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ON STATISTICAL PROPERTIES OF FINITE CONTINUED FRACTIONS

A. V. Ustinov∗ UDC 519.68

Statistical properties of continued fractions for numbers a/b, where a and b lie in the sector a, b ≥ 1, a2 + b2 ≤ R2,
are studied. The main result is an asymptotic formula with two meaning terms for the quantity

Nx(R) =
∑

a2+b2≤R2
a,b∈N

sx(a/b),

where sx(a/b) = |{j ∈ {1, . . . , s} : [0; tj, . . . , ts] ≤ x}| is the Gaussian statistic for the fraction a/b = [t0; t1, . . . , ts].
Bibliography: 12 titles.

1. Notation

1. We write [x0; x1, . . . , xs] for a continued fraction

x0 +
1

x1 + .. . + 1
xs

of length s with formal variables x0, x1, . . . , xs.
2. If r is a rational number, then r = [t0; t1, . . . , ts] stays for the canonical representation of r as a continued

fraction (unless otherwise stipulated); in particular, t0 = [r] (the integer part of r), t1, . . . , ts are positive integers,
and ts ≥ 2 if s ≥ 1.

3. If x ∈ [0, 1] and r = [t0; t1, . . . , ts] is a rational number, then sx(r) stays for the number of indices
j ∈ {1, . . . , s} for which [0; tj, . . . , ts] ≤ x. In particular, s = s(r) = s1(r) is the length of the above continued
fraction.

4. We use the notation Kn(x1, . . . , xn) for continuants, which are defined by the starting values

K0() = 1, K1(x1) = x1

and the recurrent relation

Kn(x1, . . . , xn) = xnKn(x1, . . . , xn−1) + Kn(x1, . . . , xn−2) (n ≥ 2).

Recall that we always have

[x0; x1, . . . , xs] =
Ks+1(x0, x1, . . . , xs)

Ks(x1, . . . , xs)
.

5. The asterisk in double sums of the form
∑

n

∑∗

m

. . .

means that the summation indices are connected by the additional relation (m, n) = 1.
6. If A is a statement, then [A] is equal to 1 if A is true, and it is equal to 0 otherwise.
7. If q is a positive integer, then δq(a) denotes the characteristic function of divisibility by q:

δq(a) = [a ≡ 0 (mod p)] =
{

1 if a ≡ 0 (mod q),
0 if a �≡ 0 (mod q).
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8. The notation for finite differences of a function a(u, v) is as follows:

∆1,0a(u, v) = a(u + 1, v) − a(u, v), ∆0,1a(u, v) = a(u, v + 1) − a(u, v),

∆1,1a(u, v) = ∆0,1(∆1,0a(u, v)) = ∆1,0(∆0,1a(u, v)).

9. The sum of powers of divisors is denoted by

σα(q) =
∑

d|q
dα.

10. The Euler’s dilogarithm is defined by the relation

Li2(z) =
∞∑

k=1

zk

k2
= −

z∫

0

log(1 − z)
z

dz.

11. The Catalan constant is equal to

C =
∞∑

k=0

(−1)k

(2k + 1)2
=

1
2i

[Li2(i) − Li2(−i)] . (1)

2. Introduction

Some problems of the metric theory of numbers deal with statistical properties of continued fractions. For
almost all real numbers α one can describe the typical behavior of partial quotients for the representation

α = [t0; t1, . . . , ts, . . . ]

(see review [1]).
In investigating in details the Euclidean algorithm (see [6, Sec. 4.5.3]), the necessity of studying statistical

properties of finite continued fractions
a/b = [t0; t1, . . . , ts]

arises, provided that the numbers a and b satisfy some additional conditions. This problem was initiated by
Heilbronn [9] and Dixon [7]. Heilbronn succeeded in finding the leading term in the asymptotic formula

1
ϕ(b)

∑

1≤a≤b
(a,b)=1

s(a/b) =
12 log 2

π2
log b + O(1).

Dixon has shown that for every positive ε there exists a constant c0 > 0 such that
∣∣∣∣s(a/b) − 12 log 2

π2
log b

∣∣∣∣ < (log b)1/2+ε

for all pairs (a, b) from the domain 1 ≤ a ≤ b ≤ R, possibly excluding R2 exp(−c0(log R)ε/2) pairs.
Later Porter [12] has obtained a more precise result. He has shown that

1
ϕ(b)

∑

1≤a≤b
(a,b)=1

s(a/b) =
12 log 2

π2
log b + CP + O(b−1/6+ε),

where

CP =
6 log2

π2

(
3 log 2 + 4γ − 24

ζ′(2)
π2

− 2
)
− 1

2

is a constant, which is now known as Porter’s constant (its definitive form was found by Ranch, see [10]).
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The problem of studying statistical properties of continued fractions for numbers a/b with a, b > 0, a2+b2 ≤ R2

was posed in book [5] (Problem 1993–11). The problem concerning the asymptotic behavior of the sum

Nx(R) =
∑

a2+b2≤R2
a,b∈N

sx(a/b)

as R → ∞ is more general. The first answer to this problem was obtained in [2]. Later in [1] a more precise
asymptotic formula was proved:

Nx(R) =
3
π

log(1 + x)R2 logR + O(R2);

the remainder term in the latter formula is better than in [2] by a term of order
√

logR. In the present paper,
we obtain for Nx(R) an asymptotic formula with two significant terms:

Nx(R) =
3
π

R2 [log(1 + x) logR + C(x)] + O(R17/9 log2 R)

(here C(x) is a function, which will be defined in the sequel).

3. Formalization of the problem

The following statement is a modification of a known theorem on continued fractions (see [3, § 50, Theorem
1]).

Lemma 1. Let P be a nonnegative integer, and let P ′, Q, and Q′ be positive integers such that Q ≤ Q′.
Further, let α be a real number in the interval (0; 1). Then the following two conditions are equivalent:

(I) P/Q and P ′/Q′ are consecutive convergents of the continued fraction expansion of α, both different from
α, and, moreover, the convergent P/Q precedes the convergent P ′/Q′;

(II) PQ′ − P ′Q = ±1 and 0 <
Q′α − P ′

−Qα + P
< 1.

Proof. Assume that the first condition holds. The relation PQ′ − P ′Q = ±1 follows immediately from the
properties of continued fractions. Further, since α lies between P/Q and P ′/Q′, there exist positive integers
t1, . . . , ts (s ≥ 1) and a real number α′ such that ts < α′ < ts + 1 and

P

Q
= [0; t1, . . . , ts−1],

P ′

Q′ = [0; t1, . . . , ts],

α = [0; t1, . . . , ts−1, α
′]. (2)

The second condition in (II) follows from the relation

Q′α − P ′

−Qα + P
= α′ − ts.

Let condition (II) hold. It follows from the assumptions of the lemma and the relation |PQ′ − P ′Q| = 1 that
there exist positive integers t1, . . . , ts (s ≥ 1) for which relations (2) are valid. Since

0 <
Q′α − P ′

−Qα + P
,

α lies between P/Q and P ′/Q′; this means that there is α′ such that

α = [0; t1, . . . , ts−1, α
′] =

(α′ − ts)P + P ′

(α′ − ts)Q + Q′ .

Replacing in the relations 0 <
Q′α − P ′

−Qα + P
< 1 the number α by the right-hand side of the above relation, we

conclude that 0 < α′ − ts < 1. Therefore, ts = [α′], and each of the fractions P/Q and P ′/Q′ is a convergent of
the continued fraction expansion of α.
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Remark. Similarly we can prove that if P ≥ 0, P ′, Q, Q′ ≥ 1, and Q ≤ Q′, then the relations

PQ′ − P ′Q = ±1,
Q′α − P ′

−Qα + P
= 1

are equivalent to the following fact: the fractions P/Q and P ′/Q′ are convergents of the form (2) for the
nonstandard continued fraction expansion

α = [0; t1, . . . , ts−1, ts, 1] (s ≥ 1)

of the number α = P+P ′

Q+Q′ .

Lemma 2. Let R ≥ 1 and let Ω(R) be a domain on the plane Omn that is contained in the square 0 < m, n ≤ R.
Assume that the boundary of the domain Ω(R) is piecewise smooth and that the length of this boundary has
order O(R). Denote by M(R) the number of integral points that are contained in Ω(R), and by M∗(R) the
number of primitive points (i.e., points such that (m, n) = 1). Then

M∗(R) =
1

ζ(2)
M(R) + O(R log R).

Proof. Let Ω(R/d) be the domain that is obtained from Ω(R) by the homothety with coefficient 1/d and with
center at the coordinate origin. We denote by M(R/d) and M∗(R/d) , respectively, the numbers of all integral
points and of primitive points in the domain Ω(R/d), and by V (R/d) the area of this domain. Applying the
Möbius inversion formula (for example, see [8, Theorem 268]) to the relation

M(R) =
∑

d≤R

M∗(R/d),

we obtain
M∗(R) =

∑

d≤R

µ(d)M(R/d).

Further, since M(R/d) = V (R/d) + O(R/d) and V (R/d) = V (R)/d2, we have

M∗(R) =
∑

d≤R

µ(d)
(

V (R)
d2

+ O

(
R

d

))
=

1
ζ(2)

M(R) + O(R log R).

The lemma is proved.

Denote by T ∗
x (R) the number of solutions of the system






PQ′ − P ′Q = ±1,

mP + nP ′ = a,

mQ + nQ′ = b,

a2 + b2 ≤ R2

(3)

such that
1 ≤ Q ≤ Q′, 1 ≤ P ′ ≤ Q′, 0 ≤ P ≤ Q, 1 ≤ m ≤ xn, (m, n) = 1. (4)

Lemma 3. For every R ≥ 2 and for x ∈ [0; 1] the following relation holds:

N∗
x (R) = 2T ∗

x (R) +
π

2ζ(2)
R2 arctanx · (1 − 2[x = 1]) + O (R logR) . (5)

Proof. Let a/b be a fixed rational number in the interval (0; 1); we take the irreducible representation of this
number, i.e., we assume that (a, b) = 1. Expand it into the continued fraction

a/b = [0; t1, t2, . . . , ts−1, ts] (s ≥ 1).
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We shall study the quantity sx(a/b) that is defined as the number of indices j ∈ {1, 2, . . . , s} such that
[0; tj, . . . , ts] ≤ x, where x is a fixed real number in the interval [0; 1].

Let s ≥ 2, and let P/Q and P ′/Q′ be consecutive convergents of the continued fraction expansion of a/b (the
fraction P/Q precedes the fraction P ′/Q′); we assume that both fractions are different from a/b. Then for a
certain index j ∈ {1, 2, . . . , s− 1} we have

P = Kj−2(t2, . . . , tj−1), P ′ = Kj−1(t2, . . . , tj),

Q = Kj−1(t1, . . . , tj−1), Q′ = Kj(t1, . . . , tj)

(in particular, if j = 1, then P = 0, Q = P ′ = K() = 1, Q′ = t1). Since PQ′−P ′Q = ±1, for the pair of integers
a, b there exist unique integers m, n such that

mP + nP ′ = a,

mQ + nQ′ = b.

It follows from the properties of continuants (for example, see [4]) that the numbers

m = Ks−j−1(tj+2, . . . , ts),

n = Ks−j(tj+1, . . . , ts)

satisfy the above equations; moreover, m/n = [0; tj+1, . . . , ts].
By Lemma 1,

sx(a/b) = [a/b ≤ x] + lx(a, b),

where lx(a, b) is the number of solutions of the system





PQ′ − P ′Q = ±1,

0 <
aQ′ − bP ′

−aQ + bP
< 1,

mP + nP ′ = a,

mQ + nQ′ = b,

(6)

1 ≤ Q ≤ Q′, 1 ≤ P ′ ≤ Q′, 0 ≤ P ≤ Q, m/n ≤ x.

Further, since
aQ′ − bP ′

−aQ + bP
=

m

n
,

we can rewrite system (6) in the form 




PQ′ − P ′Q = ±1,

mP + nP ′ = a,

mQ + nQ′ = b,

1 ≤ Q ≤ Q′, 1 ≤ P ′ ≤ Q′, 0 ≤ P ≤ Q, m/n ≤ x, 0 < m < n.

Since b/a = [t1; t2, . . . , ts−1, ts], we have

sx(b/a) = sx(a/b) − [a/b ≤ x] = lx(a, b),

sx(b/a) + sx(a/b) = 2lx(a, b) + [a/b ≤ x]. (7)

Summation of formula (7) over all primitive points (a, b) that lie in the sector

{(a, b) : 1 ≤ a ≤ b, a2 + b2 ≤ R2}

yields the relation
N∗

x (R) = 2L∗
x(R) +

π

2ζ(2)
R2 arctanx + O (R log R) , (8)
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where L∗
x(R) is the number of solutions of system (3) for which

1 ≤ Q ≤ Q′, 1 ≤ P ′ ≤ Q′, 0 ≤ P ≤ Q,

0 < m < n, m/n ≤ x, (m, n) = 1.

If x < 1 or n ≥ 2, then we can ignore the requirement m < n. In this case, L∗
x(R) = T ∗

x (R) and the lemma
is proved. If x = 1 and m = n = 1, then the elimination of the requirement m < n increases the number of
solutions of system (3). Therefore,

L∗
x(R) = T ∗

x (R) − T0, (9)

where T0 is the number of solutions of the system





PQ′ − P ′Q = ±1,

P + P ′ = a,

Q + Q′ = b,

a2 + b2 ≤ R2,

(10)

1 ≤ Q ≤ Q′, 1 ≤ P ′ ≤ Q′, 0 ≤ P ≤ Q.

By the remark to Lemma 1, for every primitive point (a, b) such that 1 ≤ a < b, system (10) has exactly one
solution. Hence, by Lemma 2,

T0 =
π

2ζ(2)
R2 arctan 1 + O (R logR) . (11)

Formulas (8), (9), and (11) imply the lemma.
To study the quantity T ∗

x (R), we introduce a new parameter U , which lies in the interval 1 ≤ U ≤ R. By
T1 we denote the number of solutions of system (3) with restrictions (4), which satisfy the additional condition
Q′ ≤ U . The number of solutions for which Q′ > U will be denoted by T2. Then

T ∗
x (R) = T1 + T2.

We shall study the numbers T1 and T2 separately.

4. Evaluation of the number T1

Lemma 4. Let q ≥ 1 be an integer, Q1, Q2, P1, P2 be real numbers, and 0 ≤ P1, P2 ≤ q. Then the number

Φq(Q1, Q2; P1, P2) =
∑

Q1<u≤Q1+P1
Q2<v≤Q2+P2

δq(uv − 1)

satisfies the asymptotic relation

Φq(Q1, Q2; P1, P2) =
ϕ(q)
q2

P1P2 + O (ψ(q)
√

q)

in which ψ(q) = σ0(q)σ−1/2(q) log2(q + 1).

For a proof, see [1].

Lemma 5. Let q ≥ 1 be an integer, and let a(u, v) be a function that is defined at integral points (u, v) such
that 1 ≤ u, v ≤ q. Assume that this function satisfies the inequalities

a(u, v) ≥ 0, ∆1,0a(u, v) ≤ 0, ∆0,1a(u, v) ≤ 0, ∆1,1a(u, v) ≥ 0 (12)

at all points at which these conditions have meaning. Then the sum

W =
q∑

u,v=1

δq(uv − 1)a(u, v)
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satisfies the asymptotic relation

W =
ϕ(q)
q2

q∑

u,v=1

a(u, v) + O (Aψ(q)
√

q) ,

in which ψ(q) is the function from Lemma 4 and A = a(1, 1) is the maximum of the function a(u, v).

Proof. Extend the function a(u, v) to a larger domain by setting

a(u, q + 1) = a(q + 1, v) = 0 (1 ≤ u, v ≤ q + 1).

Then it follows from inequalities (12) that ∆1,1a(u, v) ≥ 0 for all integers u and v such that 1 ≤ u, v ≤ q.
Apply the Abel transform

q∑

n=1

f(n)g(n) = g(q + 1)
q∑

n=1

f(n) −
q∑

k=1

(
k∑

n=1

f(n)

)
(g(k + 1) − g(k))

to the sum W , first with respect to the variable u and then with respect to the variable v. Setting first

f(u) = δq(uv − 1), g(u) = a(u, v) and then f(v) =
k∑

u=1
δq(uv − 1), g(u) = ∆1,0a(u, v), we obtain

W =
q∑

k,l=1

∆1,1a(k, l)
k∑

u=1

l∑

v=1

δq(uv − 1).

By Lemma 4, the inner double sum satisfies the asymptotic formula

k∑

u=1

l∑

v=1

δq(uv − 1) =
ϕ(q)
q2

kl + O (ψ(q)
√

q) .

Therefore,

W =
ϕ(q)
q2

q∑

k,l=1

∆1,1a(k, l) kl + O



ψ(q)
√

q

q∑

k,l=1

|∆1,1a(k, l)|



 .

Since we always have |∆1,1a(k, l)| = ∆1,1a(k, l), we obtain

W =
ϕ(q)
q2

q∑

k,l=1

∆1,1a(k, l)
k∑

u=1

l∑

v=1

1 + O (Aψ(q)
√

q) .

Changing the order of summation so that the summation over u and v becomes outer, and summing over k
and l, we obtain the lemma.

Lemma 6. Let q ≥ 1 be an integer and x ∈ [0; 1]. Then the sum

W1(q) =
q∑

u,v=1

δq(uv − 1)
[
arctan

u

q
− arctan

(
u

q
− x

q(q + vx)

)]

satisfies the asymptotic formula

W1(q) =
π

4
log(1 + x)

ϕ(q)
q2

+ O

(
ψ(q)
q3/2

)
.

Proof. Using the Lagrange intermediate value theorem, we verify that the function

a(u, v) = arctan
u

q
− arctan

(
u

q
− x

q(q + vx)

)
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satisfies conditions (12). Therefore, by Lemma 5,

W1(q) =
ϕ(q)
q2

q∑

u,v=1

[
arctan

u

q
− arctan

(
u

q
− x

q(q + vx)

)]
+ O

(
ψ(q)√q

q2

)
.

Applying the Lagrange theorem once again, we obtain

arctan
u

q
− arctan

(
u

q
− x

q(q + vx)

)
=

x

q(q + vx)
· 1
1 + u2

q2

(
1 + O

(
1
q2

))
,

x

q + vx
= log(q + vx) − log(q + (v − 1)x) + O

(
1
q2

)
,

1

q
(
1 + u2

q2

) = arctan
u

q
− arctan

u − 1
q

+ O

(
1
q2

)
,

Hence,

W1(q) =
ϕ(q)
q2

q∑

u=1

(
arctan

u

q
− arctan

u − 1
q

)

q∑

v=1

[ log(q + vx) − log(q + (v − 1)x)]

+O

(
ψ(q)
q3/2

)
=

π

4
log(1 + x)

ϕ(q)
q2

+ O

(
ψ(q)
q3/2

)
.

Corollary 1. If N ≥ 1, then the sum

W2 =
∑

q≤N

W1(q)

satisfies the asymptotic relation

W2 =
π

4
· log(1 + x)

ζ(2)

(
log N + γ − ζ′(2)

ζ(2)

)
+ f(x) + O

(
log5(N + 1)√

N

)
, (13)

in which f(x) is the sum of the (infinite) series

f(x) =
∞∑

q=1

(
W1(q) −

π

4
log(1 + x)

ϕ(q)
q2

)
. (14)

Proof. Using the estimate ψ(q) ≤ σ2
0(q) log2(q + 1) and the Abel transform, we obtain

∑

q>N

ψ(q)
q3/2

= O

(
log5(N + 1)√

N

)
.

Therefore,
∑

q≤N

(
W1(q) −

π

4
log(1 + x)

ϕ(q)
q2

)
= f(x) + O

(
log5(N + 1)√

N

)
,

W2 =
π

4
· log(1 + x)

∑

q≤N

ϕ(q)
q2

+ f(x) + O

(
log5(N + 1)√

N

)
. (15)
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Expressing ϕ(q) in terms of the Möbius function, we have

∑

q≤N

ϕ(q)
q2

=
∑

q≤N

1
q

∑

d|q

µ(d)
d

=
∑

d≤N

µ(d)
d2

∑

q≤N/d

1
q

=
∑

d≤N

µ(d)
d2

(
log N − logd + γ + O

(
d

N

))
.

Since

∑

d≤N

µ(d)
d2

=
1

ζ(2)
+ O

(
1
N

)
,

∑

d≤N

µ(d)
d2

logd =
ζ′(2)
ζ2(2)

+ O

(
log(N + 1)

N

)
,

we have ∑

q≤N

ϕ(q)
q2

=
1

ζ(2)

(
logN + γ − ζ′(2)

ζ(2)

)
+ O

(
log(N + 1)

N

)
.

Substituting the latter formula into relation (15), we complete the proof of the corollary.

Remark. Similarly we can check that for the sum

W3(q) =
q∑

u,v=1

δq(uv + 1)
[
arctan

(
u

q
+

x

q(q + vx)

)
− arctan

u

q

]

the asymptotic formula

W3(q) =
π

4
log(1 + x)

ϕ(q)
q2

+ O

(
ψ(q)
q3/2

)

is true and that for N ≥ 1 the sum
W4 =

∑

q≤N

W3(q)

can be represented in the form

W4 =
π

4
· log(1 + x)

ζ(2)

(
log N + γ − ζ′(2)

ζ(2)

)
+ g(x) + O

(
log5(N + 1)√

N

)
, (16)

where g(x) is the function given by its expansion

g(x) =
∞∑

q=1

(
W3(q) −

π

4
log(1 + x)

ϕ(q)
q2

)
. (17)

Theorem 1. Let 1 ≤ U ≤ R. Then the number T1 of solutions of system (3), (4) with the additional restriction
Q′ ≤ U satisfies the asymptotic formula

T1 =
π

4
· R2

ζ2(2)

[
log(x + 1)

(
logU + γ − ζ′(2)

ζ(2)

)
+ C1(x)

]

+O
(
R2U−1/2 log5 R

)
+ O (RU logR) ,

in which

C1(x) =
2
π

(
f(x) + g(x) − arctan

x

2 + 3x

)
(18)
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and f(x) and g(x) are functions defined by relations (14) and (17).

Proof. If the values of the parameters P , P ′, Q, and Q′ are fixed, then the number of solutions of system (3) with
unknown variables m and n is equal to the number of primitive points (m, n) in the domain Ω = Ω(P, P ′, Q, Q′)
that is defined by the conditions

(mP + nP ′)2 + (mQ + nQ′)2 ≤ R2, 1 ≤ m ≤ nx.

This domain is contained in the square 0 < m, n ≤ R/Q′, its boundary is piecewise smooth, and the length of
the boundary is equal to O(R/Q′). By Lemma 2, the number of such points is equal to

1
ζ(2)

V (Ω) + O

(
R

Q′ log R

)
.

It follows that
T1 =

1
ζ(2)

∑

PQ′−P ′Q=±1

V (Ω) + O (RU log R) ,

where summation proceeds over the quadruples (P, P ′, Q, Q′) that satisfy restrictions (4) and the condition
Q′ ≤ U . Replacing the variables m and n by the initial parameters a and b

m = ±(aQ′ − bP ′), n = ±(bP − aQ),

we conclude that the number V (Ω) coincides with the area of the sector

aQ′ − bP ′

bP − aQ
≤ x, ±(aQ′ − bP ′) > 0, a2 + b2 ≤ R2

on the plane Oab. Therefore,

V (Ω) = ±R2

2

(
arctan

P ′ + Px

Q′ + Qx
− arctan

P ′

Q′

)
,

where the sign before the bracket is the same as that on the right-hand side of the relation PQ′ − P ′Q = ±1. If
the value of the parameter Q′ = q is fixed, the variables P ′ and Q necessarily satisfy the congruence P ′Q±1 ≡ 0
(mod q). If P ′ = u, Q = v is a solution of such a congruence, then the value of the parameter P is uniquely
determined: P = (uv ± 1)/q. The area of the sector, depending on the choice of the sign, is equal to

R2

2

[
arctan

u

q
− arctan

(
u

q
− x

q(q + vx)

)]

or
R2

2

[
arctan

(
u

q
+

x

q(q + vx)

)
− arctan

u

q

]
.

The value of the parameter P always falls in the required limits 0 ≤ P ≤ Q = v, with the only exception
q = u = v = 1, P = 2. Hence,

T1 =
R2

2ζ(2)

∑

q≤U

q∑

u,v=1

δq(uv − 1)
[
arctan

u

q
− arctan

(
u

q
− x

q(q + vx)

)]

+
R2

2ζ(2)

∑

q≤U

q∑

u,v=1

δq(uv + 1)
[
arctan

(
u

q
+

x

q(q + vx)

)
− arctan

u

q

]

− R2

2ζ(2)

[
arctan

(
1 +

x

x + 1

)
− arctan 1

]
+ O (RU log R) .

Replacing in this formula the sums W2 and W4 by their asymptotic values (13) and (16) and observing that

arctan
(

1 +
x

x + 1

)
− arctan 1 = arctan

x

2 + 3x
,

we complete the proof of the theorem.
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5. Evaluation of the number T2

Lemma 7. Let q ≥ 1, and let f(u) be a nonnegative nonincreasing function on the segment [0; q] such that
f(0) ≤ q. Then

q∑

u=1

∑

1≤v≤f(u)

δq(uv ± 1) =
ϕ(q)
q2

V (Ω) + O
(
q3/4σ0(q) log(q + 1)

)
,

where Ω is the domain on the plane Ouv defined by the conditions 0 ≤ u ≤ q and 0 ≤ v ≤ f(u).

Proof. Divide the interval of summation over the variable u into k parts (1 ≤ k ≤ q):

0 = u0 < u ≤ u1, . . . , uk−1 < u ≤ uk = q,

where uj = jq/k. Set

S =
k∑

j=1

Sj , Sj =
∑

uj−1<u≤uj

∑

1≤v≤f(u)

δq(uv ± 1).

Since the function f(u) is monotone, we have

∑

uj−1<u≤uj

∑

1≤v≤f(uj)

δq(uv ± 1) ≤ Sj ≤
∑

uj−1<u≤uj

∑

1≤v≤f(uj−1)

δq(uv ± 1).

Applying Lemma 4 to the sums in the latter formula, we obtain the inequalities

ϕ(q)
q2

· q

k
f(uj) + O (

√
qψ(q)) ≤ Sj ≤ ϕ(q)

q2
· q

k
f(uj−1) + O (

√
qψ(q)) . (19)

Since
q

k

k∑

j=1

f(uj) =

q∫

0

f(u) du + O
( q

k
f(0)

)
,

q

k

k−1∑

j=0

f(uj) =

q∫

0

f(u) du + O
( q

k
f(0)

)
,

and f(0) ≤ q, summation over j of estimates (19) provides the asymptotic formula

S =
ϕ(q)
q2

q∫

0

f(u) du + O
( q

k

)
+ O (k

√
qψ(q)) .

Setting
k = q1/4(σ0(q) log(q + 1))−1,

we complete the proof of the lemma.

Lemma 8. Let 1 ≤ U < R and R1 = R/U . Then the number T2 of solutions of system (3), (4) with the
additional restriction Q′ > U satisfies the asymptotic formula

T2 = 2
∑

n<R1

∑∗

m≤nx

∑

U<q≤R

ϕ(q)
q2

V (m, n, q) + O
(
R2U−1/4 log2 R

)
,

in which V (m, n, q) is the area of the domain Ω(m, n, q) on the plane Ouv defined by the conditions

0 ≤ u, v ≤ q,

(
u2

q2
+ 1

)
(mv + nq)2 ≤ R2.
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Proof. It follows from the definition of the number T2 that

T2 =
∑

2≤n<R1

∑∗

m≤nx

∑

U<q≤R/n

q∑

u,v=1

δq(uv ± 1)

[(
m

uv ± 1
q

+ nu

)2

+ (mv + nq)2≤ R2

]
.

By Lemma 7,

T2 =
∑

2≤n<R1

∑∗

m≤nx

∑

U<q≤R/n

(
ϕ(q)
q2

V±(m, n, q) + O
(
q3/4σ0(q) log q

))
,

where V±(m, n, q) is the area of the domain Ω±(m, n, q) on the plane Ouv that is defined by the conditions

0 ≤ u, v ≤ q,

(
m

uv ± 1
q

+ nu

)2

+ (mv + nq)2 ≤ R2.

Since
Ω+(m, n, q) ⊂ Ω(m, n, q) ⊂ Ω−(m, n, q),

the replacement of V±(m, n, q) by V (m, n, q) leads to an error that does not exceed the difference V−(m, n, q)−
V+(m, n, q). But if u is fixed, the difference between the numbers v− and v+ satisfying the relation

(
m

uv± ± 1
q

+ nu

)2

+ (mv± + nq)2 = R2

has order O(u/q2). Therefore, V−(m, n, q) − V+(m, n, q) = O(1) and

T2 = 2
∑

n<R1

∑∗

m≤nx

∑

U<q≤R/n

[
ϕ(q)
q2

V (m, n, q) + O
(
q3/4σ0(q) log q

)]
.

Summing the remainder terms, we obtain

T2 = 2
∑

n<R1

∑∗

m≤nx

∑

U<q≤R/n

ϕ(q)
q2

V (m, n, q) + O
(
R2U−1/4 log2 R

)
.

It remains to note that the requirement q ≤ R/n can be replaced by an easier requirement q < R, because the
domain Ω(m, n, q) is void and V (m, n, q) = 0, provided that nq > R.

Lemma 9. Let 1 ≤ U ≤ R and R1 = R/U . Then the sum

W5 =
∑

n<R1

∑∗

m≤nx

∑

U<q≤R

ϕ(q)
q2

V (m, n, q)

satisfies the asymptotic formula

W5 =
U2

ζ(2)

1∫

0

dt

R1(t)∫

0

ξ F ∗(ξ) dξ + O(R2U−1 log R),

in which R1(t) = R1/
√

t2 + 1 and

F ∗(ξ) =
∑

n<ξ

∑∗

m≤nx

1
m

(
1
n
− 1

m + n

)
[ξ ≥ m + n] +

∑

n<ξ

∑∗

m≤nx

1
m

(
1
n
− 1

ξ

)
[ξ < m + n].

Proof. First we find an approximate value of the sum

∑

U<q≤R

ϕ(q)
q2

V (m, n, q).
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Represent the number V (m, n, q) as an integral:

V (m, n, q) =

q∫

0

du

q∫

0

dv
[√

u2/q2 + 1(mv + nq) ≤ R
]
.

Introduce new variables t = u/q and w = mv + nq and a new function R(t) = R/
√

t2 + 1; in this notation,

V (m, n, q) =
q

m

1∫

0

dt

R(t)∫

0

dw

[
w

m + n
< q ≤ w

n

]
.

Further,
∑

U<q≤R

ϕ(q)
q2

V (m, n, q) =
∑

δ

µ(δ)
δ2

∑

U
δ <q≤R

δ

V (m, n, δq)
q

.

Evaluate the inner sum:

∑

U
δ <q≤R

δ

V (m, n, δq)
q

=
δ

m

1∫

0

dt

R(t)∫

0

dw
∑

U
δ <q≤R

δ

[
w

m + n
< q ≤ w

n

]

=
δ

m

1∫

0

dt

R(t)∫

0

dw

(
w

nδ
− max

{
w

(m + n)δ
,
U

δ

}
+ O(1)

)
[w ≥ nU ]

=
1
m

1∫

0

dt

R(t)∫

0

dw

(
w

n
−max

{
w

m + n
, U

})
[w ≥ nU ] + O

(
δR

m

)
.

Set ξ = w/U ; we have

∑

U
δ <q≤R

δ

ϕ(q)
q2

V (m, n, q) =
U2

m

1∫

0

dt

R1(t)∫

0

dξ

(
ξ

n
− max

{
ξ

m + n
, 1

})
[ξ ≥ n] + O

(
δR

m

)
.

Hence,
∑

U<q≤R

ϕ(q)
q2

V (m, n, q)

=
U2

mζ(2)

1∫

0

dt

R1(t)∫

0

dξ

(
ξ

n
−max

{
ξ

m + n
, 1

})
[ξ ≥ n] + O

(
R

m
log R

)

=
U2

mζ(2)

1∫

0

dt

R1(t)∫

0

dξ

(
ξ

n
− ξ

m + n

)
[ξ ≥ m + n]

+
U2

mζ(2)

1∫

0

dt

R1(t)∫

0

dξ

(
ξ

n
− 1

)
[n ≤ ξ ≤ m + n] + O

(
R

m
log R

)
.

Summing the latter relation over n and m, we obtain the lemma.
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Corollary 2. Let 1 ≤ U ≤ R, R1 = R/U , and R1(t) = R1/
√

t2 + 1. Then we have the following asymptotic
formula for the number T2:

T2 = 2
U2

ζ(2)

1∫

0

dt

R1(t)∫

0

ξ F ∗(ξ) dξ + O(R2U−1/4 log2 R).

Indeed, this statement follows immediately from Lemmas 8 and 9.

Lemma 10. If N > 1, then the sum

F ∗(N) =
∑

n<N

∑∗

m≤nx

1
m

(
1
n
− 1

m + n

)
−

∑

n<N

∑∗

m≤nx
m+n>N

1
m

(
1
N

− 1
m + n

)

satisfies the asymptotic formula

F ∗(N) =
log(x + 1)

ζ(2)
logN +

H(x)
ζ(2)

+ O

(
log2(N + 1)

N

)
,

in which

H(x) = log(x + 1)
(

logx − ζ′(2)
ζ(2)

− 1
2

log(x + 1) + γ − 1
)

+ h(x)

and

h(x) =
∞∑

m=1

(
∑

m
x ≤n<m

x +m

1
n
− log(x + 1)

)
. (20)

Proof. We begin with the study of the sum F (N), which differs from the sum F ∗(N) by the absence of the
requirement that m and n be relatively prime in the inner summation. Set F (N) = F1(N) − F2(N), where

F1(N) =
∑

n<N

∑

m≤nx

1
m

(
1
n
− 1

m + n

)
,

F2(N) =
∑

n<N

∑

m≤nx
m+n>N

1
m

(
1
N

− 1
m + n

)
.

Using the function h(x), which was introduced above, we obtain

F1(N) =
∑

m<xN

1
m

(
∑

m
x ≤n<m

x +m

1
n
−

∑

N≤n<N+m

1
n

)

= h(x) + log(x + 1)
∑

m<xN

1
m

−
∑

m<xN

1
m

∑

N≤n<N+m

1
n

+ O

(
1
N

)

= h(x) + (log(x + 1) + log N) (logxN + γ) − σ + O

(
log(N + 1)

N

)
,

where
σ =

∑

m<xN

log(N + m)
m

. (21)

Represent the number F2(N) in the form F2(N) = F3(N) − F4(N), where

F3(N) =
1
N

∑

n<N

∑

m≤nx
m+n>N

1
m

,
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F4(N) =
∑

n<N

∑

m≤nx
m+n>N

1
m

· 1
m + n

.

Changing the order of summation in the sum F3(N), we derive that

F3(N) =
1
N

∑

m≤ xN
x+1

1
m

∑

N−m<n<N

1 +
1
N

∑

xN
x+1 <m<xN

1
m

∑

m
x ≤n<N

1

= log(x + 1) + O

(
log(N + 1)

N

)
.

Similarly,

F4(N) =
∑

m≤ xN
x+1

1
m

∑

N−m<n<N

1
m + n

+
∑

xN
x+1 <m<xN

1
m

∑

m
x ≤n<N

1
m + n

= σ − log N(logxN + γ) − 1
2

log2(x + 1) + O

(
log(N + 1)

N

)
,

where the number σ is defined by relation (21). Hence,

F2(N) = logN(log xN + γ) +
log2(x + 1)

2
+ log(x + 1) − σ + O

(
log(N + 1)

N

)
,

F (N) = log(x + 1)
(

logNx − log(x + 1)
2

+ γ − 1
)

+ h(x) + O

(
log(N + 1)

N

)
.

Using the Möbius inversion formula, we obtain

F ∗(N) =
∑

d<N

µ(d)
d2

F (N/d) =
log(x + 1)

ζ(2)

(
log Nx− ζ′(2)

ζ(2)
− log(x + 1)

2
+ γ − 1

)

+
h(x)
ζ(2)

+ O

(
log2(N + 1)

N

)
.

Lemma 11. Let X > 0 and X(t) = X/
√

t2 + 1. Then

1∫

0

dt

X(t)∫

0

ξ dξ =
π

8
X2,

1∫

0

dt

X(t)∫

0

ξ log ξ dξ =
π

8
X2

(
log

X

2
+ 2

C

π
− 1

2

)
,

where C is the Catalan constant defined by relations (1).

Proof. Denote the integrals in the statement by I1 and I2, respectively. Make the change of variable y = ξ2 in
the first integral; we obtain

I1 =
1
2

1∫

0

dt

X2(t)∫

0

dy =
X2

2

1∫

0

dt

t2 + 1
=

X2

2
arctan t

∣∣∣∣
1

t=0

=
π

8
X2.

To prove the second relation, we first evaluate the integral

I0 =

1∫

0

log(t2 + 1)
t2 + 1

dt.
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Consider the principal branch of the logarithm log z for which | arg z| < π. The formula

Li2(z) = −
z∫

0

log(1 − t)
t

dt

determines the principal branch of the dilogarithm, which is defined on the whole complex plane, except for the
ray [1; +∞). We can give explicitly the antiderivative of the function in the integral I0:

∫
log(t2 + 1)

t2 + 1
dt =

arctan t

2
[log(t2 + 1) + 2 log 2] +

i

2

[
Li2

(
1 + it

2

)
− Li2

(
1 − it

2

)]
.

Therefore,

I0 =

1∫

0

log(t2 + 1)
t2 + 1

dt =
3π

8
log 2 +

i

2

[
Li2

(
1 + i

2

)
− Li2

(
1 − i

2

)]
.

Using now the identity (see [11])

Li2

(
z

z − 1

)
= −Li2(z) − 1

2
log2(1 − z), z /∈ [1; +∞),

for z = 1±i
2 we derive that

i

2

[
Li2

(
1 + i

2

)
− Li2

(
1 − i

2

)]
=

i

2
[Li2 (i) − Li2 (−i)] +

π

8
log 2 = −C +

π

8
log 2.

Thus,
I0 = −C +

π

2
log 2.

We make the change of variable y = ξ2 in the second integral; we obtain

I2 =
1
4

1∫

0

dt

X2(t)∫

0

log y dy =
1
4

1∫

0

dt(y log y − y)
∣∣∣∣
X2(t)

y=0

=
X2

4

1∫

0

dt

t2 + 1

(
log

X2

t2 + 1
− 1

)
=

π

16
X2(2 logX − 1) − X2

4
I0.

Replace I0 in the latter formula by its value, which was found above, and obtain the required relation.

Theorem 2. Let 1 ≤ U ≤ R, R1 = R/U . Then the number T2 of solutions of system (3) with the additional
restriction Q′ > U satisfies the asymptotic formula

T2 =
π

4
· R2

ζ2(2)
[log(x + 1) logR1 + C2(x)] + O(R2U−1/4 log2 R) + O(RU2 log2 R),

in which

C2(x) = log(x + 1)
(

2
C

π
− ζ′(2)

ζ(2)
+ γ − 1

2
log(x + 1) + log

x

2
− 3

2

)
+ h(x) (22)

and h(x) is the function defined by relation (20).

Proof. Apply Corollary 2 and take into account Lemmas 10 and 11.
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6. The main result

Theorem 3. Let R ≥ 2. Then the number Nx(R) satisfies the asymptotic formula

Nx(R) =
3
π

R2 [log(x + 1) log R + C(x)] + O(R17/9 log2 R),

in which

C(x) = C1(x) + C2(x) + log(x + 1)
ζ′(2)
ζ(2)

+ ζ(2) arctan x(1 − 2[x = 1])

and C1(x) and C2(x) are functions that are defined by relations (18) and (22).

Proof. Theorems 1 and 2 imply the relation

T ∗
x (R) = T1 + T2 =

π

4
· R2

ζ2(2)
[log(x + 1) log R + C1(x) + C2(x)]

+O(R2U−1/2 log5 R) + O(R2U−1/4 log2 R) + O(RU2 log2 R).

Choose U = R4/9 and substitute the result into formula (5); we obtain

N∗
x (R) =

π

2
· R2

ζ2(2)
[log(x + 1) logR + C3(x)] + O(R17/9 log2 R),

where
C3(x) = C1(x) + C2(x) + ζ(2) arctanx(1 − 2[x = 1]).

Finally, we apply the relation
Nx(R) =

∑

d≤R

N∗
x(R/d)

and complete the proof of the theorem.

Remark. As a result, we arrive at the following representation of the constant C(x):

C(x) = log(x + 1)
(

2
C

π
+ γ − log(x + 1)

2
+ log

x

2
− 3

2

)

+h(x) +
2
π

(
f(x) + g(x) − arctan

x

2 + 3x

)
,

where f(x), g(x), and h(x) are functions defined by relations (14), (17), (20); most likely, these functions cannot
be evaluated explicitly.
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