grid is related

to a similar sum of the values of its Fourier transform. A similar relationship is described by the
Poisson summation formula. There are different versions of this formula. For a function f ∈ S , it
can be written without a remainder [1]:

∞∑
m=−∞

f(m) =

∞∑
m=−∞

f̂(m). (1)

The Poisson summation formula is used in various problems of mathematical analysis and num-
ber theory. For example, using formula (1), we can prove that the function

θ(t) =
∞∑

n=−∞
e−πtn

2

(2)

defined for t > 0 satisfies the functional equation

θ(t−1) =
√
t θ(t) (3)
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(see [1, 2]). Different versions of the Poisson summation formula with remainder allow us to find
an exact value of the Gauss sum (see [3, 2]) and to obtain estimates of trigonometric sums (see [2]).
A few other examples can be found in the book [4].
In the present paper, we consider functions defined at a finite number of points of a uniform

grid. For such functions, we can prove a discrete analog of formula (1), which relates the sum of
the values of a function at the nodes of a spaced-out uniform grid to the sum of its finite Fourier
coefficients. Next, the resulting formula is applied to the proof of the functional equation for the
function θ(t) . This approach to the proof of relation (3) is elementary.
Similarly, a discrete analog of relation (1) can also be used in other problems to which the

ordinary Poisson summation formula is applied.

2. A DISCRETE ANALOG OF THE POISSON SUMMATION FORMULA

In what follows, we consider a uniform grid consisting of points with integer coordinates, i.e.,
we assume that the function f(x) is defined for all integer values of x in the interval 0 ≤ x < p ,
where p is a positive integer.
It is well known that at each of these points a function f(x) can be expressed by its finite

Fourier series

f(x) =

p−1∑
k=0

Cp(k)e
2πikx/p , 0 ≤ x < p, (4)

where the Cp(k) are the finite Fourier coefficients of the function f(x) and can be determined by
the formula

Cp(k) =
1

p

p−1∑
x=0

f(x)e−2πikx/p , 0 ≤ k < p.

The following assertion can be considered a discrete analog of formula (1).

Theorem 1. Suppose that p1 , p2 are positive integers, p = p1p2 , the function f(x) is defined for
all integer values of x in the interval 0 ≤ x < p , and the Cp(k) are the finite Fourier coefficients
of f(x) . Then the following relation is valid :

p2−1∑
y=0

f(p1y) = p2

p1−1∑
n=0

Cp(p2n). (5)

Proof. Let us transform the first sum using formula (4):

p2−1∑
y=0

f(p1y) =

p2−1∑
y=0

p−1∑
k=0

Cp(k)e
2πikp1y/p =

p−1∑
k=0

Cp(k)

p2−1∑
y=0

e2πiky/p2 .

Further, since
p2−1∑
y=0

e2πiky/p2 = p2δp2(k) =

{
p2 if k ≡ 0 (mod p2),
0 if k �≡ 0 (mod p2),

we have
p2−1∑
y=0

f(p1y) =

p−1∑
k=0

Cp(k)p2δp2(k) = p2

p1−1∑
n=0

Cp(p2n). �
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3. PROOF OF THE FUNCTIONAL EQUATION FOR THE FUNCTION θ(t)

Before proving relation (3), we consider several auxiliary assertions.

Lemma 1. Suppose that q1 , q2 are positive integers and q = 2q1q2 . Then the following relation
is valid :

q1
2q

q2∑
m=−q2

(
q

q1(q2 +m)

)
=

q1−1∑
n=0

(
cos
πn

q1

)q
. (6)

Proof. Consider the function f(x) =
(
q
x

)
defined for integer values of x in the interval 0 ≤ x < q

and find its finite Fourier coefficients:

Cq(k) =
1

q

q−1∑
x=0

(
q

x

)
e−2πikx/q =

1

q
[(1 + e−2πik/q)q − 1]

=
1

q
[e−πik(eπik/q + e−πik/q)q − 1] = 1

q

[
(−1)k

(
2 cos

πk

q

)q
− 1
]
.

Applying Theorem 1 to the function f(x) =
(
q
x

)
with p1 = q1 , p2 = 2q2 , and p = 2q1q2 , we

obtain the relation
2q2−1∑
y=0

(
q

q1y

)
=
2q2
q

q1−1∑
n=0

(
2 cos

πn

q1

)q
− 1.

Hence

q1
2q

2q2∑
y=0

(
q

q1y

)
=

q1−1∑
n=0

(
cos
πn

q1

)q
.

This yields the assertion of the lemma. �

Lemma 2. Suppose that t > 0 is a real number such that the product πt is rational. Further, let

πt =
a

b
, (a, b) = 1, z ≥ 1, q1 = az, q2 = bz, q = 2q1q2.

We shall also assume that the numbers M , N , m , and n satisfy the inequalities

0 ≤M, N ≤ √z , |m| ≤M, |n| ≤ N.

Then the following asymptotic formulas are valid :

q1
2q

(
q

q1(q2 +m)

)
=
√
te−πtm

2

(
1 +O

(
M4

z2

))
, (7)(

cos
πn

q1

)q
= e−πn

2/t

(
1 +O

(
N4

z2

))
, (8)

where the constants under the sign of O may depend on a and b .

Proof. First, let us verify relation (7). We use Stirling’s formula

k! =
√
2πk

(
k

e

)k(
1 +O

(
1

k

))
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to calculate the binomial coefficient
(

q
q1(q2+m)

)
:(

q

q1(q2 +m)

)
=

(2q1q2)!

[q1(q2 +m)]! [q1(q2 −m)]!

=

√
4πq1q2

4π2q21(q
2
2 −m2)

· (2q2)
2q1q2(1 +O(z−2))

(q2 +m)q1(q2+m)(q2 −m)q1(q2−m) .

Hence

q1
2q

(
q

q1(q2 +m)

)
=
√
t

(
1 +
m

q2

)−q1(q2+m)(
1− m
q2

)−q1(q2−m)(
1 +O

(
M2

z2

))
.

Further, noting that(
1 +
m

q2

)q1(q2+m)(
1− m
q2

)q1(q2−m)
= exp

(
q1q2 ln

(
1− m

2

q22

)
+ q1m ln

(
1 +
m

q2

)
− q1m ln

(
1− m
q2

))
= exp

(
q1
q2
m2 +O

(
M4

z2

))
= eπtm

2

(
1 +O

(
M4

z2

))
,

we obtain relation (7).
The proof of formula (8) is carried out in a similar way:(

cos
πn

q1

)q
= exp

(
q ln

(
1− π

2n2

2q21
+O

(
N4

z4

)))
= exp

(
q

(
−π

2n2

2q21
+O

(
N4

z4

)))

= exp

(
−q2π

2n2

q1
+O

(
N4

z2

))
= e−πn

2/t

(
1 +O

(
N4

z2

))
. �

Lemma 3. Suppose that, just as in Lemma 2, the following conditions are satisfied :

t > 0, πt =
a

b
, (a, b) = 1, z ≥ 1, q1 = az, q2 = bz, q = 2q1q2.

We also assume that the parameters M and N satisfy the inequalities

1

t
≤M ≤ √z, t ≤ N ≤ √z.

Then the following estimates are valid :∑
m≥M

e−πtm
2

= O(e−2M ), (9)

∑
n≥N
e−πn

2/t = O(e−2N ), (10)

q1
2q

∑
m≥M

(
q

q1(q2 +m)

)
= O(e−2M ), (11)

∑
N≤n≤q1/2

(
cos
πn

q1

)q
= O(e−2N ), (12)

where, as above, the constants under the sign of O may depend on a and b .
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Proof. Let us verify that in each of the four sums the summands decrease no slower than the
elements of a geometric progression with the common ratio 1/2. Hence each of the sums can be
estimated by the first (largest) summand.
Indeed, in the first case

e−πt(m+1)
2

e−πtm2
= e−πt(2m+1) < e−2πtM ≤ e−2π < 1

2

and the estimate for the largest summand is

e−πtM
2 ≤ e−πM = O(e−2M ).

The estimate (10) can be verified in exactly the same way.
Let us prove formula (11). The ratio of adjacent summands is again at most 1/2:(

q
q1(q2+m+1)

)(
q

q1(q2+m)

) = [q1(q2 −m)] · · · [q1(q2 −m)− q1 + 1]
[q1(q2 +m) + q1] · · · [q1(q2 +m) + 1] <

(
q2 −m
q2 +m

)q
<

(
1 +
m

q2

)−2q1
= e−2q1 ln(1+m/q2) < e−mq1/q2 = e−πtm < e−π <

1

2
.

In addition, the first summand on the left-hand side of (11) can be estimated using Lemma 2:

q1
2q

(
q

q1(q2 +M)

)
= O(e−πtM

2

) = O(e−2M ).

To verify formula (12), first note that

cos(π(n+ 1)/q1)

cos(πn/q1)
= 1 +

cos(π(n + 1)/q1)− cos(πn/q1)
cos(πn/q1)

< 1− (π/q1) sin(πn/q1)
cos(πn/q1)

= 1− π
q1
tan
πn

q1
< 1− π

2n

q21
.

Therefore, (
cos(π(n + 1)/q1)

cos(πn/q1)

)q
<

(
1− π

2n

q21

)q
< e−2q2π

2n/q1 = e−πn/t < e−π <
1

2
.

The first summand on the left-hand side of (12) can again be estimated using Lemma 2:(
cos
πN

q1

)q
= O(e−πN

2/t) = O(e−2N ). �

Theorem 2. For all t > 0 , the function θ(t) defined by the series (4) satisfies relation (3).

Proof. The absolute convergence of the series (4) implies the continuity of the function θ(t) .
Therefore, it suffices to prove the theorem only for positive t for which the number πt is rational.
We choose t > 0 and define the integers a and b by the relation πt = a/b , (a, b) = 1. Further,

choose z ≥ emax(t,t−1) and set

M = N = ln z, q1 = az, q2 = bz, q = 2q1q2.
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Using formulas (11) and (7) successively, we find

q1
2q

q2∑
m=−q2

(
q

q1(q2 +m)

)
=
q1
2q

∑
|m|<M

(
q

q1(q2 +m)

)
+O

(
1

z2

)

=
√
t

(
1 +O

(
M4

z2

)) ∑
|m|<M

e−πtm
2

+O

(
1

z2

)

=
√
t
∑
|m|<M

e−πtm
2

+O

(
M4

z2

)
.

Applying the estimate (9), we obtain the relation

q1
2q

q2∑
m=−q2

(
q

q1(q2 +m)

)
=
√
tθ(t) +O

(
M4

z2

)
. (13)

Similarly, it follows from formulas (12) and (8) that

q1−1∑
n=0

(
cos
πn

q1

)q
=
∑
|n|≤N

(
cos
πn

q1

)q
+O

(
1

z2

)
=

(
1 +O

(
N4

z2

)) ∑
|n|<N

e−πn
2/t +O

(
1

z2

)

=
∑
|n|<N

e−πn
2/t +O

(
N4

z2

)
.

Now, from the estimate (10) we obtain the relation

q1−1∑
n=0

(
cos
πn

q1

)q
= θ

(
1

t

)
+O

(
N4

z2

)
. (14)

Substituting formulas (13) and (14) into (6), we find

√
t θ(t) = θ

(
1

t

)
+O

(
ln4 z

z2

)
.

Passing to the limit as z →∞ , we obtain the required result. �
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