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ON GAUSS–KUZ’MIN STATISTICS FOR FINITE CONTINUED FRACTIONS

A. V. Ustinov UDC 511.37+511.336

Abstract. The article is devoted to finite continued fractions for numbers a/b when integer points (a, b)
are taken from a dilative region. Properties similar to the Gauss–Kuz’min statistics are proved for these
continued fractions.

1. Notation

(1) The expression [x0;x1, . . . , xs] denotes the continued fraction

x0 +
1

x1 + .. . +
1
xs

of length s with formal variables x0, x1, . . . , xs.
(2) For rational r, the representation r = [t0; t1, . . . , ts] is a canonical expansion of r in the continued

fraction, where t0 = [r] (the integer part of r), t1, . . . , ts are positive integers such that ts ≥ 2 for
s ≥ 1.

(3) For x ∈ [0, 1] and rational r = [t0; t1, . . . , ts], sx(r) is the quantity of numbers j ∈ {1, . . . , s} such
that [0; tj , . . . , ts] ≤ x. In particular, the length of the continued fraction s = s(r) is s1(r).

(4) The asterisk in any double sum like ∑
n

∑
m

∗
. . .

means that the variables also satisfy the condition (m,n) = 1.
(5) If A is a proposition that can be true or false, then the bracketed notation [A] stands for 1 if A

is true and 0 otherwise.
(6) For natural q, the symbol δq(a) denotes the characteristic function of divisibility by q:

δq(a) = [a ≡ 0 (mod p)] =

{
1 if a ≡ 0 (mod q),
0 if a �≡ 0 (mod q).

(7) The finite differences of the function a(u, v) are

∆1,0a(u, v) = a(u+ 1, v) − a(u, v), ∆0,1a(u, v) = a(u, v + 1) − a(u, v),

∆1,1a(u, v) = ∆0,1(∆1,0a(u, v)) = ∆1,0(∆0,1a(u, v)).

(8) The sum of the kth powers of the divisors is denoted as

σk(q) =
∑
d|q

dk.
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2. Introduction

A detailed analysis of the Euclidean algorithm leads to various problems concerning the statistical
properties of finite continued fractions (see [10, Sec. 4.5.3]). If a pair of positive integers a and b (a < b)
is supplied at the input of the algorithm, then the number of divisions s(a, b) is of main interest. It is
equal to the number of quotients in the continued fraction

a

b
= [0; t1, . . . , ts].

The first result about the average length of the Euclidean algorithm belongs to Heilbronn [7], who
proved that

1
ϕ(b)

∑
1≤a≤b
(a,b)=1

s
(a
b

)
=

12 log 2
π2

log b+O

(
b

ϕ(b)
σ3
−1(b)

)
.

Later, Porter [12] obtained an asymptotic formula with two significant terms for the same sum

1
ϕ(b)

∑
1≤a≤b
(a,b)=1

s
(a
b

)
=

12 log 2
π2

log b+ CP +O
(
b−1/6+ε

)
,

where

CP =
log 2
ζ(2)

(
3 log 2 + 4γ − 4

ζ ′(2)
ζ(2)

− 2
)
− 1

2
is Porter’s constant; its closed form was found by Wrench (see [9]). Intermediate results in this direction
belong to Tonkov [13,14].

By averaging over both parameters a and b, it is possible to obtain more detailed information. So,
Dixon [6] showed that, for any positive ε, there is a constant c0 > 0 such that∣∣∣∣s(a

b

)
− 12 log 2

π2
log b

∣∣∣∣ < (log b)1/2+ε

for all pairs (a, b) in the region 1 ≤ a ≤ b ≤ R, except for at most R2 exp(−c0(logR)ε/2) pairs.
Hensley [8] improved Dixon’s result and proved that, asymptotically, the difference between s(a/b)

and its average is normally distributed and the parameters of this distribution can be explicitly written.
Recently, Vallée developed an approach allowing (by averaging over a and b) to investigate the average

operating time of various variants of Euclidean algorithms [17] including binary algorithm [16].
Moreover, in many cases, the length of Euclidean algorithms is Gaussian [5].
More exact information on the continued fraction of number a/b is provided by the quantity sx(a/b),

which is a discrete analog of the Gauss–Kuz’min statistics Fn(x). For fixed x ∈ [0, 1], the function Fn(x)
is defined as the measure of the numbers

α = [0; t1, . . . , tn, tn+1, . . . ] ∈ [0, 1]

such that
αn = [0; tn+1, tn+2, . . . ] ∈ [0, x].

In [11], Kuz’min proved the Gauss conjecture

lim
n→∞Fn(x) = log2(x+ 1.)

The final result in this direction belongs to Babenko [4] who proved that

Fn(x) = log2(x+ 1) +
∞∑

j=1

λn
j ψj(x),

where λj → 0, |λ1| > |λ2| ≥ |λ3| ≥ . . . , and ψj(x) are analytical functions in C \ (−∞,−1).
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Arnold (see [1, No. 1993-11]) posed the problem about the statistical properties of elements of contin-
ued fractions for numbers a/b such that the points (a, b) are inside a sector a, b > 0, a2 +b2 ≤ R2 or inside
an extending region Ω(R) of the general form. The problem about the asymptotic behavior of the sum

Nx(R) =
∑

(a,b)∈Ω(R)

sx

(a
b

)

is more general. It is similar to the problem on Gauss–Kuz’min statistics. For the sector, this problem
was solved by Avdeeva and Bykovsky in [3]. In [2], Avdeeva proved the more precise asymptotic formula

Nx(R) =
3
π

log(1 + x)R2 logR+O(R2),

with a better error term than in [3]. Later, Ustinov obtained the asymptotic formula with two significant
terms (see [15])

Nx(R) =
3
π
R2 [log(1 + x) logR+ C(x)] +O(R17/9 log2R),

with a complicated function C(x).
In the present paper, a similar problem is considered for the general region Ω(R), which is the image

of a fixed region Ω0 under a homothety with ratio R > 1:

Ω(R) = R · Ω0 =
{

(x, y) : x, y > 0,
( x
R
,
y

R

)
∈ Ω0

}
.

The region Ω0 is defined in polar coordinates

Ω0 =
{

(ρ, ϕ) : 0 ≤ ϕ ≤ π

4
, 0 ≤ ρ ≤ r(ϕ)

}
and its area is

V0 =
1
2

π/4∫
0

r2(ϕ) dϕ.

If the function r(ϕ) is defined on the closed interval [0, π/4] and satisfies the conditions

r(ϕ) ≥ ε0 > 0, r′(ϕ) ≤ r(ϕ) arctanϕ,

then, for the sum
Nx(R) =

∑
(a,b)∈Ω(R)

sx

(a
b

)
,

the asymptotic formula with two significant terms

Nx(R) =
2V0

ζ(2)
R2(log(x+ 1) logR+ C(x)) +O(R2−1/5 log3R)

is proved. This general result is more precise than that in [15] and it shows that the principal term in
the Gauss–Kuz’min statistics for finite continued fractions depends not on the form of the region Ω0 but
only on its area.

3. Auxiliary Transformation

Let N∗
x(R) be the sum

N∗
x(R) =

∑
(a,b)∈Ω(R)

(a,b)=1

sx

(a
b

)
.

Since

Nx(R) =
∑
d≤R

N∗
x

(
R

d

)
,

it is sufficient to obtain the asymptotic formula for N∗
x(R).
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Let T ∗
x (R) be the number of solutions to the system



PQ′ − P ′Q = ±1,

mP + nP ′ = a,

mQ+ nQ′ = b,

a2 + b2 ≤ R2r2
(
arctan

a

b

)
,

(1)

where
1 ≤ Q ≤ Q′, 1 ≤ P ′ ≤ Q′, 0 ≤ P ≤ Q, 1 ≤ m ≤ xn, (m,n) = 1. (2)

Similarly to [15, Lemma 3], it can be proved that, for any R ≥ 2 and x ∈ [0; 1], the following formula
holds:

N∗
x(R) = T ∗

x (R) +
R2

ζ(2)
[x < 1]V0(x) +O(R logR), (3)

where

V0(x) =
1
2

arctan x∫
0

r2(ϕ) dϕ.

For the further study of T ∗
x (R), we introduce a parameter U lying in the interval 1 ≤ U ≤ R. Let

T1 be the number of solutions to system (1) with constraints (2) that satisfy the additional condition
Q′ ≤ U . Denote by T2 the number of solutions with Q′ > U . Then

T ∗
x (R) = T1 + T2.

Each of the terms T1 and T2 will be considered separately.

4. The Evaluation of T1

Lemma 1. Let q ≥ 1 be an integer and the function a(u, v) be defined at integer points (u, v) such that
1 ≤ u, v ≤ q. We also assume that this function satisfies the inequalities

a(u, v) ≥ 0, ∆1,0a(u, v) ≤ 0, ∆0,1a(u, v) ≤ 0, ∆1,1a(u, v) ≥ 0 (4)

at all points where these conditions are defined. Then, for the sum

W =
q∑

u,v=1

δq(uv − 1)a(u, v),

the following asymptotic formula holds:

W =
ϕ(q)
q2

q∑
u,v=1

a(u, v) +O(Aψ(q)
√
q ),

where ψ(q) = σ0(q)σ−1/2(q) log2(q + 1) and A = a(1, 1) is the greatest value of the function a(u, v).

For the proof see [15].
Let q be a positive integer and x ∈ [0, 1]. For integers u and v (1 ≤ u, v ≤ q), by Iq(u, v), we denote

the interval [
arctan

(
u

q
− x

q(q + vx)

)
, arctan

u

q

]
.

Lemma 2. Let r(ϕ) ∈ C(1)([0, π/4]) be a nonnegative function satisfying the condition r′(ϕ) ≤ r(ϕ) tanϕ
for ϕ ∈ [0, π/4]. Then, for the sum

W1(q) =
1
2

q∑
u,v=1

δq(uv − 1)
∫

Iq(u,v)

r2(ϕ) dϕ,
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the following asymptotic formula holds:

W1(q) = V0 log(1 + x)
ϕ(q)
q2

+O

(
ψ(q)
q3/2

)
,

where

V0 =
1
2

π/4∫
0

r2(ϕ) dϕ.

Proof. From conditions r(ϕ) ≥ 0 and r′(ϕ) ≤ r(ϕ) tanϕ, it follows that the function

a(u, v) =
∫

Iq(u,v)

r2(ϕ) dϕ

satisfies conditions (4). Hence, by Lemma 1, we have

W1(q) =
ϕ(q)
2q2

q∑
u,v=1

∫
Iq(u,v)

r2(ϕ)dϕ+O

(
ψ(q)

√
q

q2

)
.

Lagrange’s theorem implies that∫
Iq(u,v)

r2(ϕ) dϕ =
x

q(q + vx)
1

1 + u2

q2

(
r2

(
arctan

u

q

)
+O

(
1
q2

))
,

x

q + vx
= log(q + vx) − log(q + (v − 1)x) +O

(
1
q2

)
,

1
q(1 + u2

q2 )
r2

(
arctan

u

q

)
=

u∫
u−1

r2
(

arctan
z

q

)
d arctan

z

q
+O

(
1
q2

)
.

Therefore,

W1(q) =
ϕ(q)
2q2

q∑
u=1

u∫
u−1

r2
(

arctan
z

q

)
d arctan

z

q

q∑
v=1

[log(q + vx) − log(q + (v − 1)x)] +O

(
ψ(q)
q3/2

)

= V0 log(1 + x)
ϕ(q)
q2

+O

(
ψ(q)
q3/2

)
.

The following proposition easily follows from Lemma 2.

Corollary 1. Let N ≥ 1. Then, for the sum

W2 =
∑
q≤N

W1(q),

we have

W2 = V0
log(1 + x)
ζ(2)

(
logN + γ − ζ ′(2)

ζ(2)

)
+ f(x) +O

(
log5(N + 1)√

N

)
, (5)

where f(x) is the function defined by the series

f(x) =
∞∑

q=1

(
W1(q) − V0 log(1 + x)

ϕ(q)
q2

)
. (6)
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Remark. In the same way, for the sum

W3(q) =
1
2

q∑
u,v=1

δq(uv − 1)
∫

I′q(u,v)

r2(ϕ) dϕ,

where

I ′q(u, v) =
[
arctan

u

q
, arctan

(
u

q
+

x

q(q + vx)

)]
and q ≥ 2, we we obtain the asymptotic formula

W3(q) =
π

4
log(1 + x)

ϕ(q)
q2

+O

(
ψ(q)
q3/2

)
.

Accordingly, the sum
W4 =

∑
2≤q≤N

W3(q)

for N ≥ 1 has the following representation:

W4 = V0
log(1 + x)
ζ(2)

(
logN + γ − ζ ′(2)

ζ(2)

)
+ g(x) +O

(
log5(N + 1)√

N

)
, (7)

where

g(x) =
∞∑

q=2

(
W3(q) − V0 log(1 + x)

ϕ(q)
q2

)
. (8)

Summation begins with q = 2 because q = 1 leads to the numbers Q′ = Q = P ′ = 1, P = 2, which
do not satisfy conditions (2).

Formulas (5) and (7) (as in [15]) give an asymptotic formula for T1.

Theorem 1. Let 1 ≤ U ≤ R. Then

T1 =
2V0

ζ2(2)
R2(log(x+ 1) logU + C1(x)) +O(R2U−1/2 log5R) +O(RU logR),

where

C1(x) = log(x+ 1)
(
γ − ζ ′(2)

ζ(2)

)
+
ζ(2)
2V0

(f(x) + g(x)), (9)

and the functions f(x) and g(x) are defined by (6) and (8).

5. Evaluation of T2

Lemma 3. Let q ≥ 1 be an integer and f(u) be a nonnegative nonincreasing function on [0; q] and
f(0) ≤ q. Then

q∑
u=1

∑
1≤v≤f(u)

δq(uv ± 1) =
ϕ(q)
q2

V (Ω) +O(q3/4σ0(q) log(q + 1)),

where Ω is the region on the uv-plane defined by the inequalities 0 ≤ u ≤ q, 0 ≤ v ≤ f(u) and V (Ω) is its
area.

For the proof see [15, Lemma 7].
Consider a function v(u) defined in the region 1 ≤ u ≤ q − 1, 0 ≤ v ≤ q as an implicit function by

the equation
a2 + b2 = R2r2

(
arctan

a

b

)
, (10)

where
a = m

uv ± 1
q

+ nu, b = mv + nq.
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In the following proposition, we assume that the function v(u) is defined at least at one point.

Lemma 4. Let R ≥ 1 be a real number, m, n, and q be positive integers, and 1 ≤ m ≤ n. Moreover,
assume that the function r(ϕ) ∈ C(1)([0, π/4]) satisfies the conditions

r(ϕ) ≥ ε0 > 0, r′(ϕ) ≤ r(ϕ) arctanϕ.

Then, for

q2 > U0 =
13
ε20

max
ϕ∈[0,π/4]

r(ϕ)|r′(ϕ)|, (11)

the function v(u) is defined on a closed interval [q0, q − 1] (1 ≤ q0 ≤ q − 1) and v(u) is nonincreasing on
this interval.

Proof. First, note that

∂(a2 + b2)
∂v

= 2a
mu

q
+ 2bm ≥ 2m,∣∣∣∣R2∂r2(arctan a/b)

∂v

∣∣∣∣ =
2R2r|r′|m
(a2 + b2)q2

≤ 2R2r|r′|m
n2q4

,

where r = r(arctan a/b) and r′ = r′(arctan a/b).
Since the function v(u) must be defined at least at one point, the parameter R satisfies the inequality(

m
q2 + 1
q

+ nq

)2

+ (mv + nq)2 ≥ R2ε20.

Hence, R2 ≤ 13n2q2/ε20, and, for q2 > U0,∣∣∣∣R2∂r2(arctan a/b)
∂v

∣∣∣∣ ≤ 2 · 13
ε20

r|r′|m
q2

< 2m ≤ ∂(a2 + b2)
∂v

.

Therefore, for fixed u, Eq. (10) determines at most one value of v.
We can differentiate v(u) as an implicit function:

dv

du
= −b

2

m

a/b− r′/r
au+ bq ±mr′/r

.

The assumption r′/r ≤ a/b implies that the numerator of the above expression is nonnegative. Since
m/n ≤ 1 and q2 > r′/r, we have

au+ bq ±m
r′

r
≥ nq2 ±m

r′

r
= n

(
q2 ± m

n

r′

r

)
> 0.

Hence, the function v(u) does not increease and is defined on a closed interval segment [u0, q − 1], where
1 ≤ u0 ≤ q − 1.

Lemma 5. Suppose that function r(ϕ) satisfies the conditions of Lemma 4, U0 is defined by (11), U1/2
0 ≤

U < R, and R1 = R/U . Then

T2 = 2
∑

n<R1

∑
m≤nx

∗ ∑
U<q≤R

ϕ(q)
q2

V (m,n, q) +O(R2U−1/4 log2R),

where V (m,n, q) is the area of the region Ω(m,n, q) on the uv-plane defined by the inequalities

0 ≤ u, v ≤ q,

(
u2

q2
+ 1

)
(mv + nq)2 ≤ R2r2

(
arctan

u

q

)
.
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Proof. By definition of T2, we have

T2 =
∑

1≤n<R1

∑
m≤nx

∗ ∑
U<q≤R/n

q∑
u,v=1

δq(uv ± 1)
[
a2 + b2 ≤ R2r2

(
arctan

a

b

)]
,

where

a = m
uv ± 1
q

+ nu, b = mv + nq.

From Lemmas 4 and 3, it follows that

T2 =
∑

1≤n<R1

∑
m≤nx

∗ ∑
U<q≤R/n

(
ϕ(q)
q2

V±(m,n, q) +O(q3/4σ0(q) log q)
)
,

where V±(m,n, q) is the area of the region Ω±(m,n, q) on the uv-plane defined by

0 ≤ u, v ≤ q, (12)(
m
uv ± 1
q

+ nu

)2

+ (mv + nq)2 ≤ R2r2
(

arctan
u

q
± m

q(mv + nq)

)
. (13)

To complete the proof, it is sufficient to show that

V±(m,n, q) = V (m,n, q) +O(q). (14)

Indeed, this equality implies the asymptotic formula

T2 = 2
∑

n<R1

∑
m≤nx

∗ ∑
U<q≤R/n

ϕ(q)
q2

V (m,n, q) +O(R2U−1/4 log2R),

and this formula is equivalent to the assertion of the lemma, because the condition q ≤ R/n can be
replaced by q < R (for nq > R, the region Ω(m,n, q) is empty and V (m,n, q) = 0).

To prove (14), we consider the difference between the intervals of v specified by (12) and (13) for
a fixed u (1 ≤ u ≤ q − 1). At least one of these intervals should be nonempty. Therefore, one of the
following inequalities is valid:(

m
uv ± 1
q

+ nu

)2

+ (mv + nq)2 > R2r2
(

arctan
u

q
± m

q(mv + nq)

)
,

and R
 nq. Let (u, v) ∈ Ω(m,n, q) \Ω±(m,n, q) or (u, v) ∈ Ω±(m,n, q) \Ω(m,n, q). Using the formulas√(
m
uv ± 1
q

+ nu

)2

+ (mv + nq)2 = (mv + nq)

√
u2

q2
+ 1 +O

(
m

q

)

and

r

(
arctan

u

q
± m

q(mv + nq)

)
= r

(
arctan

u

q

)
+O

(
m

nq2

)
,

we get

Rr

(
arctan

u

q

)
− (mv + nq)

√
u2

q2
+ 1 
 Rm

nq2
+
m

q

 m

q
.

Therefore, for fixed u (1 ≤ u ≤ q − 1), the variable v varies within an interval of length O(1/q).
The difference between the areas of the regions Ω(m,n, q) and Ω±(m,n, q) within the strips 0 ≤ u ≤ 1

and q − 1 ≤ u ≤ q is less than q. This implies formula (14). Lemma 5 is proved.
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Lemma 6. Let 1 ≤ U ≤ R and R1 = R/U . Then, for the sum

W5 =
∑

n<R1

∑
m≤nx

∗ ∑
U<q≤R

ϕ(q)
q2

V (m,n, q),

we have

W5 =
U2

ζ(2)

1∫
0

dt

R1(t)∫
0

ξF ∗(ξ) dξ +O(R2U−1 logR),

where R1(t) = R1r(arctan t)/
√
t2 + 1 and

F ∗(ξ) =
∑
n<ξ

∑
m≤nx

∗ 1
m

(
1
n
− 1
m+ n

)
[ξ ≥ m+ n] +

∑
n<ξ

∑
m≤nx

∗ 1
m

(
1
n
− 1
ξ

)
[ξ < m+ n].

For the proof see [15, Lemma 9].

Corollary 2. Let 1 ≤ U ≤ R, R1 = R/U , and

R1(t) = R1
r(arctan t)√

t2 + 1
.

Then

T2 = 2
U2

ζ(2)

1∫
0

dt

R1(t)∫
0

ξF ∗(ξ) dξ +O(R2U−1/4 log2R).

The proof follows from Lemmas 5 and 6.

Lemma 7. Let N > 1. Then, for the sum

F ∗(N) =
∑
n<N

∑
m≤nx

∗ 1
m

(
1
n
− 1
m+ n

)
−

∑
n<N

∑
m≤nx

m+n>N

∗ 1
m

(
1
N

− 1
m+ n

)
,

the following asymptotic formula holds:

F ∗(N) =
log(x+ 1)
ζ(2)

logN +
H(x)
ζ(2)

+O

(
log2(N + 1)

N

)
,

where

H(x) = log(x+ 1)
(

log x− ζ ′(2)
ζ(2)

− 1
2

log(x+ 1) + γ − 1
)

+ h(x)

and

h(x) =
∞∑

m=1

( ∑
m/x≤n<m/x+m

1
n
− log(x+ 1)

)
. (15)

For the proof see [15, Lemma 10].
The following proposition can be proved by direct calculations.

Lemma 8. Let R1 > 0 and

R1(t) = R1
r(arctan t)√

t2 + 1
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for t ∈ [0, 1]. Then
1∫

0

dt

R1(t)∫
0

ξ dξ = V0R
2
1,

1∫
0

dt

R1(t)∫
0

ξ log ξ dξ = V0R
2
1

(
logR1 − 1

2

)
+ V1R

2
1,

where

V1 =
1
2

π/4∫
0

r2(ϕ) log(r(ϕ) cosϕ) dϕ.

Theorem 2. Let 1 ≤ U ≤ R and R1 = R/U . Then

T2 =
2V0

ζ2(2)
R2(log(x+ 1) logR1 + C2(x)) +O(R2U−1/4 log2R) +O(RU log2R),

where

C2(x) = log(x+ 1)
(

log x− ζ ′(2)
ζ(2)

+ γ − log(x+ 1)
2

− 3
2

+
V1

V0

)
+ h(x) (16)

and the function h(x) is defined by (15).

The proof follows from Lemmas 7 and 8 and Corollary 2.

6. Main Result

Theorem 3. Let R ≥ 2. Then

Nx(R) =
2V0

ζ(2)
R2(log(x+ 1) logR+ C(x)) +O(R2− 1

5 log3R),

where

C(x) = log(x+ 1)
(

log x− ζ ′(2)
ζ(2)

+ 2γ − log(x+ 1)
2

− 3
2

+
V1

V0

)
+ h(x) +

ζ(2)
2V0

(f(x) + g(x) +V0(x)[x < 1])

and f(x), g(x) are defined by (6) and (8).

Proof. From Theorems 1 and 2, we obtain

T ∗
x (R) = T1 + T2 =

2V0

ζ2(2)
R2(log(x+ 1) logR+ C1(x) + C2(x))

+O(R2U−1/2 log5R) +O(R2U−1/4 log2R) +O(RU log2R).

Choosing U = R4/5 and substituting the result into (3), we obtain

N∗
x(R) =

2V0

ζ2(2)
R2(log(x+ 1) logR+ C3(x)) +O(R9/5 log2R),

where
C3(x) = C1(x) + C2(x) +

ζ(2)
2

V0(x)
V0

[x < 1].

Finally, applying the formula

Nx(R) =
∑
d≤R

N∗
x

(
R

d

)
,

we complete the proof of the theorem.
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