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Asymptotic behaviour of the first and second moments
for the number of steps in the Euclidean algorithm

A. V. Ustinov

Abstract. We prove asymptotic formulae with two significant terms for
the expectation and variance of the random variable s(c/d) when the vari-
ables c and d range over the set 1 6 c 6 d 6 R and R → ∞, where
s(c, d) = s(c/d) is the number of steps in the Euclidean algorithm applied
to the numbers c and d.

§ 1. Notation

The symbol [x0;x1, . . . , xs] stands for the continued fraction

x0 +
1

x1 + ... +
1
xs

of length s with formal variables x0, x1, . . . , xs.
For rational r we use (if not otherwise stated) the canonical continued fraction

expansion, r = [t0; t1, . . . , ts], of length s = s(r), where t0 = [r] (the integer part
of r), t1, . . . , ts are partial quotients (positive integers) and ts > 2 for s > 1. We
denote by s1(r) the sum of the partial quotients of r: s1(r) = t0 + t1 + · · · + ts.
If r is written as an irreducible fraction, then q(r) will stand for the denominator
of this fraction.

If A is some assertion, then [A] is equal to 1 if A is true; otherwise, it is equal
to 0.

For every positive integer q we denote by δq(a) the characteristic function of
divisibility by q:

δq(a) =
[
a ≡ 0 (mod q)

]
=

{
1 if a ≡ 0 (mod q),
0 if a 6≡ 0 (mod q).

The asterisk in a double sum ∑
n

∑
m

∗
. . .

means that the variables over which the sum is taken are subject to the supplemen-
tary condition (m,n) = 1.
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Foundation.
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The finite differences of a function a(u, v) have the form

∆1,0a(u, v) = a(u+ 1, v)− a(u, v), ∆0,1a(u, v) = a(u, v + 1)− a(u, v),

∆1,1a(u, v) = ∆0,1

(
∆1,0a(u, v)

)
= ∆1,0

(
∆0,1a(u, v)

)
.

The sum of the powers of the divisors of a positive integer q will be denoted by

σα(q) =
∑
d|q

dα.

The Euler dilogarithm has the form

Li2(z) =
∞∑

k=1

zk

k2
= −

∫ z

0

log(1− t)
t

dt.

§ 2. Introduction

A detailed analysis of the Euclidean algorithm leads to various problems con-
cerning the statistical properties of finite continued fractions (see. [1], § 4.5.3). If
the input data of the algorithm are positive integers c and d, c < d, then the number
of divisions performed, which coincides with the number s(c/d) of partial quotients
in the continued fraction

c

d
= [0; t1, . . . , ts],

is our chief object of interest.
Heilbronn was the first to study the problem of the behaviour of s(c/d) in the

mean. In 1968 he proved [2] the asymptotic formula

1
ϕ(d)

∑
16c6d
(c,d)=1

s

(
c

d

)
=

2 log 2
ζ(2)

log d+O(log4 log d).

Later, Porter [3] obtained an asymptotic formula with two significant terms:

1
ϕ(d)

∑
16c6d
(c,d)=1

s

(
c

d

)
=

2 log 2
ζ(2)

log d+ CP − 1 +Oε(d−1/6+ε),

where ε is any positive number and

CP =
log 2
ζ(2)

(
3 log 2 + 4γ − 4

ζ ′(2)
ζ(2)

− 2
)
− 1

2

is a constant, which was called Porter’s constant (its definitive form was found
by J. W. Wrench [4]).

The methods of probability theory and ergodic theory made it possible to obtain
the following results for the mean values with respect to the parameters c and d.
Dixon showed in [5] that for any positive ε one can find a constant c0 > 0 such that∣∣∣∣s( c

d

)
− 12 log 2

π2
log d

∣∣∣∣ < (log d)1/2+ε
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for all pairs (c, d) such that 1 6 c 6 d 6 R, with the possible exception
of R2 exp

(
−c0(logR)ε/2

)
pairs. Hensley [6] refined Dixon’s result and proved

that the difference between s(a/b) and its mean value has an asymptotically
normal distribution whose parameters can be described explicitly. In particular,
he proved an asymptotic formula for the second moment of s(c/d). Later, Vallée [7]
proved asymptotic formulae for the expectation, variance and higher moments with
the remainder terms decreasing polynomically (see [8]).

For a fixed value of d, only the following estimate for the variance of s(c/d) is
known:

1
d

d∑
c=1

(
s

(
c

d

)
− 2 log 2

ζ(2)
log d

)2

� log d.

This estimate, which is exact to within a constant, is due to Bykovskii [9],
who obtained it using methods of analytic number theory based on estimates
of Kloosterman sums.

In this paper we use the approach suggested in [9] and study the mean value
of s(c/d):

E(R) =
2

[R]
(
[R] + 1

) ∑
d6R

∑
c6d

s

(
c

d

)
(1)

for R > 2. We prove an asymptotic formula for it in which the rate of decrease
in the remainder term is better than in Porter’s formula. Namely, we prove the
formula

E(R) =
2 log 2
ζ(2)

log d+B +O(R−1 log5R), (2)

where

B = CP − 1 +
log 2
ζ(2)

(
2
ζ ′(2)
ζ(2)

− 1
)
.

Moreover, for the variance

D(R) =
2

[R]
(
[R] + 1

) ∑
d6R

∑
c6d

(
s

(
c

d

)
− E(R)

)2

(3)

we prove the formula

D(R) = δ1 logR+ δ0 +Oε(R−1/4+ε), (4)

where δ1 > 0 and δ0 are absolute constants and ε is a positive number as small as
desired. Note that the corresponding result in [8] only contained a constant γ > 0
(instead of 1/4) in the exponent of the remainder term.

I am grateful to V. A. Bykovskii for the useful discussions and advice.

§ 3. Continued fractions

Following [9], we denote by M the set of all integer matrices

S =
(
P P ′

Q Q′

)
=

(
P (S) P ′(S)
Q(S) Q′(S)

)
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with determinant detS = ±1 such that

1 6 Q 6 Q′, 0 6 P 6 Q, 1 6 P ′ 6 Q′.

For real R> 0 we denote byM(R) the finite subset ofM consisting of all matrices S
with Q′ 6 R.

The following two properties of M (see [9]) are of interest.
1. To every finite (non-empty) tuple of positive integers (q1, . . . , qs) one can

assign a matrix S ∈M by the rule

S = S(q1, . . . , qs) =
(

0 1
1 q1

)
. . .

(
0 1
1 qs

)
.

We have

S =
(
P P ′

Q Q′

)
,

where
P

Q
= [0; q1, . . . , qs−1],

P ′

Q′
= [0; q1, . . . , qs]

(the last partial quotient can be equal to 1).
The map (q1, . . . , qs) → S(q1, . . . , qs) is a bijection between the set of all finite

tuples of positive integers and M.
2. If Q < Q′ and (Q,Q′) = 1, then there are precisely two pairs, (P, P ′) and

(Q− P, Q′ − P ′), such that the matrix whose first row coincides with one of these
pairs and whose second row coincides with (Q,Q′) belongs to M. Moreover, if

Q

Q′
= [0; qs, . . . , q1] = [0; qs, . . . , q1 − 1, 1], q1 > 2,

then the corresponding matrices have the form(
0 1
1 q1

)
. . .

(
0 1
1 qs

)
=

(
P P ′

Q Q′

)
,

(
0 1
1 1

) (
0 1
1 q1 − 1

) (
0 1
1 q2

)
. . .

(
0 1
1 qs

)
=

(
Q− P Q′ − P ′

Q Q′

)
. (5)

When Q = Q′ there is only one matrix S = ( 0 1
1 1 ) belonging to M.

In the following lemma, for a rational number r ∈ (0, 1] we use the (unique)
continued fraction expansion ending with 1:

r = [0; t1, . . . , ts, 1], s > 0.

This expansion is more convenient than the canonical one in that it describes uni-
formly all these numbers, including r = 1.
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Lemma 1. Let c and d be positive integers, 1 6 c 6 d, and let
c

d
= [0; t1, . . . , ts−1, ts, 1], s > 0. (6)

Then
1) the equation

S

(
k
l

)
=

(
c
d

)
(7)

in k, l ∈ N, k 6 l, and S ∈M, has s solutions,
2) the equation

S1S2

(
k
l

)
=

(
c
d

)
(8)

in k, l ∈ N, 1 6 k 6 l, S1, S2 ∈M has s(s− 1)/2 solutions.

Proof. If k/l = [0; q1, . . . , qm, 1], m > 0,

S =
(

0 1
1 z1

)
. . .

(
0 1
1 zn

)
and the numbers c, d are defined by equation (7), then c/d = [0; z1, . . . , zn,
q1, . . . , qm, 1]. It follows from (6), (7) and property 1 of M that there is a j,
1 6 j 6 s, such that

S =
(

0 1
1 t1

)
. . .

(
0 1
1 tj

)
,

k

l
= [0; tj+1, . . . , ts, 1].

Hence, the number of solutions of equation (7) coincides with the number of ways
in which one can choose j in the range from 1 to s, and so is equal to s.

We likewise deduce from (6) and (8) that there are j and r, 1 6 j < r 6 s, such
that

S1 =
(

0 1
1 t1

)
. . .

(
0 1
1 tj

)
,

S2 =
(

0 1
1 tj+1

)
. . .

(
0 1
1 tr

)
,

k

l
= [0; tr+1, . . . , ts, 1].

Hence, the number of solutions of equation (8) is equal to the number of pairs (j, r)
such that 1 6 j < r 6 s, that is, to s(s− 1)/2.

§ 4. Expectation and variance

For a real R > 1 we put

L1(R) =
∑
d6R

∑
c6d

s

(
c

d

)
, L2(R) =

∑
d6R

∑
c6d

s2
(
c

d

)
.

By (1) and (3), we have

E(R) =
2

[R]
(
[R] + 1

)L1(R), (9)

D(R) =
2

[R]
(
[R] + 1

)L2(R)− E2(R). (10)
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To obtain our main results (2) and (4), we have to obtain asymptotic formulae
for L1(R) and L2(R) with two and three significant terms, respectively.

We denote by λ(d) the number of solutions of the equation

kQ+ lQ′ = d

in k, l, Q and Q′ such that

1 6 k 6 l, 1 6 Q 6 Q′, (Q,Q′) = 1. (11)

We denote by N∗(R) the number of solutions of the inequality

kQ+ lQ′ 6 R (12)

in k, l, Q, Q′ subject to the conditions (11). In other words,

N∗(R) =
∑
d6R

λ(d).

We denote by M∗(R) the number of solutions of the inequality

k(aQ+ bQ′) + l(mQ+ nQ′) 6 R (13)

in which

1 6 k 6 l, 1 6 Q 6 Q′, (Q,Q′) = 1,
(
a m
b n

)
∈M. (14)

The following lemma reduces the problem of computing E(R) and D(R) to the
study of the inequalities (12) and (13).

Lemma 2. Let R > 1. Then

L1(R) = 2N∗(R)−
[
R

2

][
R+ 1

2

]
, (15)

L2(R) = 4M∗(R) +
[
R

2

][
R+ 1

2

]
. (16)

Proof. Assertion 1) of Lemma 1 implies that the sum∑
c6d

s

(
c

d

)
is equal to the number of solutions of the equation(

∗ ∗
Q Q′

) (
k
l

)
=

(
∗
d

)
, (17)

where (
∗ ∗
Q Q′

)
∈M, 1 6 k 6 l.
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If Q′ > 2, then property 2 of M implies that for a given pair (Q,Q′), there are
precisely two pairs (P, P ′) such that the matrix whose first row coincides with one
of these pairs and whose second row coincides with (Q,Q′) belongs toM. Hence, in
this case the number of solutions of equation (17) is equal to 2λ(d). If, on the other
hand, Q′ = 1, then Q = 1 and the number of solutions of equation (17) coincides
with the number of solutions of the equation k + l = d, where 1 6 k 6 l, that is,
it is equal to [d/2].

Hence,∑
d6R

∑
c6d

s

(
c

d

)
=

∑
d6R

(
2λ(d)−

[
d

2

])

= 2
∑
d6R

λ(d)−
[
R

2

][
R+ 1

2

]
= 2N∗(R)−

[
R

2

][
R+ 1

2

]
,

which completes the proof of (15).
To prove (16), we observe that, by Lemma 1, the sum

1
2

∑
c6d

s

(
c

d

)(
s

(
c

d

)
− 1

)
coincides with the number of solutions of the equation(

∗ ∗
Q Q′

) (
a m
b n

) (
k
l

)
=

(
∗
d

)
, (18)

where (
∗ ∗
Q Q′

)
,

(
a m
b n

)
∈M, 1 6 k 6 l.

If Q′ > 2, then property 2 of M implies that the number of solutions of equa-
tion (18) is equal to twice the number of solutions of the equation

k(aQ+ bQ′) + l(mQ+ nQ′) = d

with the restrictions (14). If, on the other hand, Q′ = 1, then Q = 1, S = ( 0 1
1 1 ),

and equation (18) has the form(
0 1
1 1

) (
a m
b n

) (
k
l

)
=

(
∗
d

)
or

(
∗ ∗

a+ b m+ n

) (
k
l

)
=

(
∗
d

)
. (19)

By property 2 (see (5)), the set of pairs (a+ b,m+ n) coincides with the set of all
pairs (Q,Q′) such that 1 6 Q < Q′ and (Q,Q′) = 1. Hence, equation (19) can be
written as

kQ+ lQ′ = d,

where 1 6 k 6 l, 1 6 Q < Q′ and (Q,Q′) = 1. The number of solutions of this
equation is equal to λ(d)− [d/2]. Hence,

1
2

∑
d6R

∑
c6d

s

(
c

d

)(
s

(
c

d

)
− 1

)
= 2M∗(R)−

∑
d6R

(
λ(d)−

[
d

2

])

= 2M∗(R)−N∗(R) +
[
R

2

][
R+ 1

2

]
.
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Therefore,

L2(R) = 4M∗(R) + L1(R)− 2N∗(R) + 2
[
R

2

][
R+ 1

2

]
.

Substituting (15) into the last formula, we obtain the desired formula for L2(R).

§ 5. Auxiliary assertions

Lemma 3. Let α = p(α)/q(α) be a rational number, let β, a and b be real numbers,
a 6 b, and let f(x) = αx+ β. Then

∑
a<x6b

{
f(x)

}
=
b− a

2
+O

((
b− a

q(α)
+ 1

)
s1(α)

)
.

A proof can be found in [10], § 2, Theorem 2.

Lemma 4.
b∑

a=1

s1

(
a

b

)
� b log2(b+ 1)

for all positive integers b.

A proof can be found in [11].

Lemma 5. Assume that the function f(x) is twice continuously differentiable
on [a, b], and let ρ(x) and σ(x) be the functions defined by the equations

ρ(x) =
1
2
− {x}, σ(x) =

∫ x

0

ρ(u) du.

Then ∑
a<x6b

f(x) =
∫ b

a

f(x) dx+ ρ(b)f(b)− ρ(a)f(a)

+ σ(a)f ′(a)− σ(b)f ′(b) +
∫ b

a

σ(x)f ′′(x) dx.

A proof can be found in [12], Theorem I, 1.

The next lemma, of which special cases were proved in [13], is based on estimates
for Kloosterman sums obtained by Estermann [14].

Lemma 6. Let q > 1 be a positive integer and let a(u, v) be a function given at the
integer points (u, v), where 1 6 u, v 6 q. Assume that the inequalities

a(u, v) > 0, ∆1,0a(u, v) 6 0, ∆0,1a(u, v) 6 0, ∆1,1a(u, v) > 0

hold for this function at all points at which they are defined. Then the sum

W =
q∑

u,v=1

δq(uv ± 1)a(u, v)
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(with either choice of sign in the symbol ±) satisfies the following asymptotic
formula :

W =
ϕ(q)
q2

q∑
u,v=1

a(u, v) +O
(
Aψ(q)

√
q
)
,

where ψ(q)=σ0(q)σ−1/2(q) log2(q+1) and A=a(1,1) is the maximal value of a(u, v).

A proof can be found in [15], Lemma 5.
The following lemma is a special case of Theorem 1 in [16].

Lemma 7. Let n > 1, let f(x) > 0 be a function twice continuously differentiable
on [P1, P2] ⊂ [0, n], and let

1
c

6
∣∣f ′′(x)∣∣ 6

w

c
for x ∈ [P1, P2] with some w, 1 6 w 6 c. Then∑

P1<x6P2

∑
16y6f(x)

δn(xy ± 1) =
1
n

∑
P1<x6P2
(x,n)=1

f(x) +Oε,w

(
(nc−1/3 + c2/3)nε

)
.

Lemma 8. For R > 1, the sum

Φ(R) =
∑

Q′6R

∑
Q6Q′

1
Q′(Q+Q′)

(20)

satisfies the following asymptotic formula :

Φ(R) = log 2(logR+ log 2 + γ)− ζ(2)
2

+
1
R

(
log

(
2ρ(R)

)
+

1
4

)
+O

(
1
R2

)
.

Proof. Note that

Φ(R) = log 2
∑

Q′6R

1
Q′

+ σ0 −
∑

Q′>R

1
Q′

( Q′∑
Q=1

1
Q+Q′

− log 2
)
, (21)

where

σ0 =
∞∑

Q′=1

1
Q′

( Q′∑
Q=1

1
Q+Q′

− log 2
)
. (22)

Using the method of generating functions, we obtain the exact value of σ0 (see [4]):

σ0 = log2 2− ζ(2)
2
. (23)

Moreover, Lemma 5 implies that∑
Q′6R

1
Q′

= logR+ γ +
ρ(R)
R

+O

(
1
R2

)
,

Q′∑
Q=1

1
Q+Q′

= log 2− 1
4Q′

+O

(
1

(Q′)2

)
.

Substituting the last three equations into formula (21), we complete the proof
of the lemma.
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Lemma 9. For ξ > 2, the sum

F (ξ) =
∑
n<ξ

∑
m6n

1
m

(
1
n
− 1
m+ n

)
−

∑
n<ξ

∑
m6n

m+n>ξ

1
m

(
1
ξ
− 1
m+ n

)
(24)

satisfies the following asymptotic formula :

F (ξ) = log 2
(

log ξ+
log 2

2
+γ−1

)
+

1
2ξ

(1−log 2)+
2 log 2
ξ

ρ

(
ξ

2

)
+O

(
log ξ
ξ2

)
. (25)

Proof. Note that

F (ξ) = F1(ξ)− F2(ξ) +O

(
log ξ
ξ2

)
, (26)

where

F1(ξ) =
∑

n6ξ−1

∑
m6nx

1
m

(
1
n
− 1
m+ n

)
= Φ(ξ − 1),

F2(ξ) =
∑

n6ξ−1

∑
m6n

m+n>ξ

1
m

(
1
ξ
− 1
m+ n

)
,

and Φ(R) is defined by equation (20). By Lemma 8, we have

F1(ξ) = log 2(log ξ + log 2 + γ)− ζ(2)
2

+
1
ξ

(
log

(
2
(
ρ(ξ)− 1

))
+

1
4

)
+O

(
1
ξ2

)
.

Using Lemma 5, we obtain the equation∑
ξ−n<m6n

1
m

(
1
ξ
− 1
m+ n

)
= g(n) +

1
n

(
log 2 +

1
2ξ

)
− 1

4n2
+O

(
1

ξ2(ξ − n)

)
for n > ξ/2, where

g(n) =
1
ξ

(
log n− log(ξ − n)

)
+

1
n

(
log(ξ − n)− log ξ

)
.

Hence,

F2(ξ) =
∑

ξ/2<n6ξ−1

g(n) +
(

log 2 +
1
2ξ

) ∑
ξ/2<n6ξ−1

1
n
− 1

4ξ
+O

(
log ξ
ξ2

)
.

Again using Lemma 5, we obtain that∑
ξ/2<n6ξ−1

1
n

= log 2 +
1
ξ

(
ρ(ξ)− 1− 2ρ

(
ξ

2

))
+O

(
1
ξ2

)
,

∑
ξ/2<n6ξ−1

g(n) =
∫ ξ

ξ/2

g(n) dn+O

(
log ξ
ξ2

)
.
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By making the change of variable n = xξ and taking into account the equations
Li2(1) = ζ(2) and Li2

(
1
2

)
= ζ(2)

2 − log2 2
2 (see [17]), we obtain that∫ ξ

ξ/2

g(n) dn =
∫ 1

1/2

(
log x− log(1− x) +

log(1− x)
x

)
dx

=
(
x log x+ (1− x) log(1− x)− Li2(x)

)∣∣1
x=1/2

= log 2− 1
2
(
ζ(2) + log2 2

)
.

Therefore,

F2(ξ) = log 2 +
1
2
(
log2 2− ζ(2)

)
+

log 2
ξ

(
ρ(ξ)− 2ρ

(
ξ

2

)
− 1

2

)
− 1

4ξ
+O

(
log ξ
ξ2

)
.

Substituting the asymptotic formulae obtained for F1(ξ) and F2(ξ) into (26), we
complete the proof of the lemma.

Consider the four sums

σ1(α,R) =
∑
n6R

n∑
m=1

[αm+ n 6 R]
(αm+ n)2

, σ2(α,R) =
∑
n6R

n∑
m=1

1
(αm+ n)2

,

σ3(α,R) =
∑
n6R

n∑
m=1

[αm+ n 6 R], σ4(α,R) =
∑
n6R

n∑
m=1

[αm+ n 6 R]
αm+ n

and the function

h(x) =
∞∑

n=1

ρ(nx)
n2

.

Lemma 10. Let 1 6 U 6 R/2. Then

σ1(α,R) =
1

α+ 1

(
logR+ c1(α) +

α

R

(
ρ(R) +

1
2

))
+O

(
1
R2

)
,

σ2(α,R) =
1

α+ 1

(
logR+ c2(α)

1
R

+
(
ρ(R) +

α2 + α

α+ 1

))
+O

(
1
R2

)
,

where

c1(α) =
log(α+ 1)

α
− ζ(2)

2
α2 + 2α
α+ 1

+ γ − 1 + 2α(α+ 1)
∫ 1

0

h(ξ)
(αξ + 1)3

dξ, (27)

c2(α) = c1(α)− log(α+ 1)
α

+ 1.

Moreover, for rational α ∈ (0, 1] with denominator q(α), we have

σ3(α,R) =
R2

2(α+ 1)
− αR

2(α+ 1)
+O

((
R

q(α)
+ 1

)
s1(α)

)
,

σ4(α,R) =
R

α+ 1
− α

2(α+ 1)
logR+O

((
logR
q(α)

+ 1
)
s1(α)

)
.
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Proof. We compute σ1(α,R) using Lemma 5:

σ1(α,R) =
∑

n6 R
α+1

∑
m6n

1
(αm+ n)2

+
∑

R
α+1 <n6R

∑
m6 R−n

α

1
(αm+ n)2

=
∑

n6 R
α+1

( ∫ n

0

dm

(αm+ n)2
+

1
2n2

(
1

(α+ 1)2
− 1

)
+ 2α

∫ n

0

ρ(m) dm
(αm+ n)3

)

+
∑

R
α+1 <n6R

(∫ (R−n)/α

0

dm

(αm+ n)2
+
ρ(R)
R

− 1
2n2

)
+O

(
1
R2

)

=
1

α+ 1

(
logR+ c1(α) +

α

R

(
ρ(R) +

1
2

))
+O

(
1
R2

)
.

The asymptotic formula for σ2(α,R) can be verified likewise.

The sum σ3(α,R) can be written as

σ3(α,R) =
∑

n6 R
α+1

n+
∑

R
α+1 <n6R

[
R− n

α

]
.

Applying Lemma 3 to the second sum in this equation, we obtain that

σ3(α,R) =
∑
n6R

f(n)− αR

2(α+ 1)
+O

((
R

q(α)
+ 1

)
s1(α)

)
,

where f(n) = min
{
n, R−n

α

}
. Applying Lemma 5 to the sum of the values of f(n)

on each interval of linearity, we obtain the desired formula for σ3(α,R).
Let 1 6 λ1 6 λ2 6 · · · 6 λP < R be the values taken by the form αm+ n when

1 6 m 6 n and αm+ n 6 R. Then

σ4(α,R) =
P∑

j=1

1
λj
.

We apply the Abel transformation in the integral form

P∑
j=1

ajg(λj) = A(λP )g(λP )−
∫ λP

λ1

A(t)g′(t) dt (28)

to this sum, where

A(t) =
∑
λj6t

aj .
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To do this, we put aj = 1, j = 1, . . . , P and g(t) = 1/t. Then A(t) = σ3(α, t) and

σ4(α,R) =
σ3(α, λP )

λP
+

∫ λP

λ1

σ3(α, t)
t2

dt.

Since λ1 > 1, λP − R � 1, σ3(α,R) � R2 and σ3(α, λP ) = σ3(α,R), we have

σ4(α,R) =
σ3(α,R)

R
+

∫ R

1

σ3(α, t)
t2

dt+O(1)

=
R

α+ 1
− α

2(α+ 1)
logR+O

((
logR
q(α)

+ 1
)
s1(α)

)
.

The lemma is proved.

Lemma 11. The function c1(α) given by formula (27) satisfies the equation∫ 1

0

c1(α)
α+ 1

dα = log 2
(
γ − 1 +

log 2
2

)
. (29)

Proof. If F (x) =
∫
f(x) dx, then∫ 1

0

ρ(nx)f(x) dx = n

∫ 1

0

F (x) dx−
n∑

k=0

′
F

(
k

n

)

(the prime in the sum means that for k = 0 and k = n, the terms are taken with
coefficient 1/2). Thus, the integral involving h(ξ) can be expressed in terms of the
sum (22), and its computation reduces to equation (23):∫ 1

0

h(x)
(x+ 1)2

dx =
∞∑

q=1

1
q

(
1

q + 1
+ · · ·+ 1

2q
− log 2 +

1
4q

)

= σ0 +
ζ(2)
4

= log2 2− ζ(2)
4
. (30)

The other integrals can be computed directly.

Given a matrix S = ( a m
b n ) ∈M, we denote by fS(t) the function

fS(t) =
1

(mt+ n)
(
(a+m)t+ (b+ n)

) . (31)

The prime in sums of the form
n∑

b,m=1

′
δn(bm ± 1) . . . means that (in accordance

with property 2 of M) for n = 1 we take the minus sign in the symbol ±, while
for n > 1 we consider both signs independently. By a in these sums we mean the
fraction bm±1

n .
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For real U > 1 we consider the sums

A0(U) =
∑

S∈M(U)

fS(0), A1(U) =
∑

S∈M(U)

fS(1),

B(U, t) =
∑

S∈M(U)

f ′S(t), W1(U) =
∑

S∈M(U)

∫ 1

0

fS(t) dt,

W2(U) =
∑

S∈M(U)

∫ 1

0

log(mt+ n)fS(t) dt,

W3(U) =
∑

S∈M(U)

∫ 1

0

c1

(
at+ b

mt+ n

)
fS(t) dt.

Lemma 12. For U > 2 we have

A0(U) =
2 log 2
ζ(2)

logU + CA0 +O

(
logU
U

)
,

A1(U) =
log 2
ζ(2)

logU + CA1 +O

(
log5 U

U1/2

)
,

B(U, t) = − 2 log 2
ζ(2)(t+ 1)2

logU + CB(t) +O

(
log5 U

U1/2

)
,

W1(U) =
2 log2 2
ζ(2)

(
logU + γ − ζ ′(2)

ζ(2)

)
+ C1 +O

(
log5 U

U1/2

)
,

W2(U) =
log2 2
ζ(2)

log2 U +
log2 2
ζ(2)

(
2 + log 2− ζ(2)

log 2

)
logU + C2 +O

(
log6 U

U1/2

)
,

W3(U) =
2 log2 2
ζ(2)

(
γ − 1 +

log 2
2

)
logU + C3 +O

(
log5 U

U1/2

)
,

where CB(t) is a continuous function of t and CA0 , CA1 , C1, C2, C3 are absolute
constants, and

C1 =
∞∑

n=1

( n∑
b,m=1

′
δn(bm± 1)

∫ 1

0

fS(ξ) dξ − 2 log2 2 · ϕ(n)
n2

)
. (32)

Proof. The asymptotic formulae for A0(U), A1(U), B(U, t), W1(U) and W2(U)
were proved in [18], Lemma 6, Remark 2, Corollaries 1 and 2.

We write W3(U) as
W3(U) =

∑
n6U

w3(n),

where

w3(n) =
n∑

b,m=1

′
δn(bm± 1)

∫ 1

0

c1

(
at+ b

mt+ n

)
dt

(mt+ n)
(
(a+m)t+ (b+ n)

)
=

n∑
b,m=1

′
δn(bm± 1)c1

(
b

n

) ∫ 1

0

dt(
b
n + 1

)
(mt+ n)2

+O

(
1
n3

)
.
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Lemma 6 cannot be applied to this double sum directly, but the assumptions
of Lemma 6 hold for each of the sums

n∑
b,m=1

′
δn(bm± 1)C0

∫ 1

0

dt(
b
n + 1

)
(mt+ n)2

,

n∑
b,m=1

′
δn(bm± 1)

(
C0 + c1

(
b

n

)) ∫ 1

0

dt(
b
n + 1

)
(mt+ n)2

for sufficiently large C0. Therefore,

w3(n) = 2
ϕ(n)
n2

n∑
b,m=1

c1

(
b

n

) ∫ 1

0

dt(
b
n + 1

)
(mt+ n)2

+O

(
ψ(n)
n3/2

)

= 2 log 2
ϕ(n)
n2

∫ 1

0

c1(α)
α+ 1

dα+O

(
ψ(n)
n3/2

)
.

Formula (29) implies that

w3(n) = 2 log2 2
(
γ − 1 +

log 2
2

)
ϕ(n)
n2

+O

(
ψ(n)
n3/2

)
.

Hence,

W3(U) = 2 log2 2
(
γ − 1 +

log 2
2

) ∑
n6U

ϕ(n)
n2

+ C ′3 +O

(
log5 U

U1/2

)
,

where

C ′3 =
∞∑

n=1

(
w3(n)− 2 log2 2

(
γ − 1 +

log 2
2

)
ϕ(n)
n2

)
.

Substituting the relations

∑
n6U

ϕ(n)
n2

=
1
ζ(2)

(
logU + γ − ζ ′(2)

ζ(2)

)
+O

(
logU
U

)

into this equation, we complete the proof of the lemma.

Lemma 13. Let R, U > 2 and let R be a half-integer. Then the sum

W4(R,U) =
∑

S∈M(U)

∑
q6R

q∑
x=1

1
q2
fS

(
x

q

)
,
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where the function fS(t) is defined by equation (31), satisfies the asymptotic formula

W4(R,U) =
2 log2 2
ζ(2)

logR logU +
(

2 log2 2
ζ(2)

(
γ − ζ ′(2)

ζ(2)

)
+ C1

)
logR+ C4

+
2 log2 2
ζ(2)

(
log 2 + γ − ζ(2)

2 log 2

)
logU

+
1

2R

(
log 2
ζ(2)

logU + CA0 − CA1

)
+O

(
(log5 U) logR

U1/2

)
+O

(
logU
R2

)
,

where C4 is an absolute constant and CA0 , CA1 are the constants occurring in
Lemma 12.

Proof. Applying Lemma 5 to the function

g(x) =
1

(mx+ nq)
(
(a+m)x+ (b+ n)q

) =
1
q2
fS

(
x

q

)
,

we obtain that
q∑

x=1

1
q2
fS

(
x

q

)
=

1
q

∫ 1

0

fS(t) dt+
1

2q2
(
f(1)− f(0)

)
− 1
q2

∫ 1

0

ρ(qt)f ′S(t) dt.

Taking into account the relation∫ 1

0

ρ(qt)f ′S(t) dt = −1
q

∫ 1

0

σ(qt)f ′′S (t) dt� 1
n2q

and using Lemma 5, we obtain that

W4(R,U) = (logR+ γ)W1(U) +
1
2

(
ζ(2)− 1

R

)(
A1(U)−A0(U)

)
−

∫ 1

0

h(t)B(U, t) dt+O

(
logU
R2

)
.

Substituting the asymptotic formulae obtained in Lemma 12 into this equation and
using formula (30), we complete the proof of the lemma.

Lemma 14. Let R, U > 2. Then the sum

W5(R,U) =
∑

( a m
b n )∈M(U)

∑
l6R

∑
k6l

(
R

bk + nl

−max
{

1,
R

(a+ b)k + (m+ n)l

})
[bk + nl 6 R]

satisfies the following asymptotic formula :

W5(R,U) =
log 2
2ζ(2)

R2 logU+
R2

2
(CA0−CA1)+O(R2U−1/2 log5 U)+O(RU log2 U),

where CA0 and CA1 are the constants occurring in Lemma 12.
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Proof. We write W5(R,U) as

W5(R,U) =
∑

( a m
b n )∈M(U)

(
σ5

(
b

n
,
R

n

)
− σ5

(
a+ b

m+ n
,

R

m+ n

))
,

where

σ5(α,R) = Rσ4(α,R)− σ3(α,R) =
R2

2(α+ 1)
+O

((
R3/2

q(α)
+R

)
s1(α)

)
in the notation of Lemma 10. By Lemma 4, we have

W5(R,U) =
∑

( a m
b n )∈M(U)

(
R2

2n(b+ n)
− R2

2(m+ n)(a+ b+m+ n)

+O

((
R3/2

n5/2
+
R

n

)
s1

(
b

n

)))
=
R2

2
(A0(U)−A1(U)) +O(R3/2) +O(RU log2 U).

Substituting the asymptotic formulae for A1(U) and A0(U) (see Lemma 12) into
the last equation and observing that R3/2 � RU +R2U−1/2, we obtain the desired
formula for W5(R,U).

Lemma 15. Let R, U > 2. Then the sums

W6(R,U) =
∑

( a m
b n )∈M(U)

∑
Q′6R

∑
Q6Q′

1
mQ+ nQ′

,

W7(R,U) =
∑

( a m
b n )∈M(U)

∑
Q′6R

∑
Q6Q′

1
(a+m)Q+ (b+ n)Q′

satisfy the following asymptotic formulae:

W6(R,U) = RU +O(U logR) +O(RU1/2 log5 U),

W7(R,U) = RU log 2 +O(U logR) +O(RU1/2 log5 U).

Proof. We prove the assertion of the lemma forW7(R,U). The formula forW6(R,U)
can be verified likewise.

Using the equation∑
Q′6R

∑
Q6Q′

1
(a+m)Q+ (b+ n)Q′

= R

∫ 1

0

dt

(mt+ n)
(
1 + b

n

) +O

(
logR
n

)
,

we obtain that

W7(R,U) = R
∑

( a m
b n )∈M(U)

∫ 1

0

dt

(mt+ n)
(
1 + b

n

) +O(U logR).



1040 A. V. Ustinov

By Lemma 6, we have

W7(R,U) = 2 log 2
∫ 1

0

log(1 + t)
t

dt ·R
∑
n6U

(
ϕ(n)
n

+O

(
ψ(n)
n1/2

))
+O(U logR).

Using the equations∫ 1

0

log(1 + t)
t

dt = −Li2(−1) =
ζ(2)
2
,

∑
n6U

ϕ(n)
n

=
U

ζ(2)
+O(logU),

we obtain the desired formula for W7(R,U).

Lemma 16. Let 2 6 U , R1 6 R and

W8(R1, U) =
∑

( a m
b n )∈M(U)

∫ 1

0

σ3

(
at+ b

mt+ n
,

R1

mt+ n

)
dt.

Then

W8(R1, U) =
R2

1

2
W1(U)− R1U

2
(1− log 2) +O(R1U

1/2 log5R) +O(U2 log2R).

(33)

Proof. Let p > 2 be a prime number. By definition, σ3

(
at+b
mt+n ,

R1
mt+n

)
is a non-

increasing function of t and σ3

(
at+b
mt+n ,

R1
mt+n

)
� R2

1/n
2. Therefore,

W8(R1, U) =
1
p

∑
( a m

b n )∈M(U)

p−1∑
x=1

σ3

( ax
p + b

mx
p + n

,
R1

mx
p + n

)
+O

(
R2

1 logR
p

)
.

Using Lemma 10 and observing that

q

(
ax+ bp

mx+ np

)
= mx+ np > np, s1

(
ax+ bp

mx+ np

)
� s1

(
m

n

)
+ s1

(
x

p

)
,

we obtain the following representation for W8(R1, U):

W8(R1, U) =
1
2p

∑
( a m

b n )∈M(U)

p−1∑
x=1

(
R2

1fS

(
x

p

)
−

(
R1

mx
p + n

− R1

(a+m)x
p + b+ n

))

+O

(
1
p

∑
n6U

∑∗

m6n

p−1∑
x=1

(
R1

n2p
+ 1

)(
s1

(
m

n

)
+ s1

(
x

p

)))

+O

(
R2

1 logR
p

)
.

By Lemma 4, we have

1
p

∑
n6U

∑∗

m6n

p−1∑
x=1

(
R1

n2p
+ 1

)(
s1

(
m

n

)
+ s1

(
x

p

))
�

(
R1

p
logR+ U2

)
log2R.
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Hence, for all p in the range R2
1 6 p 6 2R2

1, we have

W8(R1, U) =
1
2

∑
( a m

b n )∈M(U)

∫ 1

0

(
R2

1fS(t)−
(

R1

mt+ n
− R1

(a+m)t+ b+ n

))
dt

+O(U2 log2R).

As in the proof of Lemma 15, we obtain that∑
( a m

b n )∈M(U)

∫ 1

0

dt

mt+ n
= U +O(U1/2 log5 U),

∑
( a m

b n )∈M(U)

∫ 1

0

dt

(a+m)t+ b+ n
= U log 2 +O(U1/2 log5 U).

Hence,

W8(R1, U) =
R2

1

2
W1(U)− R1U

2
(1− log 2) +O(R1U

1/2 log5R) +O(U2 log2R).

§ 6. Asymptotic formula for the expectation

We denote by N(R) the number of solutions of the inequality

kQ+ lQ′ 6 R (34)

for which
1 6 k 6 l, 1 6 Q 6 Q′. (35)

Theorem 1. Let R > 2. Then

N(R) =
log 2

2
R2 logR+

R2

4
(
log 2(3 log 2 + 4γ − 3)− ζ(2)

)
+O(R log4R).

Proof. Let U be a half-integer such that 1 6 U 6 R. We denote by N1(R,U) the
number of solutions of the inequality (34) with the restrictions (35) for which
the supplementary condition Q′ 6 U holds. The number of solutions such that
Q′ > U will be denoted by N2(R,U). Hence,

N(R) = N1(R,U) +N2(R,U). (36)

To compute N1(R,U), we observe that

N1(R,U) =
∑
d6U

N∗
1

(
R

d
,
U

d

)
, (37)

where

N∗
1 (R,U) =

∑
Q′6U

∑
Q6Q′

∗ ∑
l6R/Q′

∑
k6l

[kQ+ lQ′ 6 R].
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By Lemma 3, we have∑
l6R/Q′

∑
k6l

[kQ+ lQ′ 6 R] =
∑

l6R/(Q+Q′)

l +
∑

R/(Q+Q′)6l6R/Q′

[
R− lQ′

Q

]

=
∑

l6R/Q′

min
{
l,
R− lQ′

Q

}
− 1

2

(
R

Q′
− R

Q+Q′

)

+O

((
R

(Q′)2
+ 1

)
s1

(
Q

Q′

))
.

It follows from Lemma 5 that∑
l6R/Q′

min
{
l,
R− lQ′

Q

}
=

∫ R/Q′

0

min
{
l,
R− lQ′

Q

}
dl +O

(
Q′

Q

)

=
R

2Q′(Q+Q′)
+O

(
Q′

Q

)
.

Lemma 4 implies that

N∗
1 (R,U) =

R2

2

∑
Q′6U

∑
Q6Q′

∗ 1
Q′(Q+Q′)

− RU

2ζ(2)
(1− log 2) +O(R log3R) +O(U2 log2R).

Formula (37) implies that

N1(R,U) =
R2

2
Φ(U)− RU

2
(1− log 2) +O(R log4R) +O(U2 log2R),

where the function Φ(R) is given by (20). Using Lemma 8, we obtain the final
formula for N1(R,U):

N1(R,U) =
R2

2

(
log 2(logU + log 2 + γ)− ζ(2)

2

)
+
R2

8U
− RU

2
(1− log 2)

+O(R log4R) +O(U2 log2R) +O(R2U−2). (38)

Let R1 = RU−1. For N2(R,U) we likewise obtain

N2(R,U) =
∑

d6R1

N∗
2

(
R

d
,U

)
,

where

N∗
2 (R,U) =

∑
l6R1

∑
k6l

∗ ∑
U<Q′6R/l

∑
Q6Q′

[kQ+ lQ′ 6 R]

=
∑
l6R1

∑
k6l

∗
( ∑

U<Q′6R/(k+l)

Q′ +
∑

max{U,R/(k+l)}<Q′6R/l

[
R− lQ′

k

])
.
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Successively using Lemmas 3 and 4, we obtain that

N∗
2 (R,U) =

∑
l6R1

∑
k6l

∗ ∑
U<Q′6R/l

min
{
Q′,

R− lQ′

k

}
− 1

2

∑
l6R1

∑
k6l

k+l6R1

∗
(
R

l
− R

k + l

)

− 1
2

∑
l6R1

∑
k6l

k+l>R1

(
R

l
− U

)
+O(R log3R) +O(R2

1 log2R).

Hence,

N2(R,U) =
∑
l6R1

∑
k6l

∑
U<Q′6R/l

min
{
Q′,

R− lQ′

k

}
− 1

2

∑
l6R1

∑
k6l

k+l6R1

(
R

l
− R

k + l

)

− 1
2

∑
l6R1

∑
k6l

k+l>R1

(
R

l
− U

)
+O(R log4R) +O(R2U−2 log2R)

=
∑
l6R1

∑
k6l

∑
U<Q′6R/l

min
{
Q′,

R− lQ′

k

}
− R2

8U

+O(R log4R) +O(R2U−2 log2R).

By Lemma 5, we have

N2(R,U) =
∑
l6R1

∑
k6l

∫ R

U

∫ Q′

0

[kQ+ lQ′ 6 R] dQdQ′

− R2

8U
+O(R log4R) +O(R2U−2 log2R).

To compute the double integral, we successively make the changes of variables
w = kQ+ lQ′, ξ = wU−1, y = Q′U−1 and obtain that∫ R

U

∫ Q′

0

[kQ+ lQ′ 6 R] dQdQ′ =
1
k

∫ R

U

∫ R

0

[
w

k + l
6 Q′ 6

w

l

]
dw dQ′

=
U2

k

∫ R1

1

∫ R1

0

[
ξ

k + l
6 y 6

ξ

l

]
dξ dy

=
U2

k

∫ R1

0

ξ

(
1
l
−max

{
1

k + l
, 1

})
[ξ > l] dξ

=
U2

k

∫ R1

0

ξ

(
1
l
− 1
k + l

)
[ξ > k + l] dξ

+
U2

k

∫ R1

0

ξ

(
1
l
− 1
ξ

)
[l 6 ξ < k + l] dξ.



1044 A. V. Ustinov

Hence,

N2(R,U) = U2

∫ R1

0

ξF (ξ) dξ − R2

8U
+O(R log4R) +O(R2U−2 log2R),

where the function F (ξ) is defined by (24). By Lemma 9, we have

N2(R,U) =
log 2

2
R2

(
log

R

U
+

log 2
2

+ γ − 3
2

)
+
RU

2
(1− log 2)

− R2

8U
+O(R log4R) +O(R2U−2 log2R) +O(U2 log2R). (39)

Substituting formulae (38) and (39) into (36) and putting U = [R1/2] + 1/2, we
complete the proof of the theorem.

Corollary 1. Let R > 2. Then

E(R) =
2 log 2
ζ(2)

logR+
log 2
ζ(2)

(
3 log 2 + 4γ − 2

ζ ′(2)
ζ(2)

− 3
)
− 3

2
+O(R−1 log5R).

Proof. Substituting the result of Theorem 1 into the inversion formula

N∗(R) =
∑
d6R

µ(d)N
(
R

d

)
,

we obtain that

N∗(R) =
log 2
2ζ(2)

R2 logR

+
R2

4ζ(2)

(
log 2

(
3 log 2 + 4γ − 2

ζ ′(2)
ζ(2)

− 3
)
− ζ(2)

)
+O(R log5R).

Substituting this result into the first equation in Lemma 2, we obtain the equation

L1(R) =
log 2
ζ(2)

R2 logR

+
R2

2ζ(2)

(
log 2

(
3 log 2 + 4γ − 2

ζ ′(2)
ζ(2)

− 3
)
− 3

2
ζ(2)

)
+O(R log5R).

Substituting this into (9), we complete the proof of the corollary.

§ 7. Computation of two auxiliary quantities

To compute the variance D(R), we have to know asymptotic formulae for two
auxiliary quantities. They can be studied in the same way as N(R).

Let α, β ∈ [0, 1] be real numbers. We denote by T (R) = T (α, β;R) the sum

T (R) =
∑

l,Q′6R

∑
k6l

∑
Q6Q′

[
(αk + l)(βQ+Q′) 6 R

]
,
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which obviously coincides with the number of solutions of the inequality

(αm+ n)(βk + l) 6 R (40)

in k, l, m and n for which

1 6 k 6 l, 1 6 m 6 n. (41)

Lemma 17. Let α, β ∈ (0, 1] be rational numbers with denominators q(α) and q(β),
respectively. Then

T (R) =
R2

2(α+ 1)(β + 1)

(
logR+ c1(α) + c1(β)− 1

2

)
+O

(
R3/2

(
s1(α)
q(α)

+
s1(β)
q(β)

)
+R

(
s1(α) + s1(β)

))
for all R > 1, where c1(α) and c1(β) are defined by (27).

Proof. We can assume without loss of generality that α 6 β. Put U =
[√
R

]
+1/2.

We denote by T1(R,U) the number of solutions of the inequality (40) with the
restrictions (41) for which l 6 U . The number of solutions with l > U will be
denoted by T2(R,U). Thus, we have

T (R) = T1(R,U) + T2(R,U). (42)

To determine T1(R,U), we observe that, by Lemma 3, for fixed k and l the
number of solutions of the inequality (40) in m and n is equal to

1
2(α+ 1)

(
R

βk + l

)2

− 1
2

R

βk + l

(
1− 1

α+ 1

)
+O

((
R

q(α)l
+ 1

)
s1(α)

)
.

Therefore,

T1(R,U) =
R2

2(α+ 1)
σ2(β, U)− Rα

2(α+ 1)

∑
l6U

l∑
k=1

1
βk + l

+O

((
R3/2

q(α)
+R

)
s1(α)

)
.

Using Lemma 10 and the equation

∑
l6U

l∑
k=1

1
βk + l

=
log(β + 1)

β
U +O(logU),

which follows from Lemma 5, we obtain that

T1(R,U) =
R2

2(α+ 1)(β + 1)

(
logU + c1(β)− log(β + 1)

β
+ 1 +

1
U

β2 + β

2(β + 1)

)
− Rα

2(α+ 1)
log(β + 1)

β
+O

((
R3/2

q(α)
+R

)
s1(α)

)
.
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Putting R1 = RU−1, we likewise obtain the following formula for T2(R,U):

T2(R,U) =
∑

n6R1

∑
m6n

∑
U<l6 R

αm+n

min
{
l,

[
1
β

(
R

αm+ n
− l

)]}

=
∑

n6R1

∑
m6n

∑
U<l6 R

αm+n

min
{
l,

1
β

(
R

αm+ n
− l

)}

− 1
2

∑
n6R1

∑
m6n

(
R

αm+ n
−max

{
U,

R

(αm+ n)(β + 1)

})

+O

((
R

q(β)n
+ 1

)
s1(β)

)
.

Using Lemma 5 and taking into account that U is a half-integer, we obtain that

T2(R,U) =
∑

n6R1

∑
m6n

∫ R

U

∫ l

0

[
(αm+ n)(βk + l) 6 R

]
dk dl

− U

2

(
σ5(α,R1)− σ5

(
α,

R1

β + 1

))
+O

((
R3/2

q(β)
+R

)
s1(β)

)
, (43)

where, in the notation of Lemma 10,

σ5(α,R) = Rσ4(α,R)− σ3(α,R) =
R2

2(α+ 1)
+O

((
R3/2

q(α)
+R

)
s1(α)

)
,

whence

U

2

(
σ5(α,R1)− σ5

(
α,

R1

β + 1

))
=

β2 + 2β
4(α+ 1)(β + 1)2

R2

U
+O

((
R3/2

q(α)
+R

)
s1(α)

)
.

(44)
To compute the double integral in formula (43), we make the changes of variables

k = tl, l = Uξ and obtain (in the notation of Lemma 10) that

∑
n6R1

∑
m6n

∫ R

U

∫ l

0

[
(αm+ n)(βk + l) 6 R

]
dk dl

= U2

∫ 1

0

∑
n6R1

∑
m6n

∫ R1

1

ξ
[
ξ(αm+ n)(βt+ 1) 6 R1

]
dξ dt

=
U2

2

∫ 1

0

∑
n6R1

∑
m6n

(
R2

1

(βt+ 1)2(αm+ n)2
− 1

)[
(αm+ n)(βt+ 1) 6 R1

]
dt

=
R2

2

∫ 1

0

dt

(βt+ 1)2
· σ1

(
α,

R1

βt+ 1

)
− U2

2

∫ 1

0

σ3

(
α,

R1

βt+ 1

)
dt.
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By Lemma 10, we have∫ 1

0

dt

(βt+ 1)2
· σ1

(
α,

R1

βt+ 1

)
=

1
(α+ 1)(β + 1)

(
logR1 + c1(α) +

log(β + 1)
β

− 1
)

+
α

(α+ 1)R1

(
log(β + 1)

2β
+

∫ 1

0

dt

βt+ 1
ρ

(
R1

βt+ 1

))
+O

(
1
R

)
,

∫ 1

0

σ3

(
α,

R1

βt+ 1

)
dt =

R2
1

2(α+ 1)(β + 1)
− αR1

2(α+ 1)
log(β + 1)

β

+O

((
R3/2

q(α)
+R

)
s1(α)

)
.

We have assumed that α 6 β. Hence,

α

∫ 1

0

dt

βt+ 1
· ρ

(
R1

βt+ 1

)
� α

β

1
R1

� 1
R1

,

∑
n6R1

∑
m6n

∫ R

U

∫ l

0

[
(αm+ n)(βk + l) 6 R

]
dk dl

=
R2

2(α+ 1)(β + 1)

(
logR1 + c1(α) +

log(β + 1)
β

− 3
2

)
+

α

(α+ 1)RU
log(β + 1)

2β
+O

((
R3/2

q(α)
+R

)
s1(α)

)
. (45)

Combining equations (43)–(45), we obtain the following asymptotic formula for
T2(R,U):

T2(R,U) =
R2

2(α+ 1)(β + 1)

(
log

R

U
+ c1(α) +

log(β + 1)
β

− 3
2

)
+

α

(α+ 1)RU
log(β + 1)

2β
− R2U−1(β2 + 2β)

4(α+ 1)(β + 1)2

+O

(
R3/2

(
s1(α)
q(α)

+
s1(β)
q(β)

)
+R

(
s1(α) + s1(β)

))
.

Substituting the asymptotic formulae obtained for T1(R,U) and T2(R,U) into
(42), we complete the proof of the lemma.

For real α, β ∈ (0, 1] we denote by L(R) = L(α, β;R) the sum

L(R) =
∑

l,n6R

∑
k6l

∑
m6n

[
(αm+ n)(βk + l) 6 R

]
(αm+ n)2(βk + l)2

.
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Corollary 2. Let α, β ∈ (0, 1] be rational numbers with denominators q(α) and
q(β), respectively. Then for every R > 1 the following asymptotic formula holds
for L(R):

L(R) =
1

(α+ 1)(β + 1)

(
log2R

2
+ logR

(
c1(α) + c1(β)

)
+ c(α, β)

)
+O

(
R−1/2

(
s1(α)
q(α)

+
s1(β)
q(β)

)
+R−1

(
s1(α) + s1(β)

))
,

where c1(α) is the function occurring in Lemma 10 and c(α, β) does not depend on R.

Proof. We obtain the assertion of the corollary from Lemma 17 using the Abel
integral transformation (28). It is sufficient to consider the sequence λ1, . . . , λP

of values of the product (αm + n)(βk + l) when 1 6 m 6 n, 1 6 k 6 l,
(αm+ n)(βk + l) 6 R, and put aj = 1, j = 1, . . . , P , g(t) = 1/t2.

Corollary 3. Let R > 2. Then∫ 1

0

∫ 1

0

T (α, β;R) dα dβ =
log2 2

2
R2

(
logR+ 2γ − 5

2
+ log 2

)
+O(R log2R),∫ 1

0

∫ 1

0

L(α, β;R) dα dβ =
log2 2

2
log2R+ 2 log2 2(logR)

(
γ − 1 +

log 2
2

)
+ CL +O(R−1 log2R),

where CL is an absolute constant.

Proof. Let p > 2 be a positive integer. Then∫ 1

0

∫ 1

0

T (α, β;R) dα dβ =
1
p2

p−1∑
a,b=1

T

(
a

p
,
b

p
;R

)
+O

(
R2 logR

p

)
.

For prime numbers p, Lemma 17 implies that∫ 1

0

∫ 1

0

T (α, β;R) dα dβ

=
1
p2

p−1∑
a,b=1

R2

2
(
1 + a

p

)(
1 + b

p

)(
logR+ c1

(
a

p

)
+ c1

(
b

p

)
− 1

2

)

+O

(
R2 logR

p

)
+O

((
R3/2

p
+R

)
1
p

p−1∑
a=1

s1

(
a

p

))
.

Since c1(α) is a continuous function, Lemma 4 implies that∫ 1

0

∫ 1

0

T (α, β;R) dα dβ =
∫ 1

0

∫ 1

0

R2

2(1 + α)(1 + β)

(
logR+ c1(α) + c1(β)− 1

2

)
+O

((
R3/2

p
+R

)
log2 p

)
+O

(
R2 logR

p

)
.



Asymptotic behaviour of the moments in the Euclidean algorithm 1049

By choosing p in the range R 6 p 6 2R and applying (29), we complete the proof
of the first equation of the corollary.

The second equation can be proved likewise. The integrability of c(α, β) follows
from that of L(α, β;R), c1(α) and c1(β).

§ 8. Asymptotic formula for the variance

We denote by M(R) the number of solutions of the inequality (13), where

1 6 k 6 l, 1 6 Q 6 Q′,

(
a m
b n

)
∈M. (46)

Let U and U0 be real numbers in the segment [1, R]. We partition the solutions
of (13) with the restrictions (46) into three groups for which

1) n 6 U , Q′ 6 U0,
2) n 6 U , Q′ > U0,
3) n > U .
In accordance with this partition, we write M(R) as

M(R) = M1(R,U,U0) +M2(R,U,U0) +M3(R,U).

Each summand will be studied separately.
We begin with the computation of M1(R,U,U0).

Lemma 18. Let 2 6 U,U0 6 R, and assume that U0 is a half-integer. Then

M1(R,U,U0) =
log2 2
ζ(2)

R2 logU logU0

+
(
C1

2
+

log2 2
ζ(2)

(
γ − ζ ′(2)

ζ(2)

))
R2 logU0 +

C4

2
R2

+
log2 2
ζ(2)

(
log 2 + γ − ζ(2)

2 log 2

)
R2 logU

+
R2

4U0

(
log 2
ζ(2)

logU + CA0 − CA1

)
− 1− log 2

2
RUU0

+O(R2U−2
0 logR) +O(R2U−1/2 log6R)

+O(RU0U
1/2 log5R) +O(U2U2

0 log2R),

where C1, CA0 and CA1 are the constants occurring in Lemma 12 and C4 is the
constant occurring in Lemma 13.

Proof. Let a, b, m, n, Q and Q′ be fixed and put

f(l) = min
{
l,
R− l(mQ+ nQ′)

aQ+ bQ′

}
.
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Then the number of solutions of the inequality

k(aQ+ bQ′) + l(mQ+ nQ′) 6 R

in k and l with the restrictions (46) is equal to∑
l6R/(mQ+nQ′)

f(l)−
∑

l6R/(mQ+nQ′)

{
f(l)

}
.

Applying Lemma 3 to the first sum and Lemma 5 to the second, we obtain that

R2

2(mQ+ nQ′)
(
(a+m)Q+ (b+ n)Q′

) − R

2

(
1

mQ+ nQ′
− 1

(a+m)Q+ (b+ n)Q′

)

+O

((
R

nQ′
q−1

(
aQ+ bQ′

mQ+ nQ′

)
+ 1

)
s1

(
aQ+ bQ′

mQ+ nQ′

))
. (47)

Observing that

s1

(
aQ+ bQ′

mQ+ nQ′

)
� s1

(
m

n

)
+ s1

(
Q

Q′

)
and using Lemma 4, we obtain the following estimate for the sum of the remainder
terms:

∑
( a m

b n )∈M(U)

∑
Q′6U0

∑
Q6Q′

(
R

nQ′
q−1

(
aQ+ bQ′

mQ+ nQ′

)
+ 1

)
s1

(
aQ+ bQ′

mQ+ nQ′

)

=
∑

( a m
b n )∈M(U)

∑
δ6U0

∑
Q′6U0/δ

∑∗

Q6Q′

(
R

nδQ′(mQ+ nQ′)
+ 1

)
s1

(
aQ+ bQ′

mQ+ nQ′

)

�
∑
n6U

∑∗

m6n

∑
δ6U0

∑
Q′6U0/δ

∑∗

Q6Q′

(
R

δn2(Q′)2
+ 1

)(
s1

(
m

n

)
+ s1

(
Q

Q′

))

� R log5R+ U2U2
0 log2R.

Adding the terms of (47) together, we obtain that

M1(R,U,U0) =
R2

2
W4(U0, U)− R

2
(W6(U0, U)−W7(U0, U))

+O(R log5R) +O(U2U2
0 log3R).

Using Lemmas 13, 15 and taking into account the estimate RU � R2U−2
0 +U2U2

0 ,
we obtain the desired formula for M1(R,U,U0).
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We now compute M2(R,U,U0).

Lemma 19. Let 2 6 U,U0 6 R, and assume that U0 is a half-integer. Then

M2(R,U,U0) =
log2 2
ζ(2)

R2 logU log
R

U0

+
(
C1

2
+

log2 2
ζ(2)

(
γ − ζ ′(2)

ζ(2)

))
R2 log

R

U0
− log2 2

2ζ(2)
R2 log2 U

+
log2 2
ζ(2)

(
γ − 5

2
+

ζ(2)
2 log 2

)
R2 logU

+ C ′2R
2 − R2

4U0

(
log 2
ζ(2)

logU + CA0 − CA1

)
+

1− log 2
2

RUU0

+O(R2U−2
0 log2R) +O(R2U−1/2 log6R)

+O(RU0U
1/2 log5R) +O(U2U2

0 log2R),

where C ′2 is an absolute constant and CA0 , CA1 , C1 are the constants occurring
in Lemma 12.

Proof. Put R1 = RU−1
0 . As in the proof of Lemma 18, we assume that a, b, m,

n, k and l are fixed and the conditions (46) hold for them. Consider the function

f(l) = min
{
Q′,

R−Q′(bk + nl)
ak +ml

}
.

The number of solutions of the inequality

k(aQ+ bQ′) + l(mQ+ nQ′) 6 R

in Q and Q′ such that Q′ > U0 and 1 6 Q 6 Q′ is equal to∑
U0<Q′6R/(bk+nl)

f(Q′)−
∑

U0<Q′6R/(bk+nl)

{
f(l)

}
.

We again apply Lemma 3 to the first sum and Lemma 5 to the second. Since U0 is
a half-integer and

q

(
ak +ml

bk + nl

)
=
bk + nl

(k, l)
,

we obtain that∑
U0<Q′6R/(bk+nl)

f(Q′)−
∑

U0<Q′6R/(bk+nl)

{
f(l)

}
=

∫ R

U0

∫ Q′

0

[
Q(ak +ml) +Q′(bk + nl) 6 R

]
dQdQ′

− U0

2

(
R1

bk + nl
−max

{
1,

R1

(a+ b)k + (m+ n)l

})
[bk + nl 6 R1]

+O

((
(k, l)R
l2n2

+ 1
)
s1

(
ak +ml

bk + nl

))
.
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We estimate the sum of the remainders as we did in the proof of Lemma 18. In the
notation of Lemma 14 we have

M2(R,U,U0) =

=
∑

( a m
b n )∈M(U)

∑
l6R

∑
k6l

∫ R

U0

∫ Q′

0

[Q(ak +ml) +Q′(bk + nl) 6 R] dQdQ′

− U0

2
W5(R1, U) +O(R log5R) +O(R2U2

0 log2R).

Using the change of variables Q = tQ′ and Q′ = ξU0, we transform the sum thus
obtained as follows:

U2
0

∑
( a m

b n )∈M(U)

∑
l6R

∑
k6l

∫ 1

0

∫ R1

1

ξ[ξ(t(ak +ml) + bk + nl) 6 R1] dξ dt

=
U2

0

2

∑
( a m

b n )∈M(U)

∑
l6R

∑
k6l

∫ 1

0

((
R1

t(ak +ml) + bk + nl

)2

− 1
)

×
[
t(ak +ml) + bk + nl 6 R1

]
dt

=
1
2

∑
( a m

b n )∈M(U)

∫ 1

0

(
R2

(mt+ n)2
σ1

(
at+ b

mt+ n
,

R1

mt+ n

)

− U2
0σ3

(
at+ b

mt+ n
,

R1

mt+ n

))
dt.

Hence,

M2(R,U,U0) =
1
2

∑
( a m

b n )∈M(U)

∫ 1

0

R2

(mt+ n)2
σ1

(
at+ b

mt+ n
,

R1

mt+ n

)
dt

− U2
0

2
W8(R1, U)− U0

2
W5(R1, U) +O(R log5R) +O(R2U−2

0 log2R). (48)

Using Lemma 10, we obtain, in the notation of Lemma 12, that

∑
( a m

b n )∈M(U)

∫ 1

0

1
(mt+ n)2

σ1

(
at+ b

mt+ n
,

R1

mt+ n

)
dt

= W1(U) logR1 −W2(U) +W3(U) +
U

2R1
(1− log 2)

+ I(U) +O(R−1
1 U1/2 log5 U) +O(R−2

1 U2), (49)

where

I(U) =
1
R1

∑
( a m

b n )∈M(U)

∫ 1

0

(
1

mt+ n
− 1

(a+m)t+ b+ n

)
ρ

(
R1

mt+ n

)
dt.
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Integrating by parts, we obtain the estimate

I(U) � U logU
R2

1

+
logU
R1

.

Hence, the order of I(U) does not exceed the orders of the remainder terms.
Substituting (33) and (49) into (48), we obtain that

M2(R,U,U0) =
R2

2

((
logR1 −

1
2

)
W1(U)−W2(U) +W3(U)

)
− U0

2
W5(R1, U) +

RUU0

2
(1− log 2)

+O(R2U−2
0 log2R) +O(U2U2

0 log2R) +O(RU0U
1/2 log5R).

Using Lemma 12, we obtain the desired formula for M2(R,U,U0).

Corollary 4. Let 1 6 U 6 R. Then

M1(R,U,U0) +M2(R,U,U0) =
log2 2
ζ(2)

R2 logR logU

+
(
C1

2
+

log2 2
ζ(2)

(
γ − ζ ′(2)

ζ(2)

))
R2 logR+ C0R

2

− log2 2
2ζ(2)

R2 log2 U +
log2 2
ζ(2)

(
log 2− 5

2
+ 2γ

)
R2 logU

+O(RU log2R) +O(R2U−1/2 log6R).

Proof. We prove this by combining the results of Lemmas 18 and 19 and putting
U0 =

[
R1/2U−1/2

]
+ 1/2.

We now compute M3(R,U).

Lemma 20. Let 8R1/2 6 U 6 R/2. Then

M3(R,U) =
log2 2
2ζ(2)

R2

(
log2 R

U
+ 2 log

R

U

(
2γ − 5

2
+ log 2

)
+ C ′3

)
+O(RU log2R) +O(R2+εU−1/3).

Proof. Let R2 = R/U . By the definition of M3(R,U), we have

M3(R,U) =
∑

lQ′6R1

∑
k6l

∑
Q6Q′

∑
n>U

T±(k, l, Q,Q′, n), (50)

where

T±(k, l, Q,Q′, n) =
n∑

b,m=1

δn(bm± 1)
[
k

(
bm± 1
n

Q+ bQ′
)

+ l(mQ+ nQ′) 6 R

]
.
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To compute T±(k, l, Q,Q′, n), we assume for the moment that l/k 6 Q′/Q.
Consider the function

m(b) = min
{
n,

1
Q

(
R∓ k

nQ
k
nb+ l

− nQ′
)}

on the segment inside [0, n] on which this function is non-negative. If m(b) =
1
Q

(
R∓ k

n Q
k
n b+l

− nQ′
)
, then

m′′(b) =
2
Q

(
R∓ k

n
Q

)(
k

n

)2 1(
k
nb+ l

)3 ∈
[
1
c
,
w

c

]
,

where c = Q
2

(
R∓ k

nQ
)−1(n

k

)2
l3 and w = 8. Since m(b) 6 n and lQ′ 6 R2, we have

R∓ k
nQ 6 4lnQ′. For U > 8R1/2 we have

c >
Qnl2

8Q′k2
>

n

8Q′
>

U

8R2
=
U2

8R
> 8 = w.

Hence, Lemma 7 can be applied to m(b). We obtain that

nε(nc−1/3 + c2/3) � n2/3+ε

((
Q′

Q

)1/3(
k

l

)2/3

+
(
Q

Q′

)2/3(
l

k

)4/3)

� n2/3+ε

(
lQ′

kQ

)1/3

.

On the set where m(b) = n we use the equation∑
16b6x
(b,n)=1

1 =
ϕ(n)
n

x+O
(
σ0(n)

)

(see [19], Ch. II, problem 19). Hence,

T±(k, l, Q,Q′, n) =
1
n

n∑
x=1

(x,n)=1

f(x) +O

(
n2/3+ε

(
lQ′

kQ

)1/3)
.

Further, we have

1
n

n∑
x=1

(x,n)=1

f(x) =
1
n

∑
δ|n

µ(δ)
n/δ∑
x=1

f(δx).

Lemma 5 implies that

n/δ∑
x=1

f(δx) =
1
δ

∫ n

0

f(t) dt+O

(
1
δ

lQ′

kQ

)
.
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Hence,

1
n

n∑
x=1

(x,n)=1

f(x) =
ϕ(n)
n2

∫ n

0

f(t) dt+O

(
logR
n

lQ′

kQ

)
,

T±(k, l, Q,Q′, n) =
ϕ(n)
n2

V±(k, l, Q,Q′, n)

+O

(
logR
n

lQ′

kQ

)
+O

(
n2/3+ε

(
lQ′

kQ

)1/3)
, (51)

where V±(k, l, Q,Q′, n) is the area of the domain Ω±(k, l, Q,Q′, n) in the plane Obm
defined by the inequalities

0 6 b,m 6 n, k

(
bm± 1
n

Q+ bQ′
)

+ l(mQ+ nQ′) 6 R. (52)

If l/k > Q′/Q, then formula (51) can be proved by applying similar arguments to
the function

b(m) = min
{
n,

1
k

(
R∓ k

n
Q
nm+Q′

− ln

)}
.

Substituting (51) into (50), we obtain that

M3(R,U) =
∑

lQ′6R2

∑
k6l

∑
Q6Q′

∑
U<n6R/(lQ′)

ϕ(n)
n2

V±(k, l, Q,Q′, n) +O(R2+εU−1/3).

We denote by Ω(k, l, Q,Q′, n) the domain obtained by omitting±1 in the inequal-
ities (52):

0 6 b,m 6 n,

(
kb

n
+ l

)
(mQ+ nQ′) 6 R.

The area of this domain will be denoted by V (k, l, Q,Q′, n). Since

Ω+(k, l, Q,Q′, n) ⊂ Ω(k, l, Q,Q′, n) ⊂ Ω−(k, l, Q,Q′, n),

the error caused by the replacement of V±(k, l, Q,Q′, n) by V (k, l, Q,Q′, n) does
not exceed V−(k, l, Q,Q′, n) − V+(k, l, Q,Q′, n). Since for fixed m the difference
between b− and b+ such that

k

(
b±m± 1

n
Q+ b±Q

′
)

+ l(mQv + nQ′) = R

is O(1/n), we have V−(k, l, Q,Q′, n)− V+(k, l, Q,Q′, n) = O(1) and

M3(R,U) = 2
∑

lQ′6R2

∑
k6l

∑
Q6Q′

∑
U<n6R

ϕ(n)
n2

V (k, l, Q,Q′, n)+O(R2+εU−1/3). (53)
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Further, we have

∑
U<n6R

ϕ(n)
n2

V (k, l, Q,Q′, n) =
∑
δ6R

µ(δ)
δ2

∑
U
δ <n6 R

δ

V (k, l, Q,Q′, δn)
n

.

Therefore, the sum of the principal terms in formula (53) is transformed as follows:

2
∑
δ6R

µ(δ)
δ2

∑
lQ′6R2

∑
k6l

∑
Q6Q′

∑
U
δ <n6 R

δ

1
n

×
∫ δn

0

∫ δn

0

[(
b

δn
k + l

)(
m

δn
Q+Q′

)
6

R

δn

]
dmdb

= 2
∑
δ6R

µ(δ)
∑

lQ′6R2

∑
k6l

∑
Q6Q′

∑
U
δ <n6 R

δ

n

×
∫ 1

0

∫ 1

0

[
(αk + l)(βQ+Q′) 6

R

δn

]
dα dβ = 2

∑
δ6R

µ(δ)
δ2

×
∫ 1

0

∫ 1

0

∑
lQ′6R2

∑
k6l

∑
Q6Q′

∑
U
δ <n6 R

δ

n

[
n 6

R

δ(αk + l)(βQ+Q′)

]
dα dβ

=
∑
δ6R

µ(δ)
δ2

∫ 1

0

∫ 1

0

∑
lQ′6R2

∑
k6l

∑
Q6Q′

(
R2

(αk + l)2(βQ+Q′)2
− U2

)
×

[
(αk + l)(βQ+Q′) 6 R2

]
dα dβ +O(R2U−1 logR).

Therefore,

M3(R,U) =
U2

ζ(2)

∫ 1

0

∫ 1

0

(
R2

2L(α, β;R2)− T (α, β;R2)
)
dα dβ +O(R2+εU−1/3).

Substituting into this formula the equations in Corollary 3, we complete the
proof of the lemma.

Theorem 2. Let R > 2. Then

M(R) =
log2 2
2ζ(2)

R2 log2R+
(
C1

2
+

log2 2
ζ(2)

(
3γ − 5

2
+ log 2− ζ ′(2)

ζ(2)

))
R2 logR

+ CR2 +O(R2−1/4+ε)

with absolute constants C and C1, where C1 is the constant occurring in Lemma 12.

Proof. To prove the formula, it is sufficient to combine the equations in Corollary 4
and Lemma 20 and put U = R3/4.
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We now compute D(R).

Corollary 5. Let R > 2. Then

D(R) = δ1 logR+ δ0 +Oε(R−1/4+ε)

for all ε > 0, where δ1 and δ0 are absolute constants,

δ1 =
8 log2 2
ζ2(2)

(
γ − ζ ′(2)

ζ(2)
− log 2

2
− 1

)
+

4
ζ(2)

(
C1 +

3 log 2
2

)
,

and the constant C1 is defined by (32).

Proof. Using Theorem 2, we obtain that

M∗(R) =
∑
d6R

µ(d)M
(
R

d

)
=

log2 2
2ζ2(2)

R2 log2R

+
(

C1

2ζ(2)
+

log2 2
ζ2(2)

(
3γ − 5

2
+ log 2− 2

ζ ′(2)
ζ(2)

))
R2 logR

+ C ′R2 +O(R2−1/4+ε).

By formula (16), we have

L2(R) =
2 log2 2
ζ2(2)

log2R+ 4
(

C1

2ζ(2)
+

log2 2
ζ2(2)

(
3γ − 5

2
+ log 2− 2

ζ ′(2)
ζ(2)

))
logR

+ C ′ +O(R−1/4+ε).

Substituting this formula into (10), we complete the proof of the theorem.

Remark 1. For irrational numbers we can use the following analogue of s(α):

N(α,R) = #
{
j > 1: Qj(α) 6 R

}
,

where Qj(α) is the denominator of the jth convergent of the continued fraction
for α. It was proved in [18] that the mean value of N(α,R),

N(R) =
∫ 1

0

N(α,R) dα,

satisfies the following asymptotic formula with two significant terms:

N(R) =
2 log 2
ζ(2)

logR+
2 log 2
ζ(2)

(
log 2 + γ − ζ ′(2)

ζ(2)

)
− 3

2
+O

(
logR
R

)
,

and that the variance

D(R) =
∫ 1

0

(
N(α,R)−N(R)

)2
dα =

∫ 1

0

N2(α,R) dα−N2(R)
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satisfies the following asymptotic formula:

D(R) = δ1 logR+ δ′0 +O(R−1/3 log5R),

where δ1 and δ′0 are absolute constants (δ1 is the same as in Corollary 5).
Computer computations give the following approximate value of δ1:

δ1 = 0.51606 . . . .

Remark 2. The Gauss–Kuz’min statistics sx(r), which are more general character-
istics than the length of a continued fraction, are given for a fixed x ∈ [0, 1] and
a rational r = [t0; t1, . . . , ts] by the equation

sx(r) = #
{
j : 1 6 j 6 s(r), [0; tj , . . . , ts] 6 x

}
.

Using the ideas of [15], [20] and proceeding as in the proof of Corollary 1, we can
prove the following asymptotic formula for the mean value of sx(c/d):

2
[R]

(
[R] + 1

) ∑
d6R

∑
c6d

s

(
c

d

)
=

2 log(1 + x)
ζ(2)

logR+
2
ζ(2)

C(x) +O(R−1 log5R),

where

C(x) = log(1 + x)
(

2γ − ζ ′(2)
ζ(2)

− log(1 + x)
2

− log x− 3
2

)
+ f1(x) + f2(x)−

xζ(2)
2(x+ 1)

+
xζ(2)

2
[x < 1],

f1(x) =
∞∑

Q′=1

1
Q′

( Q′∑
Q=1

x

Q′ +Qx
− log(1 + x)

)
,

f2(x) =
∞∑

m=1

1
m

( ∑
m
x 6n< m

x +m

1
n
− log(1 + x)

)
.
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