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Calculation of the variance in a problem
in the theory of continued fractions

A.V. Ustinov

Abstract. We study the random variable N(α, R)=#{j >1 : Qj(α)6R},
where α ∈ [0; 1) and Pj(α)/Qj(α) is the jth convergent of the continued
fraction expansion of the number α = [0; t1, t2, . . . ]. For the mean value

N(R) =

Z 1

0

N(α, R) dα

and variance

D(R) =

Z 1

0

`
N(α, R)−N(R)

´2
dα

of the random variable N(α, R), we prove the asymptotic formulae with
two significant terms

N(R) = N1 log R+N0+O(R−1+ε), D(R) = D1 log R+D0+O(R−1/3+ε).

Bibliography: 13 titles.

§ 1. Notation

1. We write [x0;x1, . . . , xs] to denote the continued fraction

x0 +
1

x1 +
.. . +

1
xs

of length s with formal variables x0, x1, . . . , xs.
2. For a rational number r, the representation r = [t0; t1, . . . , ts] is the canon-

ical (unless additional stipulations are made) expansion of r into a continued
fraction, where t0 = [r] (the integer part of r), t1, . . . , ts are positive integers,
and ts > 2 for s > 1. In certain cases the same number r is written in the form
r = [t0; t1, . . . , ts − 1, 1].

3. The notation Kn(x1, . . . , xn) (see [1]) is used for the continuants, which are
defined by the initial conditions

K0( ) = 1, K1(x1) = x1
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and the recurrence relation

Kn(x1, . . . , xn) = xnKn−1(x1, . . . , xn−1) +Kn−2(x1, . . . , xn−2), n > 2.

Here we always have the equality

[x0;x1, . . . , xs] =
Ks+1(x0, x1, . . . , xs)
Ks(x1, . . . , xs)

.

The lower index, which is equal to the number of arguments of a continuant, will
be omitted in what follows.

4. The sign “∗” in double sums of the form∑
n

∑∗

m

. . .

means that the variables over which the summation is carried out are connected by
the additional condition (m,n) = 1.

5. If A is some assertion, then [A] means 1 if A is true, and 0 otherwise.
6. For a positive integer q we denote by δq(a) the characteristic function of

divisibility by q:

δq(a) = [a ≡ 0 (mod p)] =

{
1 if a ≡ 0 (mod q),
0 if a 6≡ 0 (mod q).

7. The dash in sums of the form

n∑′

b, m=1

δn(bm± 1) · . . .

means that for n = 1 ‘minus’ is chosen of the two signs in the symbol ±, and
for n > 1 both signs are taken independently.

8. Finite differences of functions of one and two variables are denoted as follows:

∆a(u) = a(u+ 1)− a(u),
∆1,0a(u, v) = a(u+ 1, v)− a(u, v), ∆0,1a(u, v) = a(u, v + 1)− a(u, v),

∆1,1a(u, v) = ∆0,1

(
∆1,0a(u, v)

)
= ∆1,0

(
∆0,1a(u, v)

)
.

9. The sum of powers of divisors is denoted as

σα(q) =
∑
d|q

dα.

§ 2. Introduction

We denote by s(a/b) the length of the continued fraction for a rational number
a/b = [t0; t1, . . . , ts].
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In 1968 Heilbronn [2] proved the asymptotic formula for the mean value of the
quantity s(a/b)

1
ϕ(b)

∑
16a6b
(a,b)=1

s

(
a

b

)
=

2 log 2
ζ(2)

log b+O(log4 log b).

Later Porter (see [3]) obtained for the same sum the asymptotic formula with two
significant terms

1
ϕ(b)

∑
16a6b
(a,b)=1

s

(
a

b

)
=

2 log 2
ζ(2)

log b+ CP − 1 +O(b−1/6+ε),

where

CP =
log 2
ζ(2)

(
3 log 2 + 4γ − 4

ζ ′(2)
ζ(2)

− 2
)
− 1

2

is a constant, which became known as Porter’s constant (the final form of it was
found by Wrench; see [4]).

For the variance of the quantity s(a/b) (for a fixed value of b) only the following
estimate is known, which is correct in order of magnitude and is due to Bykovskǐı [5]:

1
b

b∑
a=1

(
s

(
a

b

)
− 2 log 2

ζ(2)
log b

)2

� log b.

More exact results are obtained for averaging over both parameters a and b. For
example, for the mean value of the quantity s(a/b) the methods in [6], [7] yield the
asymptotic formula

2
R2

∑
b6R

∑
a6b

s

(
a

b

)
=

2 log 2
ζ(2)

log b+B +O(b−1/2+ε),

where

B =
2 log 2
ζ(2)

(
−1

2
+
ζ ′(2)
ζ(2)

)
+ CP − 3

2
.

An asymptotic formula with two significant terms is also known for the variance
(see [8]):

2
R2

∑
b6R

∑
a6b

(
s

(
a

b

)
− 2 log 2

ζ(2)
log b−B

)2

= δ1 logR+ δ0 +O(R−γ), (1)

where δ1, δ0, and γ > 0 are absolute constants.
In the case of an irrational number α, as an analogue of the quantity s(α) one

can consider
N(α,R) = #{j > 1 : Qj(α) 6 R},
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where Qj(α) is the denominator of the jth convergent of the continued fraction
expansion of α. In the present paper we verify an asymptotic formula with two
significant terms for the mean value of N(α,R)

N(R) =
∫ 1

0

N(α,R) dα.

For the variance

D(R) =
∫ 1

0

(
N(α,R)−N(R)

)2
dα =

∫ 1

0

N2(α,R) dα−N2(R),

we prove the asymptotic formula

D(R) = D1 logR+D0 +O(R−1/3 log5R)

with absolute constants D1, D0.
The methods of the present paper also enable us to prove formula (1) with

any γ > −1/4. The author plans to expound this result in a forthcoming paper.
The author is grateful to V.A. Bykovskǐı for posing the problem and for useful

advice.

§ 3. On continued fractions

The following assertion is a modification of a well-known theorem (see [9], § 50,
Theorem 1). This assertion is a basis for all the subsequent arguments.

Lemma 1. Suppose that P is a non-negative integer, P ′, Q, Q′ are positive inte-
gers, and Q 6 Q′. Suppose also that α is a real number in the interval (0, 1). Then
the following two conditions are equivalent :

(I) P/Q and P ′/Q′ are consecutive convergents of the continued fraction expan-
sion of α that are distinct from α, and the convergent P/Q precedes P ′/Q′;

(II) PQ′ − P ′Q = ±1 and 0 <
Q′α− P ′

−Qα+ P
< 1.

See the proof of Lemma 1 in [6].
Following [5] we denote by M the set of all integer-valued matrices

S =
(
P P ′

Q Q′

)
=

(
P (S) P ′(S)
Q(S) Q′(S)

)
with determinant detS = ±1 such that

1 6 Q 6 Q′, 0 6 P 6 Q, 1 6 P ′ 6 Q′.

For real R > 0 we denote by M (R) the finite subset of M consisting of all the
matrices S with the additional condition Q′ 6 R.

As noted in [5], Lemma 1 implies the following properties of the set M .
1◦. The correspondence

(q1, . . . , ql) → S = S(q1, . . . , ql) =
(
P P ′

Q Q′

)
, (2)
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where
P

Q
= [0; q1, . . . , ql−1],

P ′

Q′ = [0; q1, . . . , ql],

defines a bijection of the set of all finite tuples of positive integers onto the set M . In
particular, it follows that the set M is a semigroup with respect to multiplication.

2◦. For real α ∈ (0, 1) the inequality

0 <
Q′α− P ′

−Qα+ P
= S−1(α) < 1, S ∈ M ,

holds if and only if for some j > 1

S =
(
Pj(α) Pj+1(α)
Qj(α) Qj+1(α)

)
and j 6 s(r)− 2 for rational α = r.

3◦. For every matrix S ∈ M the inequality 0 < S−1(α) < 1 defines the interval

I(S) =


(
P ′

Q′ ,
P + P ′

Q+Q′

)
if detS = 1,(

P + P ′

Q+Q′ ,
P ′

Q′

)
if detS = −1,

of length

|I(S)| = 1
Q′(Q+Q′)

.

4◦. Let q1, . . . , ql be positive integers and let S = S(q1, . . . , ql) in accordance
with (2). Then a number α belongs to the interval I(S) if and only if s(α) > l and
in the canonical expansion α = [t0; t1, . . . , tl, . . . ]

t0 = 0, t1 = q1, . . . , tl = ql.

5◦. The intersection I(S)∩ I(S′) is non-empty if and only if one of the intervals
is contained in the other. Here, if I(S)  I(S′) and S′ = S′(q1, . . . , ql′), then for
some l > l′ and positive integers ql′+1, . . . , ql we have the equality

S = S′S′′,

where S′′ = S′′(ql′+1, . . . , ql) and S = S(q1, . . . , ql).
6◦. If Q′ > 2, 1 6 Q 6 Q′, and (Q,Q′) = 1, then there are exactly two pairs

(P, P ′) and (Q− P,Q′ − P ′)

that can be the first row complementing the second row (Q,Q′) with respect to
a matrix in M . In addition, if

Q

Q′ = [0; qs, . . . , q1] = [0; qs, . . . , q1 − 1, 1], q1 > 2,
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then the corresponding matrices have the form(
0 1
1 q1

)
· · ·

(
0 1
1 qs

)
=

(
K(q2, . . . , qs−1) K(q2, . . . , qs)
K(q1, . . . , qs−1) K(q1, . . . , qs)

)
=

(
P P ′

Q Q′

)
,(

0 1
1 1

) (
0 1
1 q1 − 1

) (
0 1
1 q2

)
· · ·

(
0 1
1 qs

)
=

(
K(q1 − 1, q2, . . . , qs−1) K(q1 − 1, q2, . . . , qs)
K(1, q1 − 1, q2, . . . , qs−1) K(1, q1 − 1, q2, . . . , qs)

)
=

(
Q− P Q′ − P ′

Q Q′

)
.

For Q = Q′ = 1 there exists only one matrix S =
(

0 1
1 1

)
that belongs to the

set M .

§ 4. Auxiliary assertions

Lemma 2. Let R > 2. Then∑
n6R

ϕ(n)
n2

=
1
ζ(2)

(
logR+ γ − ζ ′(2)

ζ(2)

)
+O

(
logR
R

)
, (3)

∑
n6R

ϕ(n)
n2

log n =
1

2ζ(2)
log2R+ C0 +O

(
log2R

R

)
,

where

C0 = γ
ζ ′(2)
ζ2(2)

+ γ1
1
ζ(2)

− 2(ζ ′(2))2 − ζ ′′(2)ζ(2)
2ζ3(2)

and γ1 is the Stieltjes constant (see [10], part 2.21), which is defined by the equality∑
n6T

log n
n

=
log2 T

2
+ γ1 +O

(
log T
T

)
, T > 2. (4)

Proof. To prove equality (3) we express ϕ(q) using the Möbius function:∑
n6R

ϕ(n)
n2

=
∑
n6R

1
n

∑
d|n

µ(d)
d

=
∑
d6R

µ(d)
d2

∑
n6R/d

1
n

=
∑
d6R

µ(d)
d2

(
logR− log d+ γ +O

(
d

R

))
.

Since ∑
d6R

µ(d)
d2

=
1
ζ(2)

+O

(
1
R

)
,

∑
d6R

µ(d)
d2

log d =
ζ ′(2)
ζ2(2)

+O

(
logR
R

)
, (5)

we have ∑
n6R

ϕ(n)
n2

=
1
ζ(2)

(
logR+ γ − ζ ′(2)

ζ(2)

)
+O

(
logR
R

)
.
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We transform the second sum by the same method:∑
n6R

ϕ(n)
n2

log n =
∑
n6R

log n
n

∑
d|n

µ(d)
d

=
∑
d6R

µ(d)
d2

∑
n6R/d

1
n

(log n+ log d).

Using equality (4) we find

∑
n6R

ϕ(n)
n2

log n =
∑
d6R

µ(d)
d2

(
log2R

2
− log2 d

2
+ γ1 + γ log d

)
+O

(
log2R

R

)
.

The second formula of the lemma now follows from (5) and the equality

∑
d6R

µ(d)
d2

log2 d =
2(ζ ′(2))2 − ζ ′′(2)ζ(2)

ζ3(2)
+O

(
log2R

R

)
.

Lemma 3. For R > 2 the sum

Φ∗(R) =
∑

Q′6R

∑∗

Q6Q′

1
Q′(Q+Q′)

(6)

satisfies the asymptotic formula

Φ∗(R) =
log 2
ζ(2)

(
logR+ log 2 + γ − ζ ′(2)

ζ(2)

)
− 1

2
+O

(
logR
R

)
.

Proof. First we find an asymptotic formula for the sum

Φ(R) =
∑

Q′6R

∑
Q6Q′

1
Q′(Q+Q′)

,

in which the summation variables Q and Q′ are not connected by the coprimeness
condition. We express Φ(R) in the form

Φ(R) = log 2
∑

Q′6R

1
Q′ + σ0 +O

(
1
R

)
,

where

σ0 =
∞∑

Q′=1

1
Q′

( Q′∑
Q=1

1
Q+Q′ − log 2

)
. (7)

The sum σ0 is known (see [4]) to have the exact value

σ0 = log2 2− ζ(2)
2

; (8)

therefore,

Φ(R) = log 2 (logR+ log 2 + γ)− ζ(2)
2

+O

(
1
R

)
.
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Next, applying the formulae

Φ∗(R) =
∑
δ6R

µ(δ)
δ2

Φ
(
R

δ

)
,

∞∑
δ=1

µ(δ)
δ2

log δ =
ζ ′(2)
ζ2(2)

we arrive at the assertion of the lemma.

Lemma 4. Let q be a positive integer, and a(n) a function defined for integer n
satisfying 1 6 n 6 q. Suppose also that this function satisfies the inequalities

a(n) > 0, 1 6 n 6 q, ∆a(n) 6 0, 1 6 n 6 q − 1.

Then
q∑

n=1
(n,q)=1

a(n) =
ϕ(q)
q

q∑
n=1

a(n) +O(Aσ0(q)),

where A = a(1) is the greatest value of the function a(n).

Proof. We apply the Abel transformation to this sum:
q∑

n=1
(n,q)=1

a(n) =
q∑

n=1

a(n)[(n, q) = 1]

= ϕ(q)a(q)−
q−1∑
k=1

(
a(k + 1)− a(k)

) k∑
n=1

[(n, q) = 1].

Next, using the equality

k∑
n=1

[(n, q) = 1] =
ϕ(q)
q

k +O(σ0(q))

(see [11], Ch. II, Problem 19) we find

q∑
n=1

(n,q)=1

a(n) = ϕ(q)a(q)− ϕ(q)
q

q−1∑
k=1

(
a(k + 1)− a(k)

)
k +O(Aσ0(q))

=
ϕ(q)
q

q∑
n=1

a(n) +O(Aσ0(q)).

The following assertion, which was proved in special cases in [12], is based on
the estimates of Kloosterman’s sums that belong to Estermann [13].

Lemma 5. Let q > 1 be a positive integer, and a(u, v) a function defined at integer
points (u, v), where 1 6 u, v 6 q. Suppose also that this function satisfies the
inequalities

a(u, v) > 0, ∆1,0a(u, v) 6 0, ∆0,1a(u, v) 6 0, ∆1,1a(u, v) > 0

at all the points, where these conditions are defined. Then the sum

W =
q∑

u,v=1

δq(uv ± 1)a(u, v)
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(for any choice of sign in the symbol ±) satisfies the asymptotic formula

W =
ϕ(q)
q2

q∑
u,v=1

a(u, v) +O
(
Aψ(q)

√
q
)
,

where ψ(q) = σ0(q)σ−1/2(q) log2(q + 1) and A = a(1, 1) is the greatest value of the
function a(u, v).

See the proof of Lemma 5 in [6].

§ 5. On the quantities N(R) and D(R)

Lemma 6. For R > 1 the quantity

N(R) =
∫ 1

0

N(α,R) dα

can be represented in the form

N(R) = 2Φ∗(R)− 1
2
, (9)

where the function Φ∗(R) is defined by the series (6).
In addition, N(R) satisfies the asymptotic formula

N(R) =
2 log 2
ζ(2)

logR+
2 log 2
ζ(2)

(
log 2 + γ − ζ ′(2)

ζ(2)

)
− 3

2
+O

(
log(R+ 1)

R

)
. (10)

Proof. By Lemma 1, for irrational α ∈ (0, 1) the quantity N(α,R) coincides with
the number of solutions of the system{

PQ′ − P ′Q = ±1,
0 < S−1(α) < 1

with respect to the unknowns P , P ′, Q, and Q′ that are connected by the inequal-
ities

1 6 Q 6 Q′ 6 R, 0 6 P 6 Q, 1 6 P ′ 6 Q′.

Hence,

N(α,R) =
∑

S∈M (R)

[0 < S−1(α) < 1] =
∑

S∈M (R)

χ
I(S)(α), (11)

N(R) =
∑

S∈M (R)

∫ 1

0

χ
I(S)(α) dα =

∑
S∈M (R)

1
Q′(Q+Q′)

, (12)

where χ
I(S)(α) is the characteristic function of the interval I(S).

Suppose that Q′ > 2, 1 6 Q < Q′, and (Q,Q′) = 1. Then by property 6◦ of the
set M the fraction 1/

(
Q′(Q+Q′)

)
appears in the sum (12) exactly two times. For

the pair (Q′, Q) = (1, 1) the corresponding fraction appears once. Consequently,
equality (9) holds. Applying Lemma 3 to (9) we arrive at the asymptotic formula
for N(R).
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Lemma 7. For R > 1 the quantity

D(R) =
∫ 1

0

(
N(α,R)−N(R)

)2
dα =

∫ 1

0

N2(α,R) dα−N2(R)

satisfies the representation

D(R) = 4σ(R)−N2(R) +
1
2
, (13)

where

σ(R) =
∑

Q′6R

∑∗

Q6Q′

∑(
a m
b n

)
∈M

[mQ+ nQ′ 6 R]
(mQ+ nQ′)

(
(a+m)Q+ (b+ n)Q′

) .
Proof. By formulae (11) and (12) we have∫ 1

0

N2(α,R) dα =
∫ 1

0

( ∑
S∈M (R)

χ
I(S)(α)

)2

dα

=
∑

S∈M (R)

|I(S)|+ 2
∑

S,S′∈M (R)
I(S) I(S′)

|I(S)| = N(R) + 2
∑

S,S′∈M (R)
I(S) I(S′)

|I(S)|.

Using property 5◦ we express the matrices S and S′ in the form

S′ =
(
P P ′

Q Q′

)
, S =

(
P P ′

Q Q′

) (
a m
b n

)
,

where the matrix
(
a m
b n

)
also belongs to the set M . Therefore,∫ 1

0

N2(α,R) dα = N(R)

+ 2
∑(

P P ′

Q Q′

)
∈M

∑(
a m
b n

)
∈M

[mQ+ nQ′ 6 R]
(mQ+ nQ′)

(
(a+m)Q+ (b+ n)Q′

) .
Considering separately the case Q = Q′ = 1 and using property 6◦ we find∫ 1

0

N2(α,R) dα = N(R) + 4σ(R)− 2
∑(

a m
b n

)
∈M

[m+ n 6 R]
(m+ n)(a+ b+m+ n)

.

The equality (
0 1
1 1

) (
a m
b n

)
=

(
b n

a+ b m+ n

)
and property 6◦ imply that each pair of numbers (q, q′) such that 1 6 q < q′ and

(q, q′) = 1 is the second row of the matrix
(

b n
a+ b m+ n

)
for exactly one matrix(

a m
b n

)
∈ M .
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Therefore, in view of equality (9), we have

2
∑(

a m
b n

)
∈M

[m+ n 6 R]
(m+ n)(a+ b+m+ n)

= 2
(

Φ∗(R)− 1
2

)
= N(R)− 1

2
,

∫ 1

0

N2(α,R) dα = 4σ(R) +
1
2
, (14)

which proves Lemma 7.

Remark 1. The sum σ(R) has another representation:

σ(R) =
∑

26Q′6R

∑∗

Q6Q′

s(Q/Q′)
Q′(Q+Q′)

. (15)

Indeed, if S = S(q1, . . . , qn), then a matrix S′ ∈ M such that I(S)  I(S′) can be
chosen in n− 1 ways. Therefore,∫ 1

0

N2(α,R) dα = N(R) + 2
∑

S∈M
Q′>2

n− 1
Q′(Q+Q′)

.

By property 5◦ of the set M , for fixed Q and Q′ such that 1 6 Q < Q′ and
(Q,Q′) = 1, the parameter n can take two values: s(Q/Q′) and s(Q/Q′)+1. Thus,∫ 1

0

N2(α,R) dα = N(R) + 2
∑

26Q′6R

∑∗

Q6Q′

2s(Q/Q′)− 1
Q′(Q+Q′)

= 4
∑

26Q′6R

∑∗

Q6Q′

s(Q/Q′)
Q′(Q+Q′)

+
1
2
,

which, in view of equality (14), proves formula (15).

To find D(R) we introduce a parameter U satisfying 2 6 U 6 R. We represent
the sum σ(R) in the form

σ(R) = σ1 − σ2 + σ3,

where

σ1 =
∑

Q′6R

∑(
a m
b n

)
∈M (U)

∑∗

Q6Q′

1
(mQ+ nQ′)

(
(a+m)Q+ (b+ n)Q′

) , (16)

σ2 =
∑(

a m
b n

)
∈M (U)

∑
Q′6R

∑∗

Q6Q′

[mQ+ nQ′ > R]
(mQ+ nQ′)

(
(a+m)Q+ (b+ n)Q′

) , (17)

σ3 =
∑

Q′6R

∑∗

Q6Q′

∑(
a m
b n

)
∈M ,

n>U

[mQ+ nQ′ 6 R]
(mQ+ nQ′)

(
(a+m)Q+ (b+ n)Q′

) . (18)

We analyse separately each of the quantities σ1, σ2, and σ3.
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§ 6. Calculating the sum σ1

For a matrix S =
(
a m
b n

)
∈ M , we denote by fS(ξ) the function

fS(ξ) =
1

(mξ + n)
(
(a+m)ξ + (b+ n)

) ,
and by J1(a, b,m, n) the integral

J1(a, b,m, n) =
∫ 1

0

fS(ξ) dξ.

Lemma 8. Let n be a positive integer. Then the sum

w1(n) =
n∑′

b,m=1

δn(bm± 1)J1(a, b,m, n)

(henceforth, a = (bm± 1)/n) satisfies the asymptotic formula

w1(n) = 2 log2 2
ϕ(n)
n2

+O

(
ψ(n)
n3/2

)
,

where ψ(n) is the function defined in the hypothesis of Lemma 5.

Proof. The assertion of the lemma is obvious for n = 1. Therefore we assume that
n > 2. Since

1
ξ
(
(bm± 1)/n+m

)
+ (b+ n)

− 1
ξ(bm/n+m) + (b+ n)

= O

(
1
n3

)
, (19)

the sum w1(n) has a simpler representation:

w1(n) =
n∑

b,m=1

δn(bm± 1)
∫ 1

0

dξ(
b/n+ 1

)
(mξ + n)2

+O

(
1
n3

)
.

By Lemma 5,

w1(n) = 2
ϕ(n)
n2

n∑
b,m=1

1
b+ n

∫ 1

0

ndξ

(mξ + n)2
+O

(
ψ(n)
n3/2

)
.

Substituting into the last equality the asymptotic formulae

n∑
b=1

1
b+ n

= log 2 +O

(
1
n

)
, (20)

n∑
m=1

∫ 1

0

ndξ

(mξ + n)2
= log 2 +O

(
1
n

)
we arrive at the assertion of the lemma.
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Corollary 1. For any real U > 2 the sum

W1(U) =
∑(

a m
b n

)
∈M (U)

J1(a, b,m, n) (21)

satisfies the asymptotic formula

W1(U) =
2 log2 2
ζ(2)

(
logU + γ − ζ ′(2)

ζ(2)

)
+ C1 +O

(
log5 U

U1/2

)
, (22)

where

C1 =
∞∑

n=1

( n∑′

b,m=1

δn(bm± 1)J1(a, b,m, n)− 2 log2 2
ϕ(n)
n2

)
. (23)

Proof. We express the sum W1(U) in the form

W1(U) =
∑
n6U

n∑′

b,m=1

δn(bm± 1)J1(a, b,m, n).

By Lemma 8,

W1(U) =
∑
n6U

( n∑′

b,m=1

δn(bm± 1)J1(a, b,m, n)− 2 log2 2
ϕ(n)
n2

)
+ 2 log2 2

∑
n6U

ϕ(n)
n2

= 2 log2 2
∑
n6U

ϕ(n)
n2

+ C1 +O

(
log5 U

U1/2

)
.

Substituting formula (3) into the last equality we arrive at the assertion of the
corollary.

Remark 2. One can verify in similar fashion the equalities
n∑′

b,m=1

δn(bm± 1)
1

(m+ n)(a+ b+m+ n)
= log 2

ϕ(n)
n2

+O

(
ψ(n)
n3/2

)
,

n∑′

b,m=1

δn(bm± 1)f ′S(ξ) = − 2 log 2
(ξ + 1)2

ϕ(n)
n2

+O

(
ψ(n)
n3/2

)
.

For the sums

A(U) =
∑(

a m
b n

)
∈M (U)

1
(m+ n)(a+ b+m+ n)

, B(U, ξ) =
∑(

a m
b n

)
∈M (U)

f ′S(ξ),

this yields the asymptotic formulae

A(U) =
log 2
ζ(2)

(
logU + γ − ζ ′(2)

ζ(2)

)
+ C2 +O

(
log5R

U1/2

)
, (24)

B(U, ξ) = − 2 log 2
ζ(2)(ξ + 1)2

(
logU + γ − ζ ′(2)

ζ(2)

)
+ C3(ξ) +O

(
log5R

U1/2

)
, (25)
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where

C2 =
∞∑

n=1

( n∑′

b,m=1

δn(bm± 1)
(m+ n)(a+ b+m+ n)

− log 2
ϕ(n)
n2

)
,

C3(ξ) =
∞∑

n=1

( n∑′

b,m=1

δn(bm± 1)f ′S(ξ) +
2 log 2

(ξ + 1)2
ϕ(n)
n2

)
. (26)

Lemma 9. Let ρ(x) = 1/2− {x} and

h(x) =
∞∑

q=1

ρ(qx)
q2

. (27)

Then ∫ 1

0

h(x)
(x+ 1)2

dx = log2 2− ζ(2)
4

.

Proof. The assertion of the lemma follows from the definition of the function ρ(x)
and formula (8):∫ 1

0

h(x)
(x+ 1)2

dx =
∞∑

q=1

1
q2

q−1∑
a=0

∫ (a+1)/q

a/q

(
1
2

+ a− qx

)
dx

(x+ 1)2

=
∞∑

q=1

1
q

(
1

q + 1
+ · · ·+ 1

2q
− log 2 +

1
4q

)
= σ0 +

ζ(2)
4

= log2 2− ζ(2)
4

.

Theorem 1. Let 2 6 U 6 R. Then the sum

σ1 =
∑

Q′6R

∑(
a m
b n

)
∈M (U)

∑∗

Q6Q′

1
(mQ+ nQ′)

(
(a+m)Q+ (b+ n)Q′

)
satisfies the asymptotic formula

σ1 =
2 log2 2
ζ2(2)

logR logU +
1
ζ(2)

(
2 log2 2
ζ(2)

(
γ − ζ ′(2)

ζ(2)

)
+ C1

)
logR

+
2 log2 2
ζ2(2)

(
γ − ζ ′(2)

ζ(2)
+ log 2− ζ(2)

2 log 2

)
logU + C ′

1 +O

(
log6R

U1/2

)
,

where the constant C1 is defined by the series (23) and

C ′
1 =

(
γ − ζ ′(2)

ζ(2)

)(
2 log2 2
ζ2(2)

(
γ − ζ ′(2)

ζ(2)
+ log 2− ζ(2)

2 log 2

)
+

C1

ζ(2)

)
− 1
ζ2(2)

∫ 1

0

h(ξ)C3(ξ) dξ +
C2

2
+

3
4
− log2 2

ζ(2)
. (28)
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Proof. The summation formula∑
0<x6q

g(x) =
∫ q

0

g(x) dx+
1
2
(
g(q)− g(0)

)
−

∫ q

0

ρ(x)g′(x) dx

applied to the function

g(x) =
1

(mx+ nq)
(
(a+m)x+ (b+ n)q

) =
1
q2
fS

(
x

q

)
,

results in the equality
q∑

x=1

g(x) =
1
q
J1(a, b,m, n) +

1
2q2

(
1

(m+ n)(a+ b+m+ n)
− 1
n(m+ n)

)
− 1
q2

∫ 1

0

ρ(qξ)f ′S(ξ) dξ.

Hence, ∑(
a m
b n

)
∈M (U)

q∑
x=1

1
(mx+ nq)((a+m)x+ (b+ n)q)

=
1
q
W1(U) +

1
2q2

(
A(U)−N(U)

)
− 1
q2

∫ 1

0

ρ(qξ)B(U, ξ) dξ. (29)

We apply this formula for calculating σ1. For that we preliminarily transform the
sum σ1:

σ1 =
∑

Q′6R

∑(
a m
b n

)
∈M (U)

Q′∑
Q=1

1
(mQ+ nQ′)

(
(a+m)Q+ (b+ n)Q′

) ∑
δ|(Q,Q′)

µ(δ)

=
∑

Q′6R

∑
δ|Q′

µ(δ)
δ2

∑(
a m
b n

)
∈M (U)

Q′/δ∑
x=1

1
(mx+ nQ′/δ)

(
(a+m)x+ (b+ n)Q′/δ

) .
By formula (29) we have

σ1 =
∑

Q′6R

∑
δ|Q′

µ(δ)
δ2

(
δ

Q′W1(U) +
δ2

2(Q′)2
(
A(U)−N(U)

)
+

δ2

(Q′)2

∫ 1

0

ρ

(
Q′ξ

δ

)
B(U, ξ) dξ

)
= W1(U)

∑
Q′6R

ϕ(Q′)
(Q′)2

+
1
2
(
A(U)−N(U)

)
− 1
ζ(2)

∫ 1

0

h(ξ)B(U, ξ) dξ +O

(
log2R

R

)
,

where the function h(x) is defined by equality (27).
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Substituting the asymptotic formulae (22), (24), (10), (25) for the quantities
involved in the last equality and applying Lemma 9 we obtain the assertion of
Theorem 1.

§ 7. Calculating the sum σ2

For a matrix S =
(
a m
b n

)
∈ M we denote by J2(a, b,m, n) the integral

J2(a, b,m, n) =
∫ 1

0

log(mξ + n)dξ
(mξ + n)

(
(a+m)ξ + (b+ n)

) .
Lemma 10. Let n be a positive integer. Then the sum

w2(n) =
n∑′

b,m=1

δn(bm± 1)J2

(
bm± 1
n

, b,m, n

)

satisfies the asymptotic formula

w2(n) = 2 log2 2
ϕ(n) log n

n2
+log2 2

(
2+log 2− ζ(2)

log 2

)
ϕ(n)
n2

+O

(
ψ(n) log(n+ 1)

n3/2

)
,

where ψ(n) is the function defined in the hypothesis of Lemma 5.

Proof. The assertion of the lemma is obvious for n = 1. Therefore we assume that
n > 2. It follows from equality (19) that

w2(n) =
∫ 1

0

dξ
n∑

b,m=1

δn(bm± 1)
log(mξ + n)

(1 + b/n)(mξ + n)2
+O

(
log(n+ 1)

n3

)
.

Applying Lemma 5 we obtain

w2(n) = 2
ϕ(n)
n2

∫ 1

0

dξ
n∑

b=1

1
1 + b/n

n∑
m=1

log(mξ + n)
(mξ + n)2

+O

(
ψ(n) log(n+ 1)

n3/2

)

= 2 log 2
ϕ(n)
n

∫ 1

0

dξ

∫ n

0

dm
log(mξ + n)
(mξ + n)2

+O

(
ψ(n) log(n+ 1)

n3/2

)
= 2 log 2

ϕ(n)
n2

∫ 1

0

dξ

∫ 1

0

dz
log n+ log(zξ + 1)

(zξ + 1)2
+O

(
ψ(n) log(n+ 1)

n3/2

)
.

To complete the proof it remains to use the equalities∫ 1

0

∫ 1

0

dξ dz

(zξ + 1)2
= log 2,

∫ 1

0

∫ 1

0

log(zξ + 1) dξ dz
(zξ + 1)2

=
log 2

2

(
2 + log 2− ζ(2)

log 2

)
.

Similarly to Corollary 1, the following assertion is a consequence of Lemmas 2
and 10.
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Corollary 2. For any real U > 2 the sum

W2(U) =
∑(

a m
b n

)
∈M (U)

J2(a, b,m, n)

satisfies the asymptotic formula

W2(U) =
log2 2
ζ(2)

log2 U +
log2 2
ζ(2)

(
2 + log 2− ζ(2)

log 2

)
logU + C4 +O

(
log6 U

U1/2

)
,

where

C4 =
log2 2
ζ(2)

(
2 + log 2− ζ(2)

log 2

)(
γ − ζ ′(2)

ζ(2)

)
+ 2 log2 2C0 + C ′

4, (30)

C0 is the constant in Lemma 2, and C ′
4 is the sum of the series

C ′
4 =

∞∑
n=1

(
w2(n)− 2 log2 2

ϕ(n)
n2

(
log n+ 2 + log 2− ζ(2)

log 2

))
.

Theorem 2. Let 2 6 U 6 R. Then the sum σ2 defined by equality (17) satisfies
the asymptotic formula

σ2 =
log2 2
ζ2(2)

log2 U +
log2 2
ζ2(2)

(
2 + log 2− ζ(2)

log 2

)
logU +

C4

ζ(2)

+O

(
log6R

U1/2

)
+O

(
U logR
R

)
,

where C4 is the constant in Corollary 2.

Proof. Applying Lemma 4 to the inner sum over the variable Q we obtain

σ2 =
∑(

a m
b n

)
∈M (U)

∑
Q′6R

∑∗

Q6Q′

[mQ+ nQ′ > R]
(mQ+ nQ′)

(
(a+m)Q+ (b+ n)Q′

)
=

∑(
a m
b n

)
∈M (U)

∑
Q′6R

ϕ(Q′)
Q′

∑
Q6Q′

[mQ+ nQ′ > R]
(mQ+ nQ′)

(
(a+m)Q+ (b+ n)Q′

)
+O

(
U logR
R

)
.

Replacing the sum over the variable Q by the integral and performing the change
of variables Q = ξQ′ we obtain

σ2 =
∑(

a m
b n

)
∈M (U)

∑
Q′6R

ϕ(Q′)
(Q′)2

∫ 1

0

[mξ + n > R/Q′] dξ
(mξ + n)

(
(a+m)ξ + b+ n

) +O

(
U logR
R

)
.
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Next, since∑
Q′6R

ϕ(Q′)
(Q′)2

[
mξ + n >

R

Q

′ ]
=

∑
δ6R

µ(δ)
δ2

∑
Q′6R/δ

[mξ + n > R/(δQ′)]
Q′

=
∑
δ6R

µ(δ)
δ2

(
log(mξ + n) +O

(
nδ

R

))
=

log(mξ + n)
ζ(2)

+O

(
n logR
R

)
,

we have

σ2 =
1
ζ(2)

∑(
a m
b n

)
∈M (U)

∫ 1

0

log(mξ + n) dξ
(mξ + n)

(
(a+m)ξ + (b+ n)

) +O

(
U logR
R

)
.

Applying Corollary 2 we arrive at the assertion of Theorem 2.

§ 8. Calculating the sum σ3

Lemma 11. For N > 2 the sum

F ∗(N) =
∑
n<N

∑∗

m6n

1
m

(
1
n
− 1
m+ n

)
−

∑
n<N

∑∗

m6n
m+n>N

1
m

(
1
N
− 1
m+ n

)

satisfies the asymptotic formula

F ∗(N) =
log 2
ζ(2)

(logN +H) +O

(
log2N

N

)
, (31)

where

H = γ − ζ ′(2)
ζ(2)

+
log 2

2
− 1. (32)

Proof. The substitution of x = 1 into Lemma 10 in [6] results in equality (31) with
the constant

H = γ − ζ ′(2)
ζ(2)

− log 2
2

− 1 +
1

log 2

(
σ0 +

ζ(2)
2

)
,

where σ0 is defined by the series (7). Substituting the value of σ0 in (8) into the
last formula we arrive at the assertion of Lemma 11.

Theorem 3. Let 2 6 U 6 R. Then the sum σ3 given by equality (18) satisfies the
asymptotic formula

σ3 =
log2 2
ζ2(2)

log
R

U

(
log

R

U
+ 2H

)
+O

(
log6R

U1/2

)
,

where the constant H is given by equality (32).

Proof. Since for any matrix
(
a m
b n

)
∈ M we have

1
(a+m)Q+ (b+ n)Q′ −

1
(bm/n+m)Q+ (b+ n)Q′ �

1
n3Q′
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and ∑
Q′6R

∑∗

Q6Q′

∑(
a m
b n

)
∈M ,

n>U

1
n4(Q′)2

� logR
U2

,

the sum σ3 can be rewritten in the form

σ3 =
∑

Q′6R

∑∗

Q6Q′

∑
n>U

n∑
b,m=1

δn(bm± 1)
[mQ+ nQ′ 6 R]

(b/n+ 1)(mQ+ nQ′)2
+O

(
logR
U2

)
.

Applying Lemma 5 we obtain

σ3 = 2
∑

Q′6R

∑∗

Q6Q′

∑
n>U

ϕ(n)
n

n∑
b=1

1
b+ n

n∑
m=1

[mQ+ nQ′ 6 R]
(mQ+ nQ′)2

+O

(
log6R

U1/2

)
.

Next, by formula (20) we have

σ3 = 2 log 2σ4 +O

(
log6R

U1/2

)
, (33)

where

σ4 =
∑

Q′6R

∑∗

Q6Q′

∑
n>U

ϕ(n)
n

n∑
m=1

[mQ+ nQ′ 6 R]
(mQ+ nQ′)2

=
∑

Q′6R

∑∗

Q6Q′

∑
U<n6R/(Q+Q′)

ϕ(n)
n

n∑
m=1

1
(mQ+ nQ′)2

+
∑

Q′6R

∑∗

Q6Q′

∑
max{U, R/(Q+Q′)}<n6R/Q′

ϕ(n)
n

∑
m6(R−nQ′)/Q

1
(mQ+ nQ′)2

.

Replacing the inner sums over the variable m by the corresponding integrals we
obtain

σ4 =
∑

Q′6R

∑∗

Q6Q′

∑
U<n6R/(Q+Q′)

ϕ(n)
n

1
Q

(
1
nQ

− 1
nQ+ nQ′

)

+
∑

Q′6R

∑∗

Q6Q′

∑
max{U, R/(Q+Q′)}<n6R/Q′

ϕ(n)
n

1
Q

(
1
nQ

− 1
R

)
.

By making the summation over n the outer one we arrive at the equality

σ4 =
∑

U<n6R

ϕ(n)
n2

F ∗
(
R

n

)
+O

(
logR
U

)
+O

(
logR
U

)
,

where

F ∗(ξ) =
∑

Q′<ξ

∑∗

Q6Q′

1
Q

(
1
Q′ −

1
Q+Q′

)
[ξ > Q+Q′]

+
∑

Q′<ξ

∑∗

Q6Q′

1
Q

(
1
Q′ −

1
ξ

)
[ξ < Q+Q′].
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By Lemma 11,

σ4 =
log 2
ζ(2)

∑
U<n6R

ϕ(n)
n2

(
log

R

n
+H

)
+O

(
log3R

U

)
.

Next, by using the formulae of Lemma 2 we obtain the following asymptotic formula
for the sum σ4:

σ4 =
log 2

2ζ2(2)
log

R

U

(
log

R

U
+ 2H

)
+O

(
log3R

U

)
.

Substituting it into equality (33) we arrive at the assertion of Theorem 3.

§ 9. Main result

Theorem 4. For R > 2 we have

D(R) = D1 logR+D0 +O(R−1/3 log5R),

where

D1 =
8 log2 2
ζ2(2)

(
γ − ζ ′(2)

ζ(2)
− log 2

2
− 1

)
+

4
ζ(2)

(
C1 +

3 log 2
2

)
,

D0 = 4
(
C ′

1 −
C4

ζ(2)

)
−

(
2 log 2
ζ(2)

(
γ − ζ ′(2)

ζ(2)
+ log 2

)
− 3

2

)2

+
1
2
,

while the constants C1, C ′
1, and C4 are defined by equalities (23), (28), and (30),

respectively.

Proof. Combining the results of Theorems 1–3, for the sum σ(R) = σ1 − σ2 + σ3

we obtain the asymptotic formula

σ(R) =
log2 2
ζ2(2)

log2R+
logR
ζ(2)

(
2 log2 2
ζ(2)

(
2γ − 2

ζ ′(2)
ζ(2)

+
log 2

2
− 1

)
+ C1

)
+ C ′

1 −
C4

ζ(2)
+O

(
U logR
R

)
+O

(
log6R

U1/2

)
. (34)

Choosing U = R2/3 log4R and applying Lemmas 6, 7 we arrive at the assertion of
Theorem 4.

Remark 3. Computer calculations give the following approximate value of the con-
stant D1:

D1 = 0.51606 . . . .

Remark 4. Equality (34) in the proof of Theorem 4 gives an asymptotic formula
with three significant terms for the sum in (15).

Remark 5. The constant C1 defined by equality (23) also appears in the averaging
of N(α,R) with respect to the Gaussian measure

dµ(α) =
1

log 2
dα

1 + α
.
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Indeed, straightforward calculations based on the representation (11) lead to the
equality

1
log 2

∫ 1

0

N(α,R)
dα

1 + α
=

1
log 2

W1(R),

where W1(R) is the sum defined by formula (21). Therefore, according to the
corollary of Lemma 8 we have

1
log 2

∫ 1

0

N(α,R)
dα

1 + α
=

2 log 2
ζ(2)

(
logR+ γ − ζ ′(2)

ζ(2)

)
+

C1

log 2
+O

(
R−1/2+ε

)
.
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