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Asymptotic behaviour of the first and second moments
for the number of steps in the Euclidean algorithm

A. V. Ustinov

Abstract. We prove asymptotic formulae with two significant terms for
the expectation and variance of the random variable s(c¢/d) when the vari-
ables ¢ and d range over the set 1 < ¢ < d < R and R — oo, where
s(e,d) = s(e/d) is the number of steps in the Euclidean algorithm applied
to the numbers ¢ and d.

8§1. Notation

The symbol [zg; 21, ..., 2] stands for the continued fraction
1
zo+ ————
T+ . 1
o
Ts
of length s with formal variables xg, x1, ..., Zs.
For rational r we use (if not otherwise stated) the canonical continued fraction
expansion, r = [to;t1,...,ts], of length s = s(r), where ¢y = [r] (the integer part
of r), t1,...,ts are partial quotients (positive integers) and ¢, > 2 for s > 1. We

denote by s1(r) the sum of the partial quotients of r: s1(r) = to +t1 + -+ + ts.
If r is written as an irreducible fraction, then ¢(r) will stand for the denominator
of this fraction.

If A is some assertion, then [A] is equal to 1 if A is true; otherwise, it is equal
to 0.

For every positive integer ¢ we denote by d,(a) the characteristic function of
divisibility by ¢:

q(a) = [a=0 (mod ¢)] = {1 if 'a=0 (modg),

0 if a#0 (mod q).
The asterisk in a double sum
n m
means that the variables over which the sum is taken are subject to the supplemen-
tary condition (m,n) = 1.
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The finite differences of a function a(u,v) have the form

Aqpa(u,v) = a(u+ 1,v) — a(u,v), Agra(u,v) = a(u,v+1) — a(u,v),
Alyla(u,v) = Aoyl(Al,oa(u, 'U)) = Al,o(Ao,la(u,v)).

The sum of the powers of the divisors of a positive integer ¢ will be denoted by

)= d"

dlg
The Euler dilogarithm has the form

*log(l—1t)
L12 Z k2 = —/O fdt

§ 2. Introduction

A detailed analysis of the Euclidean algorithm leads to various problems con-
cerning the statistical properties of finite continued fractions (see. [1], §4.5.3). If
the input data of the algorithm are positive integers ¢ and d, ¢ < d, then the number
of divisions performed, which coincides with the number s(¢/d) of partial quotients
in the continued fraction

= = [05t1,...,ts),

is our chief object of interest.
Heilbronn was the first to study the problem of the behaviour of s(¢/d) in the
mean. In 1968 he proved [2] the asymptotic formula

. Z s(c> 210g21 gd + O(log* log d).
o) 2= ,"\a) ~ <

(e,d)=1

Later, Porter [3] obtained an asymptotic formula with two significant terms:

1 c 2log?2 _1/6
— sl=)= logd+ Cp — 1+ O (d1/5%¢),
@2, (5) - " S

(e,d)=1

where € is any positive number and

log 2 IO AR
CP‘<<><31 B2ty 2) 2

is a constant, which was called Porter’s constant (its definitive form was found
by J. W. Wrench [4]).

The methods of probability theory and ergodic theory made it possible to obtain
the following results for the mean values with respect to the parameters ¢ and d.
Dixon showed in [5] that for any positive € one can find a constant ¢g > 0 such that

121og 2
’s<c> o8 logd‘ (log d)'/?+¢
2

d
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for all pairs (¢, d) such that 1 < ¢ < d < R, with the possible exception
of R*exp(—co(log R)®/ %) pairs. Hensley [6] refined Dixon’s result and proved
that the difference between s(a/b) and its mean value has an asymptotically
normal distribution whose parameters can be described explicitly. In particular,
he proved an asymptotic formula for the second moment of s(¢/d). Later, Vallée [7]
proved asymptotic formulae for the expectation, variance and higher moments with
the remainder terms decreasing polynomically (see [8]).

For a fixed value of d, only the following estimate for the variance of s(c/d) is

known: 5
c 2log?2
p Z ( ( ) (2) log d) < logd.

This estimate, which is exact to within a constant, is due to Bykovskii [9],
who obtained it using methods of analytic number theory based on estimates
of Kloosterman sums.

In this paper we use the approach suggested in [9] and study the mean value

of s(c/d): ot ZZ ( ) .

d<R c<d

for R > 2. We prove an asymptotic formula for it in which the rate of decrease
in the remainder term is better than in Porter’s formula. Namely, we prove the

formula
2log2

¢(2)

o lm2(0)
B=cr 1+<(2)(2<<2> 1)'

E(R) = logd + B+ O(R™'1og” R), (2)

where

Moreover, for the variance
o0~ () -=0) ®

we prove the formula
D(R) = &1 log R+ §y + O-(R™Y/**°), (4)

where §; > 0 and §; are absolute constants and ¢ is a positive number as small as
desired. Note that the corresponding result in [8] only contained a constant v > 0
(instead of 1/4) in the exponent of the remainder term.

I am grateful to V. A. Bykovskii for the useful discussions and advice.

§ 3. Continued fractions

Following [9], we denote by M the set of all integer matrices

(o @)= (a8 o)
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with determinant det S = £1 such that
1<Q<Q, 0<P<Q, 1<P Q.

For real R > 0 we denote by M (R) the finite subset of M consisting of all matrices S
with Q" < R.
The following two properties of M (see [9]) are of interest.

1. To every finite (non-empty) tuple of positive integers (qi,...,qs) one can
assign a matrix S € M by the rule

0 1 0 1
SS(ql,...,qs)(l ql)"'(l qs).

We have
P P
S = ,
<Q Q’)
where
P P’
QZ[O;Q1,--~,QS—1], @:[O;qh---,qs]

(the last partial quotient can be equal to 1).

The map (¢1,...,49s) — S(q1,...,¢s) is a bijection between the set of all finite
tuples of positive integers and M.

2. fQ < Q and (Q,Q") = 1, then there are precisely two pairs, (P, P’) and
(Q — P, Q' — P’), such that the matrix whose first row coincides with one of these
pairs and whose second row coincides with (@, Q’) belongs to M. Moreover, if

Q
@:[0;(]81"'7(]1]:[0;qsv'~~aq1_]—71]7 C]1>27

then the corresponding matrices have the form
(o) a)= (o o)
L) "\l ¢) \Q Q)
0 1)\ /0 1 0 1 0 1\ [(Q-P Q—-P (5)
L 1)\l ai—=1)\1 )"\l ¢/ \ @ Q )

When Q = @’ there is only one matrix S = ({ }) belonging to M.

In the following lemma, for a rational number r € (0,1] we use the (unique)
continued fraction expansion ending with 1:

r=[0;t1,...,ts, 1], s> 0.

This expansion is more convenient than the canonical one in that it describes uni-
formly all these numbers, including r = 1.
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Lemma 1. Let ¢ and d be positive integers, 1 < ¢ < d, and let

gz[o;tla"'ats—ht&l]y 820 (6)

*(1)=) ™

m k,l €N, k<I, and S € M, has s solutions,

2) the equation
k c
s (1) = (5) Q

inkleN, 1<k<I, S1,5 € M has s(s—1)/2 solutions.

Then
1) the equation

Proof. It k/l =[0;q1,...,qm, 1], m >0,

s=(02)- (0 2)

and the numbers ¢, d are defined by equation (7), then ¢/d = [0;21,...,2n,
q1y---3qm,1]. Tt follows from (6), (7) and property 1 of M that there is a j,
1 < 5 < s, such that

0 1 0 1 k
(@ D0 D) et

Hence, the number of solutions of equation (7) coincides with the number of ways
in which one can choose j in the range from 1 to s, and so is equal to s.
We likewise deduce from (6) and (8) that there are j and r, 1 < j < r < s, such

that
0 1 0 1
s=(10)-(1 )

52_<1 tj+1)”'(1 tr)’ 7—[07tr+1,...7ts,1].

Hence, the number of solutions of equation (8) is equal to the number of pairs (j, r)
such that 1 < j <r < s, that is, to s(s — 1) /2.

§ 4. Expectation and variance

For a real R > 1 we put

iRy =Y ZSCZ) LoR) =Y 232(2)

d<R c<d d<R c¢<d
By (1) and (3), we have
2
D(R) = ——=——£,(R) — EX(R) (10)
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To obtain our main results (2) and (4), we have to obtain asymptotic formulae
for £1(R) and L2(R) with two and three significant terms, respectively.
We denote by A(d) the number of solutions of the equation

kQ+1Q" =d
in k, I, Q and Q' such that
1<k<I, 1<Q<Q, (QQ)=1 (11)
We denote by N*(R) the number of solutions of the inequality
kEQ+1Q" < R (12)

in k, I, Q, Q subject to the conditions (11). In other words,

N*(R)=>_ A(d).

d<R
We denote by M*(R) the number of solutions of the inequality
k(aQ +bQ") +1(mQ +nQ") < R (13)
in which

1<k<l, 1<Q<Q, (QQ)=1, (Z m)eM- (14)

n

The following lemma reduces the problem of computing E(R) and D(R) to the
study of the inequalities (12) and (13).

Lemma 2. Let R > 1. Then

£1(R) = 2N*(R) — [ﬂ [R;l} (15)
Lo(R) = AM*(R) + m [R;l} . (16)

Proof. Assertion 1) of Lemma 1 implies that the sum
>l

d
c<d

is equal to the number of solutions of the equation
* ok k *
(6 &) ()-6) w

<c*2 5,)6/\/1, 1<k<L

where
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If @' > 2, then property 2 of M implies that for a given pair (Q,Q’), there are
precisely two pairs (P, P’) such that the matrix whose first row coincides with one
of these pairs and whose second row coincides with (@, Q') belongs to M. Hence, in
this case the number of solutions of equation (17) is equal to 2A(d). If, on the other
hand, Q" = 1, then @ = 1 and the number of solutions of equation (17) coincides
with the number of solutions of the equation k + 1 = d, where 1 < k < [, that is,
it is equal to [d/2].

Hence,
= 2o(a) = Z - [3])
o[ v 2)25)

which completes the proof of (15).
To prove (16), we observe that, by Lemma 1, the sum

()06 )

coincides with the number of solutions of the equation
* % a m\ (k *
(6 )G 5 ()-6) )

(5 5,)(Z TZ>EM’ 1<k<l

If Q" > 2, then property 2 of M implies that the number of solutions of equa-
tion (18) is equal to twice the number of solutions of the equation

k(aQ +bQ") +1(mQ +nQ") =d

with the restrictions (14). If, on the other hand, @’ = 1, then Q =1, S = ({1),
and equation (18) has the form

G )6 DE=G) o (i) @)=6) o

By property 2 (see (5)), the set of pairs (a + b, m + n) coincides with the set of all
pairs (@, Q') such that 1 < Q < Q" and (Q,Q’) = 1. Hence, equation (19) can be

written as

where

kQ+1Q =d,

where 1 <k <1,1<Q < Q and (Q,Q) = 1. The number of solutions of this
equation is equal to A\(d) — [d/2]. Hence,

o2 (3 (5] ) = -2 (o - [3])

d<R c<d d<R

— 2M*(R) — N*(R) + [ﬂ {R;l} .
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Therefore,

Lo(R) = 4M*(R) + L1(R) — 2N*(R) + 2 [ﬂ {R;l} .

Substituting (15) into the last formula, we obtain the desired formula for L£o(R).

§ 5. Auxiliary assertions

Lemma 3. Let o = p(a)/q(«) be a rational number, let 3, a and b be real numbers,
a < b, and let f(x) = ax + . Then

a;ggb{f(x)} = b_?a +O(<Z(_a;l + 1)31(a)>.

A proof can be found in [10], § 2, Theorem 2.

Lemma 4.

> s (Z) < blog?(b+1)

a=1
for all positive integers b.

A proof can be found in [11].

Lemma 5. Assume that the function f(x) is twice continuously differentiable
on [a,b], and let p(x) and o(x) be the functions defined by the equations

o) =5 —fah o) = [ pluau
Then

A proof can be found in [12], Theorem I, 1.

The next lemma, of which special cases were proved in [13], is based on estimates
for Kloosterman sums obtained by Estermann [14].

Lemma 6. Let g > 1 be a positive integer and let a(u,v) be a function given at the
integer points (u,v), where 1 < u,v < q. Assume that the inequalities

a(u7v) 2 07 Al,Oa(va) < 07 Ao,la(uﬂj) < Oa Al,la(uvv) 2 0
hold for this function at all points at which they are defined. Then the sum

W = Z dg(uv £ 1)a(u,v)

w,v=1
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(with either choice of sign in the symbol +) satisfies the following asymptotic

formula: p

a(u,v) + O(Av(9)/q),

where Y (q)=00(q)o_1/2(q) log? (q—|—1) and A=a(1,1) is the mazimal value of a(u,v).

A proof can be found in [15], Lemma 5.
The following lemma is a special case of Theorem 1 in [16].

Lemma 7. Let n > 1, let f(z) > 0 be a function twice continuously differentiable
on [Py, Ps] C [0,n], and let

—_

w

- < | (@) < =

c c
for @ € [Py, Pa] with some w, 1 < w < ¢. Then

> Y dlayEl) == > @)+ Ocu((ne™P 4 AP)n).

P <z<Py 1<y< f(z) I?<T)<P2
x,n)=1

Lemma 8. For R > 1, the sum

- Y 5070 (20)

Q<R Q<Q’
satisfies the following asymptotic formula:
¢(2) 1 1 1
©(R) =log2(log R +log2+17) — >~ + & log(2p(R)) + 1) 0l %)

Proof. Note that

1S 1
log2z ——!—00 Z C)’(ZQ—l—Q/_lng)’ (21)

Q’<R Q>R Q=1
where
1
o log?2 |. 22
" QZ:lQ’(ZQJrQ' g) 2
Using the method of generating functions, we obtain the exact value of o (see [4]):
2
oo = log?2 — @. (23)

2

Moreover, Lemma 5 implies that

p(R) 1
ZQ, log R+ + == 0<R2>,

Q’<R

1 1
ZQ+Q’ log2 =3 +O<(Q’)>

Substituting the last three equations into formula (21), we complete the proof
of the lemma.
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Lemma 9. For & > 2, the sum

:Zznlz(:b m—i—n) Z Z ( mi”) 2

n<& m<n n<g m<n
m4n>&

satisfies the following asymptotic formula:

B log 2 B 1 2log2 (€ log ¢
F(g)_log2<log§+ 5 + 1)4—25(1 log2)+ € p(2>+0< e ) (25)

Proof. Note that

F(€) = Fi(€) — Fy(€) + O (loff) , (26)

where

RE= Y Y ;Q‘Tnlw):@(f—”’

n<E—1 m<ne

- Y ¥ i)

n<E—1 m<n
m4+n>&

and ®(R) is defined by equation (20). By Lemma 8, we have

Fi(§) =log2(log £ +log2 + ) — @ - 2(105;(2(;)(5) ~1)) + i) + o(é).

Using Lemma 5, we obtain the equation

O e R A G e T )

E—n<m<n

for n > £/2, where

o) = ¢ (logn = log(€ = ) + = 1og(¢ — ) ~ log)
Hence,
1 1 1 1
F(¢) = Z g(n)+ <log2+2€) Z n4§+0< oggf)'
£/2<n<E-1 £/2<n<E-1

Again using Lemma 5, we obtain that

) i:10g2+2(p(£)—1—2ﬂ(§>> +O(£12>

§/2<n<é-1

> at0= [ atman+o( S5

g/2<n<e—1 /2
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By making the change of variable n = x¢ and taking into account the equations

Liz(1) = ¢(2) and Lix(3) = @ - @ (see [17]), we obtain that

3 1 log(1 —
/ g(n)dn = / (logw —log(l —z) + og(a:)) dx
¢/2 1/2 x

= (zlogz + (1 — x)log(1 — x) — Liy(x)) |i:1/2 =log2 — %(C(Z) +log®2).

Therefore,

Fo(6) = log 2 + (log 2—C(2))+IO§2(p(§)—2p<§> —D —41€+0(1‘;gf>.

Substituting the asymptotic formulae obtained for F;(§) and F»(&) into (26), we
complete the proof of the lemma.

Consider the four sums

n

aern -
Z Z (am +n)? ’ Z Z Oém‘f'n)

n<R m=1 n<R m=1
n n
[am 4+ n < R)
os3(a, R) = Z Z[am+n<R], Z
n<R m=1 n<R m=1 am+n

and the function

Lemma 10. Let 1 < U < R/2. Then

: (logR—i—cl(a) + ;(p(R) + ;)) +O<];>,
-

1
(log R+ (@)

—_

ol(a,R) =

(%

-+

oa(a, R) = 1

=}

where

log(a+1)  ((2) a® +2a
o 2 a+l1

—|—'y—1—|—204(04—|—1)/1(h(g)df7 (27)
0

Cl(a) = Ozf ¥ 1)3

log(ar+ 1)
«

co() = c1(a) — +1.

Moreover, for rational o € (0,1] with denominator g(«), we have
R? aR R
= = ——+1
(@R = 50T T Bt ) +O<(q(a) N )sl(a)>’

ou(a, R) = ai - 2(046:— N 1ogR+o(<1;)(gj + 1) (a )>.
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Proof. We compute o1 («, R) using Lemma 5:

Z Z am—i—n) + Z Z am+n

n< Gy msn B <n<R mg B

" dm 1 1 ™ p(m)dm )

= ST (S —T ) RASAS
P (] i (1) e [ Gy
TS
(B=n)/a dm p(R) 1 1
* Z<R(/O (am+n)2+ R _27L2>+O<R2>
<n

0+1

- il(logR—i-q( )+ ;(p(R)Jr ;)) +O(;;)

The asymptotic formula for oo(a, R) can be verified likewise.

The sum o3(a, R) can be written as

Zn+ 3 [R;"].
n< o7 a+1 0t+1 <n<R

Applying Lemma 3 to the second sum in this equation, we obtain that

n;;f fl) —|—O(<qzz)+1)51(a)>,

n

R; }. Applying Lemma 5 to the sum of the values of f(n)

where f(n) = min{n,
on each interval of linearity, we obtain the desired formula for o3(«, R).

Let 1 < A < A2 < -+ < Ap < R be the values taken by the form am + n when
1<m<nand am+n < R Then

G
:ZY'
j=1"9

We apply the Abel transformation in the integral form
Ap

,
> aig(y) = AQp)gp) = | At)g'(t)dt (28)

A1

to this sum, where
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To do this, we put a; =1, j =1,...,P and ¢(¢t) = 1/t. Then A(t) = o3(a,t) and

A Ap N
az;(a,R)za?’(C;PP)+/A 03(:2‘ ) at.

1

Since A\; > 1, A\p — R < 1, o3(a, R) < R? and o3(a, \p) = o3(a, R), we have

3l R03
04(a,R)=0‘3(R’R) +/1 (t )dt+0( 1)

=" TEESY long((lqO(ji ' 1)51(0‘))

The lemma is proved.

Lemma 11. The function c¢i(«) given by formula (27) satisfies the equation

1
c1(a) log 2

da=log2(v—1 . 29

/0 at1fT® (7 * 2 (29)

Proof. If F(z) = [ f(x)dz, then

/Olp(mc)f(x)dx:n/ol e -y F( >

k=0

(the prime in the sum means that for £ = 0 and k = n, the terms are taken with
coefficient 1/2). Thus, the integral involving h(§) can be expressed in terms of the
sum (22), and its computation reduces to equation (23):

L oh(x) =1/ 1 1 1
= S — i — —log24+ —
/0 (@12 Zq(q+1+ Tt +4q>

qg=1
¢(2) 2, C(2)
= =~ =log“2 - —=~. 30
oo + 1 0g 4 (30)
The other integrals can be computed directly.
Given a matrix S = (§ ) € M, we denote by fs(¢) the function

1

The prime in sums of the form Z/ On(bm £ 1) ... means that (in accordance
bm=1
with property 2 of M) for n = 1 we take the minus sign in the symbol 4, while

for n > 1 we consider both signs independently. By a in these sums we mean the

fraction b":lé.
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For real U > 1 we consider the sums

= > fs(0) A—Zfs

SeM(U) SeM(U

= > fs() Wi (U / fs(t)

SeM(U) SeM(U)

Z / log(mt +n) fs(t) dt

SeM(U)

- > [ (;iii>fs<t>df-

SeM(U)

Lemma 12. For U > 2 we have

2log 2 U
Ao(U) = C?g) logU—i—CAO-i-O(og, ),
log 2 log” U
AU) = C(g) logU-i-CAl—i—O( Ugm )
B 2log 2 log® U
B(U,t) = BAOIESIE logU + Cp(t) +O<U1/2 )
21og*2 ¢'(2) log® U
Wy (U) = () logU + v — ©) +C14+0 e
Clog®2 ., log? 2 <2 log® U
Wo(U) = 22 log= U + O 2 +log?2 log2 logU + Cy+ O i )
21og? 2 log 2 log® U
Ws(U) = ©) (fy—l—l— 5 )logU—i-Cg—l-O( Uiz )

where Cg(t) is a continuous function of t and Cga,, Ca,, C1, Ca, Cs are absolute

constants, and

Proof. The asymptotic formulae for Ag(U), A1(U), B(U,t), W1(U) and W (U)
were proved in [18], Lemma 6, Remark 2, Corollaries 1 and 2.
We write W5(U) as

Z S (bm £ 1) / Fs(€)de — 752”) (32)

b,m=1

Ws(U) = Y ws(n),
n<U
where

n

/ 1 at+b dt
wy(n) = Y 6n(bmi1>/o cl(mt+n)(mt+n)((a+m)t+(b+n))

b,m=1

= g; On(bm £ ey (2) /01 (L 1)?;t+n)2 - O(ﬂlg‘)'
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Lemma 6 cannot be applied to this double sum directly, but the assumptions
of Lemma 6 hold for each of the sums

n

"5 m1)Cy [ di
n 1 )
2 albm £ 1) 0/0 (25 1) (mt + n)?

bm=1

S bubm £ 1) (CO o (D) /o1 (2 + 1)?:”75 0

bm=1

for sufficiently large Cy. Therefore,

w0 =252 3 () [ e (R

bym=1

zzlogzsiig)/o @ g +O(w< >>

a+1 3/2

Formula (29) implies that

wa(n) = 2log? 2(7 —1+ log2> Wr(;) + O(w(n)).

2 n3/2
Hence,
log 2 o(n) log® U
_ 2 ’
W3(U)—210g 2(’}/—1+2>Z TL2 +O W 5
n<U
where

c- log 2\ p(n)
Cl =
3—5_( —210g 2(7 1+ 5 >n2 .
Substituting the relations

54 gl -8 o)

into this equation, we complete the proof of the lemma.

Lemma 13. Let R, U > 2 and let R be a half-integer. Then the sum

-y wyas(t)

SeM(U) g<R z= 14
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where the function fs(t) is defined by equation (31), satisfies the asymptotic formula

21o 2log” 2 "(2
W4(R,U) = og” logRlogU+< o8 (V—C())+Cl>logR+C’4

¢(2) ¢(2) ¢(2)
21og? 2 ¢(2)
+ < (1og2+’y—210g2)10gU

2)
<10g2 logU + Cy, —CAl)
(log® U)log R log U

where Cy is an absolute constant and Ca,, Ca, are the constants occurring in
Lemma 12.

Proof. Applying Lemma 5 to the function

1 1 T
90 = g (@t ma t G rmg) & S<q)’

we obtain that

S to(2) =3 [ st 5 (10 = 50) = 3 [ tansacoan

Taking into account the relation

! ! 1 ! 4 1
/0 plat) f5(0)dt = —— / (at) f5(0) dt <

and using Lemma 5, we obtain that

Wa(R.U) = (log R+ WD) + 3 (602) ~ ;) (42(0) = Ao@)

logU
/h Utdt+0( R )
Substituting the asymptotic formulae obtained in Lemma 12 into this equation and
using formula (30), we complete the proof of the lemma.
Lemma 14. Let R, U > 2. Then the sum

WaRU) = DL D Z(bk—i—nl

(‘;)« 7;; eM(U) IR k<1

—max{l, (a+b)kf(m+n)l})[bk:+nl <R

satisfies the following asymptotic formula:

2

1
082 pay, g U+ %(CAO —C4,)+O(R*UY%10g” U)+O(RU log® U),

2¢(2)

where Ca, and Cy, are the constants occurring in Lemma 12.

WS(Ra U)
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Proof. We write W5(R,U) as

b R at+b R
WHRU)= ), <U5<n’n)_05<m+n’m+n)>’
(5 7 )emw)

where

o5(a, R) = Rog(a, R) — o3(a, R) = 2<aRj1) + 0((1;(3;; + R>51(a)>

in the notation of Lemma 10. By Lemma 4, we have

R? R?
Ws(R,U) = Z n n)  2(m+n)a m-+n
(‘g’,’L‘)eM(U)<2 (b+n) 2(m+n)(atb+m+n)

~o( (=) ()

_ (AO(U) — A1 (U)) + O(R¥?) + O(RU log? U).

Substituting the asymptotic formulae for A;(U) and Ag(U) (see Lemma 12) into
the last equation and observing that R3/2 < RU + R2U~'/2, we obtain the desired
formula for W5(R,U).

Lemma 15. Let R, U > 2. Then the sums

We(RU)= > > > Q+nQ”

(37 )emu) Q'SR QQ’

Wi(RU)= ZZ +mQ+(b+n)Q

(4 ™)emu) Q' <RQ<Q’

satisfy the following asymptotic formulae:

Ws(R,U) = RU + O(Ulog R) + O(RUY?10g” U),
Wi(R,U) = RUlog2 + O(U log R) + O(RU?10g® U).

Proof. We prove the assertion of the lemma for W7 (R,U). The formula for Ws(R,U)
can be verified likewise.
Using the equation

B 1 dt log R
Z Z a+mQ+(b+n)Q _R/O (mt+n)(1+,‘;)+0( n )

Q'<R Q<Q'’

we obtain that

! dt
Wr(R,U) = R(a M)ZMW)/O CEDIED +O0(UlogR).
bn)€
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By Lemma 6, we have

W7(R,U):210g2/ w& RZ("HO(M )>)+O(UlogR).

1/2
0 n<U

Using the equations

/Owdt:_mg(—l)zégm, ; 2 (n) L)JrO(logU)

we obtain the desired formula for W7 (R, U).
Lemma 16. Let 2 < U, Ry < R and

1
at+b Ry
pr— dt.
Ws(R1,U) (am)ze:M(U)/O Jg(mt+n’mt+n)
bn

Then

1U(l —log?2) + O(R,UY?1og” R) + O(U?log® R).

(33)

Ws(R1,U) = By Wl(U)

at+b Ry
mt+n’ mt+n

at+b 2
increasing function of ¢ and og(mt Tr it +n) < R?/n?. Therefore,

1 — S+b Ry R?log R
Wg(R1,U) = ~ , o 2—==—).
=t S ) o Hket)

(5% )em@) ®

Proof. Let p > 2 be a prime number. By definition, 03( ) is a non-

Using Lemma 10 and observing that

ar +b ar + b m x
Q<p) =mx +np 2 np, S1<p> <<31<> +81<)7
mx + np mx + np n D

we obtain the following representation for Wg(Ry,U):

Wg(Rl,U)=% Z Z(RQfS() <7$Ej_n_(a+m)§1+b+n)>

(3 m)em) =

ot B () (2)
ot

R? log R)

By Lemma 4, we have

LT S B () () (B
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Hence, for all p in the range R? < p < 2R?, we have

1 R1 Rl
Wg(Rl,U) = amz / <R2fS (mt—Fn o (a+m)t+b+n)>dt

(b n
+ O(U2 log R).

As in the proof of Lemma 15, we obtain that

_ 1/2 1565
Z /mt+n U+0U*log”U),

(b n)EM(U)
> /1 dt =Ulog2+4 O(UY?10g” U)
(s o @+mit+btn =~ 8 &Y
bn )€
Hence,
R? RU 5
Ws(Ry,U) = LW (U) — —2=(1 — log 2) + O(R,UY?1og” R) + O(U?log® R).

8§ 6. Asymptotic formula for the expectation

We denote by N(R) the number of solutions of the inequality

EQ+1Q' < R (34)

for which
1<k<l, 1

N
Q
N
<
g

Theorem 1. Let R > 2. Then

2

log 2
Og R%*log R + %(log2(3log2+4'y—3) —((2)) + O(Rlog" R).

N(R) =

Proof. Let U be a half-integer such that 1 < U < R. We denote by N;(R,U) the
number of solutions of the inequality (34) with the restrictions (35) for which
the supplementary condition @' < U holds. The number of solutions such that
Q' > U will be denoted by No(R,U). Hence,

N(R) = Ni(R,U) + No(R,U). (36)
To compute Np(R,U), we observe that

U)=> Nf(?ﬂ), (37)

d<U

Ni(R,U) = ZZ > D kQ+1Q <RI

Q'<U Q<Q" IKR/Q’ k<l

where
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By Lemma 3, we have

MDD CICES RN SN TN SR

ISR/Q" k<l ISR/(Q+Q’) R/(Q+Q"KISR/Q’
s min{ZR—lQ’} 1<R R )
- O o~ z
e Q Q@ Q+Q

R Q
+o((gp+)(3))
It follows from Lemma 5 that
_ / R/Q / ’
Z min{l,R QZQ }/0 mm{l —1Q }dl+0<%)

IKR/Q’ Q
_ Q
2001 0) Q+Q’ +O(Q>

Lemma 4 implies that

Ni(R,U)
=3 3 % e

o
2¢(2)

Formula (37) implies that

(1 —1log2) + O(Rlog® R) + O(U?log® R).
2
Ni(R,U) = u <1>(U) RQU(I —log2) + O(Rlog* R) + O(U?log? R),

where the function ®(R) is given by (20). Using Lemma 8, we obtain the final
formula for Ny (R, U):

R? ¢(2)\  R* RU
N = —(log2(1 log 2 — ) - (1 —log?2
1(BU) = 5 (og (log U +log2 +7) — = )+8U 5 (1 —log2)

+ O(Rlog* R) + O(U?log® R) + O(R*U~?). (38)

Let Ry = RUL. For No(R,U) we likewise obtain

(R
Ny(R,U)= > Nj (d,U),
d<R1
where

N3 (R, U) = ZZ > > kQ+1Q < R

ISR1 k<l U<Q'KR/l QLQ’

vy ey [me)

ISR k<l NU<Q'SR/(k+1) max{U,R/(k+1)}<Q'<R/1
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Successively using Lemmas 3 and 4, we obtain that

o= 3 3 afe )Ly > (T )

ISRy k<l U<Q'<R/I ISR; kI

k+l<R1
- Z > ( —U> + O(Rlog® R) + O(R?log® R).
l<R1 k<l
k+l>R1

Hence,

DI S e i S

I<Ry k<l U<Q'<R/L

k+I<R1
1 R
-3 3 (z - U) +O(Rlog" R) + O(R*U*log® R)
ISR1 k<l
k+l>R1

YT Y wfe @)

ISR k<l U<Q'<R/I

+ O(Rlog* R) + O(R?U~21og? R).

By Lemma 5, we have

2(R,U) ZZ// (kQ +1Q" < R]dQdQ’

ISRy k<l
R?

-3 + O(Rlog* R) + O(R?U~2%1og® R).

To compute the double integral, we successively make the changes of variables
w=kQ+1Q", £ =wU !, y=Q'U~"! and obtain that

n Q/ ! ! 1 r R w ! w /
| [ e <maqae = [ f [Mw <l]dwdQ
fupfur ¢ 3
S R
Uz [k 1 1

2 Ry
— [ oG- ek nae
0
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Hence,

R 2
! R
No(R,U) = U? i EF(§)dE — o + O(Rlog* R) + O(R*U~210g” R),

where the function F(€) is defined by (24). By Lemma 9, we have

log 2 R log2 3 RU
NQ(R,U): 0§ R2<10gU+ Og +’Y—2>+2(1—10g2)

R2
-t O(Rlog” R) + O(R*U%1log®> R) + O(U?log*> R).  (39)
Substituting formulae (38) and (39) into (36) and putting U = [RY/?] + 1/2, we
complete the proof of the theorem.

Corollary 1. Let R > 2. Then

2log 2 log 2 (2 3 5
= OglogR+Og(310g2+4fy—2C( ) —3) — 4+ O(R 'log” R).

R =70 (@ (@ 2

Proof. Substituting the result of Theorem 1 into the inversion formula

we obtain that

N*(R) = ;‘2%22) R?log R
R RN .
+ @) (log2<310g2+4'y QC(Z) 3> C(2)) + O(Rlog” R).

Substituting this result into the first equation in Lemma 2, we obtain the equation

L(R) = zéiR log R
1 ¢'(2) 3
+ m<10g2<3log2+47 -2 C(2) - 3) — 2((2)) + O(R10g5 R)

Substituting this into (9), we complete the proof of the corollary.

§ 7. Computation of two auxiliary quantities

To compute the variance D(R), we have to know asymptotic formulae for two
auxiliary quantities. They can be studied in the same way as N(R).

Let o, 8 € [0,1] be real numbers. We denote by T(R) = T(«, 5; R) the sum

T(R)= > > > [(ak+1)(BQ+Q)<R],

LQ'SR k<l QLQ’
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which obviously coincides with the number of solutions of the inequality
(am+n)(Bk+1) < R (40)
in k, [, m and n for which

1<k<l, 1<m<n. (41)

Lemma 17. Let o, § € (0, 1] be rational numbers with denominators q(c) and q(3),
respectively. Then

R? 1
T(R) = 2(044'1—)(5‘*‘1) <logR + () +a(B) — 2)

) <R3/2 (‘21((5)) + S;((ﬁﬁ))) +R(s1(a) + 81(ﬂ))>

for all R > 1, where ci(a) and ¢1(B) are defined by (27).

Proof. We can assume without loss of generality that o < 5. Put U = [\/R] +1/2.
We denote by T;(R,U) the number of solutions of the inequality (40) with the
restrictions (41) for which I < U. The number of solutions with [ > U will be
denoted by T>(R,U). Thus, we have

T(R) = Ty(R,U) + Tu(R,U). (42)

To determine Ty (R,U), we observe that, by Lemma 3, for fixed k£ and [ the
number of solutions of the inequality (40) in m and n is equal to

2(a1—|—1) <ﬁkR+l>2 N ;ﬁkRH(l - a—lu) +O(<q(};)z +1)81(O‘)>‘

Therefore,

R2

Tl(R’U)Zm

l

> ﬁklﬂ +O<<$+R)sl(a)>.

Ra
UQ(B’U)—2(04+1>I<U]C ‘

Using Lemma 10 and the equation

Lo log(8+1)
Zzgkﬂ = U+ O(logU),

ISU k=1 p

which follows from Lemma 5, we obtain that

R2
2(a+1)(B+1) 3 +1+62(ﬂ+1)

S C T L 0<(Z;) #R)n@)

T, (R,U) =

(logU +c1(8) — w 1 M)
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Putting R,

RU™Y, we likewise obtain the following formula for T3(R,U):

LRU) =Y Y ZR min{l’[;< : _l>]}

am+n
n<R1 m<n U<ig

N am+n

S B ]

,=
am +n
n<R1 m<n U<ig ﬂ

am+tn

15 Kl el

am+n)(B+1)
+O<<q(§)n + 1>51(6)>.

Using Lemma 5 and taking into account that U is a half-integer, we obtain that

R l
T(RU)= Y Z/U /0[(am+n)(5k+Z)<R} dk dl

n<R1 m<n

= 5 (st~ s (o575 )) +o((f(ﬂ/> FR)a()). @)

where, in the notation of Lemma 10,

o5(ar, R) = Roy(a, R) — o3(av, R) = Mle) + 0((5(35 + R)sl(a)>,

whence

3 (teom—os(o0. 755)) = st o (G +0)@)

(44)
To compute the double integral in formula (43), we make the changes of variables
k =tl, 1 = U¢ and obtain (in the notation of Lemma 10) that

R rl
> Z/U /0[(am+n)(ﬁk+l)<R]dkdl

n<R; m<n

1 Ry
:U2/0 > Z/l ¢[é(am +n)(Bt +1) < Ry] dédt

n<R; m<n

U2 1 R2
- 7/0 Z Z ((ﬁt+ 1)2(61)4m+n)2 - 1) [(am—f—n)(ﬁt—l— 1) < Rl] dt

n<R1 m<n

R? /1 dt (a Ry > U? /1 (a Ry ) Ut
= — —— 0 - — o , S .
2 Jo (Bt+12 "\ Bt+1 2 )y P\ pt+1
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By Lemma 10, we have

Looat R,
[ o (ea)
B 1 log(8+1)
_MM(IOgR1+Cl(a)+ﬂ_1)
a log(8 + 1) Lodt Ry 1
+<a+1>Rl( 2% o 5t+1p(ﬁt+1>>+O<R)’

/10 (a Ry )dt_ R? _aRy log(B+1)
o AT Bt+1)7 T 20+ 10)(B+1) 20a+1) B

wo(( + m)n)

We have assumed that o < 5. Hence,

Looat (511 ) a 1 1
- p L - — K —

Oéo pt+1 Bt+1 B8R Ry
am +n)(k +1) < R| dkdl
PR WIA q
B R? log(6+1) 3
RECESCES) <1°gRl+°‘<“)+ 3 2)
a log(3 + 1) R3/?
TR 28 +O((g( >+R> ”)' (43)

Combining equations (43)-(45), we obtain the following asymptotic formula for

To(R,U):
R log(B + 1) 3)

R2
T2(R,U) = 2(044‘1)(54'1)(logU +ei(a) + T —3

log(B+1) R2UY(B%+2p)

T aTDRU . 23 da+D(@F+12

Substituting the asymptotic formulae obtained for T7(R,U) and T5(R,U) into

(42), we complete the proof of the lemma.

For real a, 8 € (0,1] we denote by L(R) = L(«, 8; R) the sum

[(am +n)(Bk +1) < R

Z ZZ (am +n)2(Bk + 1)?

I.n<R k<l m<n
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Corollary 2. Let o, € (0,1] be rational numbers with denominators q(«) and
q(), respectively. Then for every R > 1 the following asymptotic formula holds

for L(R):
L(R) =

1 (logQR
(a+1)(B+1) 2

rolm (G + i)+ v

where c1 () is the function occurring in Lemma 10 and c(a, §) does not depend on R.

+log R(c1(a) + c1(B)) + c(a, ﬂ))

Proof. We obtain the assertion of the corollary from Lemma 17 using the Abel
integral transformation (28). It is sufficient to consider the sequence Aq,...,Ap
of values of the product (am + n)(Bk +1) when 1 < m < n, 1 < k < [,
(am+n)(Bk+1) < R,andput a; =1, j=1,..., P, g(t) =1/t

Corollary 3. Let R > 2. Then

ot log?2 , 5 2
T(a,ﬁ;R)dadﬁziR logR+2'y—f+log2 + O(Rlog” R),

log log 2
/ / dadﬂ—il 0g? R + 2log? 2(logR)< —1+°§>

+CL +O(R log® R),

where Cp, is an absolute constant.

Proof. Let p > 2 be a positive integer. Then

1,1 - )
[ [Fresminiae 5 (5 ) o E2u),
0o Jo p S\ »

For prime numbers p, Lemma 17 implies that

// R)dadp

- 1 22<1+> (o (5) +r(3) - 3)
co(TRER) o (B m)1Sn(8))

/Ol/olT(aﬁ;R)dadﬁ:/ol/olMLW(logR—i—cl(aﬂ-q(ﬁ)—;)

Since ¢1 () is a continuous function, Lemma 4 implies that
R/ R?log R
+O(< » —l—R)long)—l—O(;g )
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By choosing p in the range R < p < 2R and applying (29), we complete the proof
of the first equation of the corollary.

The second equation can be proved likewise. The integrability of ¢(«, ) follows
from that of L(«, 8; R), ¢1(«) and ¢ ().

8§ 8. Asymptotic formula for the variance

We denote by M(R) the number of solutions of the inequality (13), where

b n

1<k<l, 1<Q<Q, (“ m)e/\/l. (46)

Let U and Uy be real numbers in the segment [1, R]. We partition the solutions
of (13) with the restrictions (46) into three groups for which

Dn<U, Q < U,

2)n<U, Q/>U0,

3)n>U.

In accordance with this partition, we write M (R) as

M(R) = My(R,U,Uy) + My(R,U,Uy) + Ms(R,U).

Each summand will be studied separately.
We begin with the computation of M;(R, U, Uy).

Lemma 18. Let 2 < U,Uy < R, and assume that Uy is a half-integer. Then

log? 2
M;(R,U,Uy) = (C)i) R2log U log Uy
Cy log22< c’(2)>> > Ci o
+| =+ v = R7logUp + —R
(2 ¢(2) ¢(2) T2
10g22 ¢(2) 2
log2 +~v — = | R?1
+ ©) (og + I log 2 R logU
R? (log?2 1—log?2

+ O(R?U; % log R) + O(R*U~?10g° R)
+ O(RU U2 10g” R) + O(U?UZ log® R),

where Cy, Ca, and C4, are the constants occurring in Lemma 12 and Cy is the
constant occurring in Lemma 13.
Proof. Let a, b, m, n, @ and @’ be fixed and put

R—l(mQ—i—nQ’)}
aQ + b0’ ‘

£() = min{z,
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Then the number of solutions of the inequality

k(aQ +bQ") +1(mQ +nQ’) < R

in k and [ with the restrictions (46) is equal to

oooorm- > {ro)

ISR/(mQ+nQ’) ISR/(mQ+nQ")

Applying Lemma 3 to the first sum and Lemma 5 to the second, we obtain that

R? B R( 1 B 1 )
2(mQ + nQ’)((a +m)Q + (b+ n)Q’) 2 \mQ+nQ (a+m)Q+ (b+n)Q’
R _, [ aQ +bQ’ a@ + bQ’
+O<(nQ,q 1<mQ+nQ/> +1)s (mQ+nQ,>) (47)

Observing that

a@ + bQ’ m Q
= (m@+n@’) < (n) ”1(@')

and using Lemma 4, we obtain the following estimate for the sum of the remainder

(ermS:

DD SID ol 7
(¢ ™)emw) Q'<Uo Q<Q’
Q+bQ'
— - + 1) (a,)
(b Z”EE:M(U) 5;70 Q’<2U:0/6 Q;Z <n5Q (m@Q +nq) e+l

<2 e 2 S (e (4(5) (@)

n<U m<n 6<Up Q'<Up/5 QLQ’

< Rlog” R+ U*UZ log? R.
Adding the terms of (47) together, we obtain that
MR, U, Uo) = w0, 0) - E wi(w,0) - Wi, )
+ O(Rlog’ R) + O(U?Ud log” R).

Using Lemmas 13, 15 and taking into account the estimate RU < R2Uj; 2L U8,
we obtain the desired formula for M; (R, U, Uy).



Asymptotic behaviour of the moments in the Euclidean algorithm 1051

We now compute My (R, U, Up).
Lemma 19. Let 2 < U,Uy < R, and assume that Uy is a half-integer. Then

log?2 , R
R,U,U, R*log U lo
Ma( 0) = Q) gUlog -
4 10g22< 2))> log? 2 2
+ =+ — — R%log* U
< 2 (2) (2) 2¢(2)
n log? 2 § ¢(2
¢(2) 2" 2log
2 1—log2
+COLR? — 4U0< U+Cy, —CA1> + TgRUUO

+ O(R*U; % log® R) + O(R*U~Y?10g" R)
+ O(RU,UY?10g® R) + O(U?UZ log® R),

where CY% is an absolute constant and Ca,, Ca,, Cy are the constants occurring
in Lemma 12.

Proof. Put Ry = RUo_l. As in the proof of Lemma 18, we assume that a, b, m,
n, k and [ are fixed and the conditions (46) hold for them. Consider the function

R— Q' (bk +nl) }

10 =min{ @, =2

The number of solutions of the inequality

k(aQ +bQ") +1(mQ +nQ") < R
in Q and Q' such that Q' > Uy and 1 < Q < Q' is equal to
>, f@- X {ro)
Uo<Q' <R/ (bk+nl) Uo<Q' <R/ (bk+nl)

We again apply Lemma 3 to the first sum and Lemma 5 to the second. Since Uy is
a half-integer and

ak +ml B bk + nl
bk+nl ) (k, )’
we obtain that

S q@- Y

Uo<Q’'<R/(bk+nl) Uo<Q’'<R/(bk+nl)

R Q'
_ / / [Q(ak + ml) + Q' (bk +nl) < R] dQ dQ’
Uy JO

Uo Rl Rl
- 1 <
(bk nl max{ (a+ bk + (m+n)l}>[bk+nl Ri]

ol (B8 22))
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We estimate the sum of the remainders as we did in the proof of Lemma 18. In the
notation of Lemma 14 we have

MQ(R7 U7 UO) =

. ZZ/U/ Q(ak +ml) + Q' (bk + nl) < R]dQ dQ’

(¢ ™em) ISR k<

e
Uo 5 277272
7W 5(R1,U) + O(Rlog” R) + O(R*Uy log” R).

Using the change of variables Q = tQ’ and Q' = £Uy, we transform the sum thus
obtained as follows:

vy ZZ// (t(ak +ml) + bk +nl) < Ry d€ dt

((é TT’L' emM(U) ISR k<I

:%g > ZZ/ (( ak+ml)1+bk+nl)2_l>

(‘g m EM(U) IR k<l

[(akerl ) + bk +nl < Ry dt

2 (o) mt+n mt+n’mt+n

n

t+b R
—Uos i’ L dt.
mt+n mt+n
Hence,

1 at+b R1
My (R,U,Up) = = dt
2(R.U.Uo) 2 Z / mt+n (mt—i—n’mt—i—n)

_Us Ws(Rl, U) - @W5(R1, U) + O(Rlog® R) + O(R*Uy %log® R).  (48)

Using Lemma 10, we obtain, in the notation of Lemma 12, that

(mt +n)? mt+n’  mt+n

U
=Wy (U)log Ry — W>(U) + W3(U) + ﬁ(l —log2)
1

+ I(U) + O(RT U2 10g® U) + O(RT2U?), (49)

I<U):Ri1 2 / (mt+n_(a+m)1+b+n)p(mfjrn>dt'

(5 )eM®
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Integrating by parts, we obtain the estimate

UlogU  logU

(U .
U) <~ R

Hence, the order of I(U) does not exceed the orders of the remainder terms.
Substituting (33) and (49) into (48), we obtain that

My(R,U,U,) = If <<log Ry — ) W (U) — Wa(U) + Wg(U))

I;O Ws(Ry,U) +

R(;UO (1 —1log2)

+ O(R*U; *log? R) + O(U*U2 log? R) + O(RUU? log® R).
Using Lemma 12, we obtain the desired formula for My (R, U, Up).
Corollary 4. Let 1 <U < R. Then

1
Mi(R,U,Us) + Ma(R, U, Up) = 2’? 5 R?log RlogU
+ (C’1+10g 2( >>R210gR+CoR2
2 (2
log?2 _, ( ) 5
- R%log 2—7+2 R?logU
2(2) 1)

+ O(RU log? R)+O(R2 U~Y210g® R).

Proof. We prove this by combining the results of Lemmas 18 and 19 and putting
Up = [RV2U-?] +1/2.

We now compute M5(R,U).
Lemma 20. Let 8RY? < U < R/2. Then

log 9 R R 5
log® — +2log — | 2v — = 4+ log 2 4
M;3(R,U) = QC() ( U+ ogU(w 2—|—og>+03>

+ O(RUlog? R) + O(R**U~1/3),

Proof. Let Ry = R/U. By the definition of M;3(R,U), we have

Z Z Z Z T:t(k,l,Q,Q,,n), (50)
IQ'<Ry k<l QLQ’ n>U
where
Te(k,1,Q,Q' n) = Y dn(bm+1) [k(bmi 1Q+5Q> +1(mQ +nQ") <R

b,m=1
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To compute T4 (k,1,Q,Q',n), we assume for the moment that I/k < Q'/Q.
Consider the function

cwindn L(BEFRQ
m(b)—mm{n,Q< ey —nQ)}

on the segment inside [0,n] on which this function is non-negative. If m(b) =
RTkE
%( gbllQ - nQ’), then

2 k E\? 1 1
o3t )
Q n n) (Ep+1) c'c
where ¢ = %(R:F %Q)_l(%)ng and w = 8. Since m(b) < n and Q' < Ry, we have
RF EQ <4InQ'. For U > 8R'/? we have

Qnl? n U U?
Z a3l e 2 e —op 2
8Q'k 8Q S8Ry S8R

Hence, Lemma 7 can be applied to m(b). We obtain that

O\ /3 2/3 Q\3 1\ 43
nf(ne™ 3 4 ¢2/3) <« n?/3te <( Q) (l) + (Q’) (k) )
. ZQ/ 1/3
2/3+e (| Y%
<n (k:Q)
On the set where m(b) = n we use the equation

Z 1=2 x+0( o(n))

1<bLz
(b,n)=1

(see [19], Ch.II, problem 19). Hence,
/3
l 2/3+¢ ZQ/ '
Te(k1,Q.Q'n) = ~ 2; flo ( w) )
(a:,n):l

Further, we have

n/é

SN @)= S w0 fon).
S

Lemma 5 implies that

> fo0 = [ rwao(355).
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Hence,

- " log RI1Q’
LY =23 [ a0,

=1
(@m)=1

Lok, m) = PPV (11,0, )

10gRQ 2/34¢ Q 1/3)
+O< . kQ>+O<n *(kQ> , (51)

n) in the plane Obm

where Vi (k,1,Q,Q’,n) is the area of the domain Q4 (k, [, Q, @',
defined by the inequalities

bm +1
0<b,m<n, (m Q+bQ>+l(mQ+nQ’)<R. (52)
If I/k > Q'/Q, then formula (51) can be proved by applying similar arguments to
the function i
1/ RF=Z
b(m) = minq n, — BEa
k %m + Q/

Substituting (51) into (50), we obtain that

=y ¥y ¥ ‘F’ég)vi(k,z,Q,Q',n)+O(RQ+€U*1/3).

IQ'<Rs k<l Q<Q' U<n<R/(1Q")

We denote by Q(k, 1, Q, Q',n) the domain obtained by omitting +1 in the inequal-
ities (52):
kb )
0<bm<n, — 41 )(mQ+nQ") <R
n

The area of this domain will be denoted by V(k,1,Q,Q’,n). Since

Qi (k,1,Q,Q",n) C QK 1,Q,Q",n) C Q(k,1,Q,Q",n),

the error caused by the replacement of Vi (k,l,Q,Q’,n) by V(k,1,Q,Q",n) does
not exceed V_(k,1,Q,Q",n) — Vi(k,1,Q,Q",n). Since for fixed m the difference

between b_ and b4 such that

k(bimilQ—s—b Q> FUmQu +nQ') =
O(1/n), we have V_(k,1,Q,Q",n) — Vi (k,1,Q,Q",n) = O(1) and

MyRU)=2 3 33 3 F

IQ'<R> k<l QKQ’ U<n<R

V(k,1,Q,Q ,n)+O(R**U~/3). (53)
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Further, we have

so _ N H09) V(k1,Q Q' 0n)
Z V(k,1,Q,Q'\n) = Z 52 S
U<n<R SR Y<n

N
ol

Therefore, the sum of the principal terms in formula (53) is transformed as follows:

DI DD D I

S<R IQ'<R> k<l Q<Q’ U<n<,

L () (0 <]

=23 00 > > > D, n

<R IQ'<R2 k<l QLQ’ U<n<%

//[ak-i—l (BR+ Q) < 6]dadﬁ—22

<R

//0 INDIDIEDS [ ak+l>(ﬁ@+@’)}dadﬂ

IQ'SR2 k<l Q<Q" Ycng

:M 5 // > 2 Z(ak—H 2(6Q 1 Q)2 U2>

IQ'<R2 k<l QLQ’
x [(ak +1)(BQ + Q') < Ry] davdB + O(R*U ™" log R).

Therefore,
_ U2 ! ! 2 . . 24+er7—1/3
My(R.U) = 2o /O /0 (R2L(a, B: Ra) — T(a, s Ry)) da dB + O(RU~1/3).

Substituting into this formula the equations in Corollary 3, we complete the
proof of the lemma.

Theorem 2. Let R > 2. Then

B log? 2 9 C,  log??2 5 ¢'(2)
M(R) = 2C(2)]*2210g R+ ( 5 T ©) (372+log2 C(2))>R210g1%

+CR* + O(R* /')

with absolute constants C' and Cv, where Cy is the constant occurring in Lemma 12.

Proof. To prove the formula, it is sufficient to combine the equations in Corollary 4
and Lemma 20 and put U = R3/*.
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We now compute D(R).
Corollary 5. Let R > 2. Then

D(R) =y log R + & + O (R™Y/4+9)

for all e > 0, where 61 and 0y are absolute constants,

~ 8log®2 ¢'(2)  log?2 4 3log 2
e (”‘«z)‘z*)*cm((’l*z )’

and the constant Cy is defined by (32).

Proof. Using Theorem 2, we obtain that

2
MR =Y u(d)M(S) - ;‘g(; R210g® R

G 10g22< 5 B g’(2))> 2
+<2C(2)+C2(2) 3y 2—+—10g2 2<(2) R7log R

4 C/R2 T O(R2_1/4+E).

By formula (16), we have
210g?2 . ( ol log22( 5 4'(2))>
Lo(R) = log” R+ 4 + 3y — - +log2—2 log R
=gy T g T e M T Ty ) )8
+ C' 4+ O(R™Y/4Fe),

Substituting this formula into (10), we complete the proof of the theorem.

Remark 1. For irrational numbers we can use the following analogue of s(«):
N(o,R) = #{] >1:Qj(a) < R},

where @;(a) is the denominator of the jth convergent of the continued fraction
for a. It was proved in [18] that the mean value of N(a, R),

N(R):/O N(a, R)da,

satisfies the following asymptotic formula with two significant terms:

_ 2log?2 2log2 ¢'(2) 3 log R
N =) o8 R F ey (log“”‘ <<2>)‘2+O< R )

and that the variance

D(R) :/0 (N(, R) - N(R))* da :/0 N2(a, R) da — N*(R)
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satisfies the following asymptotic formula:
D(R) = 4, log R+ &) + O(R™*?1log” R),

where d; and d() are absolute constants (07 is the same as in Corollary 5).
Computer computations give the following approximate value of d;:

01 =0.51606... .

Remark 2. The Gauss-Kuz'min statistics s, (r), which are more general character-
istics than the length of a continued fraction, are given for a fixed € [0,1] and
a rational r = [to;t1,...,ts] by the equation

r)=#{: 1<j <s(r), [0, 8] <}

Using the ideas of [15], [20] and proceeding as in the proof of Corollary 1, we can
prove the following asymptotic formula for the mean value of s,(c/d):

722 ( ) 2108052 1og 4+ 2 C(a) + O(R log” R),

[RI(R+1) & = ¢(2) ¢(2)
where
C(x) = log(1 + ) (27 S SB)ToHlrn) oy, - g)
)+ fale) - g+ B <
00 Q'
—log(1+x) |,
Z: (Q_l Q'+ ¢ )

-

( > i—log(l—i—x)).

m m
< +m
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