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ABSTRACT. In this paper, we generalize and refine some results by F. P. Boca, R. N. Gologan, and
A. Zaharescu on the asymptotic behavior as h — 0 of the statistics of the free path length until the
first hit of the h-neighborhood (a disk of radius h) of a nonzero integer for a particle issuing from
the origin. The established facts imply that the limit distribution function for the free path length
and for the sighting parameter (the distance from the trajectory to the integer point in question)
does not depend on the particle escape direction (the property of isotropy).
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Notation

1. [Jz]| is the distance from a real number z to the nearest integer.
2. ¢(d) denotes the number of integers from 1 to d coprime with d (the Euler function).
3. p(d) is the Mobius function.
4. For a positive integer ¢ and an integer a, we denote by ,(a) the characteristic function for
divisibility by q,
5,(a) {(1) ?f a=0 (mod q),
ifa#0 (mod q).

5. Finite differences for a function a(u,v) will be denoted as follows:

Aqpa(u,v) = a(u+1,v) —a(u,v), Agqa(u,v)=a(u,v+1)—alu,v),
Ama(u, ’U) = Ao,l(ALoa(u, 1))) = AL()(AOJCL(U, ’U))

Introduction

Let 0 < h < 1/(2v/2) and T > 0. An open disk of radius h with center at some point will be
called the h-neighborhood of this point. We define Q,(T") as the subset of [0, 27) consisting of the
angles ¢ such that the ray

{(tcosyp,tsing) [t >0} (1)
meets the h-neighborhood of some integer point (m,n) # (0,0) in the disk
<

0
{(z,y) e R? | 2® +y* < T?}.

Let Gp(T') denote the normalized measure of €, (T"),

Cu(T) = %mes () € [0,1].
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In 1918, Pélya proved (see [2], Number Theory, Problem 239) that G4 (T) = 1 for all T > h~!.
Answering the question posed by Ya. G. Sinai in 1981, Boca, Gologan, and Zaharescu [4] proved
that, for an arbitrary € > 0, the relation

hT
Gu(T) = [ oyt 0.1, 2
where
o(t) = % for 0<t< 3,
O\ E2E-1)(1-log(:—1)) for F<t<1,

holds uniformly with respect to 7' € [0, h~}].

From the physical viewpoint, the expression G (T") can be interpreted as the distribution func-
tion for free path lengths of particles moving rectilinearly from the origin until the first hit of the
h-neighborhood of a nonzero integer point. We speak of the homogeneous two-dimensional model
known as the “periodic Lorentz gas.”

In this connection, the following more general problem seems to be of interest. Let (m,n) =
(mn(@), nu(p)) € Z?\ {(0,0)} be the center of the first h-neighborhood hit by the ray (1). We
denote by Ty, () the distance from the origin to the projection M}, () of the point (myp (@), np(@))
onto the ray (1) and also introduce the function Up(p) € [—h, h] whose absolute value coincides
with the distance from (my(¢),nn(¢)) to Mp(p) and which satisfies Up(¢) > 0 (respectively,
Un(p) < 0) if the point (myp(¢), nn(¢)) remains on the right (respectively, left) as a particle moves
along the ray (1). It is convenient to consider the normalized values of these expressions,

th(@) =h-Tu(p) €[0,1],  un(p) =h""-Un(p) € [-1,1].

Resorting to the terminology of nuclear physics, we refer to up(y) as the normalized sighting
parameter, and t; () will be called the normalized free path length.

Let 0 <tp <1 and —1 < up < wug < 1. As usual, xs(...) is the characteristic function of an
interval I on the real line. The following assertion is the main result of this paper.

Theorem. For every € > 0, the asymptotic formula

wo [rto fu2
®(h) = / / / plo, t,u) dpdt du+ O-(h*75), h—0,
0 0 ul

where
3 1
— for |ul <7 —1
7t7u = t’u = 7I'3 t ’
ple ) =p(tu) {75’3 7|11¢| (% - 1) for |u| > % -1,

holds uniformly with respect to to, w1, uz, and o € [0,27] for the distribution function

1

q)(h) = q)(ha QOO,tO,Ul,UQ) = %

/:O X[0,t0] (0(9)) X[ur us) (Un (©)) dep.

Remark 1. If we set o9 = 27 and also u; = —1 and ug = 1, then we obtain a refined expression
for the remainder term in the asymptotic formula (2) proved in [4].

Remark 2. From the physical viewpoint, the function p(p,t,u) can be interpreted as the
density of particles that move rectilinearly from the origin at an angle ¢ to the abscissa axis, travel
the distance T'= h~! - ¢ (the free path length) until the first scattering in the h-neighborhoods of
integer points, and hit the h-neighborhoods with sighting parameter U = h - u.

Remark 3. The distribution density p(p,t,u) does not depend on the angle ¢ (the property
of isotropy).
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1. Application of Continued Fractions

The obvious symmetries in the problem under consideration lead to the relations

th(p) = th(—p) =tale +7/2),  un(e) = —un(—¢) = up(p +7/2).

Therefore, it suffices to prove the theorem only for ¢g € [0,7/4], which is assumed in what follows.
In this case, we have o = tan™! ¢ € [0, 1].

Set

. ar —y
ly(x,y) =xsinp —ycosp = —=, 3

rroy (4)
Vita?

Remark 4. It readily follows from the definitions of l,(z,y) and [7,(x,y) that (mn(¢), nn(y))
is an integer point (m,n) with |l,(m,n)[ < h, m > 0, and n > 0 minimizing I%(m, n); the minimum
value is equal to

l(z,y) = zcosp +ysing =

W=t to() = L (ma(), na(9)).-

Furthermore,

h-uo(p) = Lo (mn (), nn(e)).
Lemma 1. The integer pair (mp(@), nn(p)) is uniquely determined by the conditions

1

mp(p) =min{m e N| |am| < hvV/1+a?},  |amp(p) —na(p)| < 3

Proof. Assume that, for some positive integer m less than my(p), the inequality
lam|| < |lama(g)|l

holds. Then there exists an n > 0 such that

1
jam —n| = lam|| < lamu(@)]| = lam () —na(e |<W1+a2<ﬁ -

It follows that

1 1 1
n<am+ g < amp(p) + 3= amp(p) = np(p) + nne) + 3

1
<np(p)+hv1+a?+ 3 < np(p) + 1.

This means that n < np(¢), and therefore,
mcos ¢ + nsing < mpy(p) cos p 4+ np(¢) sin .

This inequality contradicts Remark 4, which means that our assumption is untrue, and hence the
proof of Lemma 1 is complete. O

Recall that an arbitrary real number x admits a canonical continued fraction expansion
1
q1+ . 1
-
q; + .

r=[q0;q1,- - -] =qo+

with integer part go = [z| and partial quotients ¢; = ¢;(z) € N for ¢ > 1. The continued fraction
is finite only for rational x, and in this case its terminal partial quotient (if it is present in the
expansion) is greater than 1. By definition,

P, = Pi(x) and @Q; = Qi(x) (1=1,2,...)
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are, respectively, the numerator (an integer) and the denominator (a positive integer) of the ith
convergent of x reduced to lowest terms,
B
@ =l q1,-- . qi-1]-
Here P, = gp and Q1 = 1.
Lemma 2. The integers np(p) and mp(p) are, respectively, the numerator and the denominator
of some convergent of o = tanp € [0, 1].

Proof. Lemma 1 implies that there exist no positive integers m less than my(¢) such that
llam|| < |Jamp(p)||, whence, using the Lagrange theorem on best approximations (see [3]), we
conclude that the assertion of Lemma 2 is true. O

We denote by .# the set of all integer matrices
g (P P’) _ (P(S) P’(S)) (5)
Q Q Q(S) Q'(S)
such that det.S = £1 and

1<Q<Q, 0<P<Q, 1<P<Q.

It splits into two disjoint subsets .#; and .#Z_ consisting of matrices with determinant +1 and
—1, respectively. In what follows, it will be assumed that * is either + or — or an empty symbol.
In accordance with (5), depending on the context, we shall use the notation P, P’, @, and Q' for
the entries of the matrix S instead of P(S), P'(S), Q(S), and Q'(S), respectively, provided that
this does not lead to ambiguity.

Let X > 1, and let

M(X)={S €| (P)+(Q) <X}

For o € (0,1), the matrix
bi(a) P'+1(a)>
Si(a) = !
(@) (Qi(a) Qiv1()
is an element of .# with det S;(a) = (—1)%. Let N denote the set of all nonempty finite n-tuples
(q1,...,qn) of positive integers. We construct a map

P - IKI:[OJN’“H//Z
k=1

by setting

Bty q0) =S = S(q1, -1 qn) = <0 1>---<0 1).

1 q1 L qn
Here S has the form (5) with

P P’

5:[0;(]17"'7@!1—1] and @:[07QI77QH]

The assertion below can readily be verified on the basis of properties of continued fractions.
Lemma 3. The map £ is a bijection.

It is of interest to note (although this will not be needed in what follows) that .# is a semigroup
with respect to the usual multiplication of matrices and the bijection £ is actually a semigroup
isomorphism. Moreover,

(q17 s 7qn) * (qn+17' . -aQ'thm) = (QIa <oy qny qdnt1; - - - 7(]n+m)

is the corresponding operation on finite n-tuples of positive integers.

With every matrix
P P
S:S(ql,...,qn):<Q Q,)EJ//,
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we associate the half-open interval
I1(S) ={a=[0;q1,....qn—1,0n + Bl | 0K B < 1} =
P+ 8P a@' — P’
= =——0< 1p= A -1 < ——— <05
{a O+ 50 0 [5‘<} {ae(o ]’ <aQ—P 0
Here if S € 4, then

_ [P PP\ _ [P P 1
Is) = [Q”QUFQ) [Q” Q' * Q’(Q/JFQ))’
and if S € .#_, then
P+P P P 1 P
%)= (Q’JrQ’Q’] - (Q’_Q’(Q’JrQ)’Q’]'

Furthermore, we set
1,(S) = {a € (0,1] | 0< aQ' — P' < hy/1+a? < —aQ + P}
for S € A4 and
I,(8) = {a e (0,1] | 0< —aQ + P' < h/1+ a2 < aQ — P}

for S e . _.
For I(S) in (6), the above representation readily implies the inclusion

1,(8) € I(S)

and also the assertion below.

(7)

Remark 5. The expressions P/Q and P’/Q’ are consecutive convergents of o and are uniquely

determined by « and h.

Let
P 2
fS(ﬁ)ZQ'ﬂ—h\/lJr(Q,+detS-ﬁ> :
Since S (PIQY) + 8
Loy det S - (P/Q’) + ;o
fs(B) =Q \/1+(detS-(P’/Q')+ﬁ)2>Q h>0
and

N 2
fs(0) = —h 1+<g,> <0,

it follows that the equation fs(3) = 0 has a unique positive root, which we denote by A = Ag(h).

Note that , ,
/)\ P/
(Qh ) =1+ <Q+detS-)\) <3+ 2)22
Since ) )
!
b LIV (@Y
4\ h 4\ h
we have
A2 < 3 < 3 — (2h>2
S (QUh)2 =2 7 (Qh)? - 1(Qh)? Q)
Therefore,
2h
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Now consider the function

P 2
gs(ﬁ)zQﬁJrh\/H <Q,+detS-6> ,

for which

det S - (P/Q') + 3
V14 (det S - (P/Q') + B)?

N 2

gs(B)=Q+h >Q—h>0.

This is an increasing function,

and hence the assertion below is true.
Remark 6. The equation gs(3) = 1/Q’ has a unique (nonnegative) root n = ng(h) only if
PN\? 1 , -
h 1 + <Q> g @7 that 1S, S & %(h 1).
Summarizing what has been said and using the definition of the set I;(S), we arrive at the
assertion below.
Remark 7. The set I;,(S) in nonempty only if S € .#(h~!), and it coincides with

'Pl P/

P/ Pl T
|:6)2/7 o + /\S(h)> N _aa o + Us(h)_
for S € .#(h™!) and with
P’ P [P’ P
(5 -5t gy | n |G~ st 5

for S € .#_(h71).

Lemma 4. The sets I(S) are pairwise disjoint, and
h
U =]
Ny
Se.t(h-1) 1-h

Proof. The first part of the assertion of the lemma readily follows from Remark 5. Furthermore,
let P; = Pj(a) (respectively, Q; = Q;(c)) be the numerator (respectively, denominator) of the jth
convergent of o € (0, 1]. Since the absolute values of the elements of the sequence

a=ar=a@Q1—P, ..., aj=aQ;—-PF;, ... 9)
monotonically decrease to zero, there exists an
i =ip(a) =min{j | [aQ; — Pj| < hv/1+ a?}.
If i = 1, then (recall that P, =0 and Q1 = 1)

h
a@Q1 — P = a < hyv/1+ a2, that is, a€<0,>.
[aQ1 — P Ny

For all other «, we always have i > 2, and in this case |a«Q;—1 — Pi—1] > hv1 + o?. By taking into
account Remark 6 and the fact that (9) is an alternating sequence and by setting

P P
S — K2 (] ,
<Qi—1 Qi)
we prove the second part of the assertion of Lemma, 4. ]
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2. Auxiliary Transformations

In accordance with the notation introduced earlier, we set
B aQ — P (@0) oy _
£s(a) = Xu1,uz] <h\/1+7>7 Ih (S) = [0, o] N I1(S).

Passing to the variable o = tanp € [0,1] in the integral determining ®(h) (see the statement of
the theorem in the Introduction) and using Lemma 4, we obtain

! h(Q' + aP’)) dov
T o / X <§Sa+0h.
(h) 2 SE//[Z(h_l) 120 (s) [0,t0] Vit a2 (a) T a2 (h)

Since
(Q/+apl>2 (OzQ/—P/
Vita? Vita?

it follows that the inequalities

2
)=4PF+@¥7

Q' +aP"\?
(PP @) - < (Y2 <P @)
hold for every a € I(S). Therefore, if
(th™1)? < (P +(Q')°
and if there exists an «a € I (.S) such that

Q" + aP")
X[0,to] ﬁ =1,

then
(toh ™12 < (P")2 4 (Q)? < (toh™ 12 + h? < (toh ™12 +1/8.

Now we use the estimate
dozg/ da < Ag(h) < —
/zﬁﬁo) (S) I1h(S) Q'

(also see (8)) to obtain the relation

1

B(h) = — / ts(a) 2% 4 Ry,
2w Se///%hl) I}Sao)(s) 1+a2

where

Ry < h+ > Sy — > 1<h

/ t 1/2
(to/ 2P @ <(to 178 o/h+1/2 o o
1<P'LQ’

By the Lagrange theorem, in accordance with the estimate (8),

1 1 - P’

_ <la— =

14+ a? 1+ (P//Q/)Q Q/
for o € I,(S). Consequently, the formula

1 1
®(h)=— E —_— da+ R
=5 1+ (PQ)? /I;lam " (a) da+ Ry

Se. (toh=1)

2h
< As(h) < o

holds, where

h h
Ry < h+ Z @‘@<<h.
1<P/<Q'<h !
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On the basis of the inequality
2h

Pl
\ <2 vaen(s)

o

by setting
MV (X) = {5 € M(X) | P' < a0Q'},

we conclude that

1 1
2 =5 Z //2/ ¢s(a) da + Rs, (10)
2n Se.#(@0) (toh—1) L+ (P/Q ) I(S)
where ) 1 1
Ry <ht Z @<<h+h Z a<<h-logﬁ.
1<P/<Q,<h71 Q/<h71
|0 @' —P'|<2h
Note that

1. For 0 < u1 € us <1, we have

O(...,up,u2) =P(...,0,u2) — P(...,0,u1).
2. For —1 <u; <0< ue <1, we have

O(...,up,u2) =D(...,u1,0) + (..., 0,u2).
3. For —1 < u; < us <0, we have

O(...,ug,uz) = D(...,u1,0) — ®(...,ug,0).

Therefore, it suffices to prove the theorem only in the cases u; = 0, uo = ug or u; = —ug, ug =0
with ug € [0, 1]. Here, in accordance with relation (10), we have

~ 1
.4 (1) = @00 ot 0,0) = B (1) + O hog 1 (1)
and
~ 1
®_(h) = ®(h; @o,tg, —ug,0) = ®_(h) +O<hlog h>’ (12)
where

~ 1 min{Ag(ugh),ns(h
S P Pl v i

Sea{0 (toh—1)
The equation determining A\g(h) and the estimate (8) imply that
< h\? ~ h P\?
As(h) = Ag(h —|—O(<> ), where Ag(h) = —14/1+ () .
(h) (h) o (h) =5 0
Likewise, for ng(h) < Ag(h), the asymptotic relation

ns<h>:ﬁs<h>+0(h2), where Fis(h) = = — = 1+(P’>2,

QQ' 00 0 o
holds.
Therefore,
~ 2
min{Ag(uoh),ns(h)} = min{Ag(uoh),ns(h)} + O<$Q/>'
By setting
i hQ'v/1 2 1 1 — hO'\V/1 D)
Bos) = W@y — IS (MIVEE ),
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we finally conclude that

~ 1 1 P Q
(h) = o (; CoE <Q,,Q,>+R4, (13)
Se s 0 (toh=1)

where
2

QQ'

1
< h%log? 7 < h.

Ry < Z

1<R<KQ'<h !
We introduce the function

U(Q'sz,y) for o< ap,V1+ 22 <to(hQ)!

0 otherwise.

Uo(z,y) = Vo(Q's2,y) = {

For a fixed Q" = ¢, the numbers P’ and @ must be solutions of the congruence ab = +1 (mod q).
Therefore, the expressions ®(h) can be rewritten as

Z Z Sq(ab+1) %( b) Z Wﬂ: O(h), — (14)

<h1 a,b=1 <h1

where

o) = Y anfabz we(20). (15)

a,b=1 a9

3. Application of Estimates for Kloosterman’s Sums

In what follows, it is assumed that e is an arbitrarily small positive constant. By using the
estimates found by Estermann [5] for Kloosterman’s sums, one can prove the assertion below in a
standard way.

Lemma 5. Let q, k, and | be some positive integers. Then

k l
S by(ab+1) = D 1 0, (g2,
q

a=1b=1
For the proof of the lemma, see [1].

Lemma 6. Let ¢ < h™! be a positive integer. Then the following asymptotic formula holds for
the sum Wi (q) determined by relation (15):

1
W (q) = 90(61)/0 /O Vo (q; 2, y) dw dy + O (hg***%).

Proof. Performing the Abel transformation

S Hmgln) = gla+ 1S f(n) Z(Zf ) (k+1) - g(k))

n=1 k=1
of the sum Wi (q) consecutively with respect to the variables a and b (we first choose f(a) =
k
dq(ab — 1) and g(a) = Yo(a/q,b/q) and then f(b) = > d4(ab—1) and g(b) = A1 o¥o(a/q,b/q)),
a=1
we conclude that
k
-y A11\I/0< )Zzaq (ab— 1)
k=1 a=1b=1
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By applying Lemma 5 to the inner double sum, we obtain

q
k1l
Wlg) = &3) A11¥g <q, q) kl + Os(Aq1/2+a)

kl=1
k
_@(Q) . ﬁf 1/2+4¢
Dy A1) S 3 1+ 0
k=1 u=1v=1

where

Passing to outer summation with respect to ¢ and b and then summing with respect to k£ and [,
we find

W:I:(Q) — M Z Uy <Z7 z) 4 Og(Aq1/2+5)

2
q a,b=1

1 1
= p(q) / / Vo(z,y)drdy + Og(Aql/QJrs + hq).
o Jo

It readily follows from the definition of the function Wy(z,y) that the inequality

holds at all points (k/q,1/q) except possibly at the points such that the curve

1
uphgv 1+ 22 = =(1 — hqy/' 1+ 2?) 0<z, y<1)
Y
meets the square [k/q, (k+1)/q] x [l/q,(l+1)/q]. The number of these points is O(q), and we have
k1 k1
A11Y <, ) < A1p¥g <a ) < h
q q q q

at every such point. Therefore,

q
k1
A= Z A1,1‘1’0<q, q> + O(hqg)

k=1
1 1 1 1
— W,(0,0) — ¥ <q+, 0> —, (0, q*) 0, (‘”, “) + O(hq) = O(hq)
q q q q
and

1 1
We(a) = lq) / / Wo(g: 2, y) d dy + 0. (hg"/>+). 0
0 0

Now we are in a position to prove the main result. In view of formulas (11) and (12), it suffices
to verify the relation

& w0 dx ‘o o 1/2—
®(h) = dr p(r,u) du+ Oc(h ),
0 0 0

1+ 22
where p(r,u) is defined in the statement of the theorem.
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Substituting the result established in Lemma 6 into (14), we obtain

Falh) = o ) SO(q)/l /l Wo(q; 2, y) dady + O=(h'/?7°)
2m ? Jo Jo v

g<h—1
Uy (nd;
Ly Ml Z // Yol b9) 4 ay + 0,112, (16)
T a<n
Let us transform the inner sum using the deﬁnltlon of the function Wo(z,y):
Uy (nd;
D e
<(dh)-1
2 dy ! , 1/ 1
=dh dy Z min { ugy/ 1+ 22, = — — /1 +22) 5.
o 1+2a2 /g y \ dhn
n<(dhv1+22)—1

By replacing summation with respect to n by integration and by introducing the new integration
variable r = ndhv/'1 + 22, we find

5 // Ty nda:y iz dy /Oa 1+x2/t0dr/ dym1n{u0’;<1_1)}+o(dh)

n<(dh)~
to
——/ 1+x2/ dr/ (r,u) du+ O(dh).
The substitution of the above formula into (16) gives
N m fo 1(d)
O (h) = — d O.(h'/*7%) =
+(h) 6/01—|—a:2/ r/ (rw) @ T
d<h—1

0 to
= 1/2 £
/0 1—1—3:2/ dr/ (r,u) du+ O (h ).

The proof of the theorem stated in the Introduction is complete.
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