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ON THE NUMBER OF SOLUTIONS OF THE CONGRUENCE
xy ≡ l (mod q) UNDER THE GRAPH OF A TWICE CONTINUOUSLY

DIFFERENTIABLE FUNCTION

A. V. USTINOV

Abstract. A result by V. A.Bykovskĭı (1981) on the number of solutions of the
congruence xy ≡ l (mod q) under the graph of a twice continuously differentiable
function is refined. As an application, Porter’s result (1975) on the mean number of
steps in the Euclid algorithm is sharpened and extended to the case of Gauss–Kuzmin
statistics.

§1. Introduction

Notation.
1) For a natural number q, we denote by δq(n) the characteristic function of divisi-

bility by q:

δq(n) =

{
1 if n ≡ 0 (mod q),
0 if n 6≡ 0 (mod q).

2) The sum of powers of divisors of a natural number q is denoted by

σα(q) =
∑
d|q

dα.

3) If A is a statement, then [A] means 1 if A is true and 0 otherwise.
4) For a rational number r, r = [t0; t1, . . . , ts] denotes the canonical continued frac-

tion of length s = s(r), where t0 = [r] (the integral part of r), t1, . . . , ts are
quotients (natural numbers), and ts ≥ 2 for s ≥ 1.

5) For rational r = [t0; t1, . . . , ts] and real x ∈ [0, 1], by s(x)(r) we denote the Gauss–
Kuzmin statistics

s(x)(r) = #{j : 1 ≤ j ≤ s, [0; tj , . . . , ts] ≤ x}.

In particular, the length of a continued fraction is s = s(r) = s(1)(r).
Let q be a natural number, l an integer, and f a nonnegative function. Denote by

T [f ] the number of solutions of the congruence xy ≡ l (mod q) that lie in the domain
P1 < x ≤ P2, 0 < y ≤ f(x):

T [f ] =
∑

P1<x≤P2

∑
0<y≤f(x)

δq(xy − l).

In a series of number-theoretic problems, the need for asymptotic formulas for T [f ]
arises. They underlie results on convolutions of arithmetic functions [10, 12], on sums
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2 A. V. USTINOV

of arithmetic functions on the values of a quadratic polynomial [2, 12], on statistical
properties of the Euclid algorithm [1, 5, 13], etc.

We denote
S[f ] =

1
q

∑
P1<x≤P2

µq,l(x)f(x),

where µq,l(x) is the number of solutions of the congruence xy ≡ l (mod q) with respect
to the variable y lying within the limits 1 ≤ y ≤ q.

The following statement is the main result of the present paper.

Theorem 1. Let P1 and P2 be real numbers, let P = P2−P1 ≥ 2, and let a nonnegative
function f(x) be twice continuously differentiable on the entire interval [P1, P2]. Suppose
that

1
A
≤ |f ′′(x)| ≤ w

A
.

for some A > 0 and w ≥ 1. Then the following asymptotic formula is valid:

(1) T [f ] = S[f ]− P

2
· δq(l) +R[f ],

where

(2)

R[f ] �w σ
2/3
0 (q)σ5/3

0 (a)σ4/3
−1/2(a)PA

−1/3

+ σ0(q)σ0(a)(A1/2a1/2σ−1(q)σ−1/2(a)

+ q1/2σ0(a)σ2
−1/2(a) log2 P + a logP )

and a = (l, q).

This theorem refines a result of the paper [2], where formula (1) was proved with the
remainder term

R[f ] � a1/2qε((PA−1/3 +A2/3) log4/3 P + q1/2 log2 P ).

As an application of Theorem 1, we prove a refinement of a result due to Porter [13]
(see also [1]) extended to the case of Gauss–Kuzmin statistic.

Theorem 2. Suppose b ≥ 2 is natural and x ∈ (0, 1] is real. Then the sum

N∗
x(b) =

∑
1≤a≤b
(a,b)=1

s(x)(a/b)

satisfies the following asymptotic formula:

N∗
x(b) =

2ϕ(b)
ζ(2)

(log(x+ 1) log b+ C(x)) +Oε,x

(
b5/6 log7/6+ε b

)
,

where ε > 0 is an arbitrarily small number,

(3)
C(x) = log(1 + x)

(
log x− log(x+ 1)

2
+ 2γ − 2

ζ ′(2)
ζ(2)

− 1
)

+ h1(x) + h2(x) +
ζ(2)
2

(
x · [x < 1]− x

1 + x

)
,

h1(x) =
∞∑

n=1

1
n

(
n∑

m=1

x

n+mx
− log(1 + x)

)
,(4)

h2(x) =
∞∑

n=1

1
n

 ∑
n
x≤m< n

x +n

1
m
− log(1 + x)

 .(5)
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Moreover, the estimate of the remainder term is uniform in x provided x ∈ [x0, 1] for
some fixed x0 > 0.

§2. Estimates of Kloosterman sums

Suppose q is a natural number and l, m, n are integers. We define the sums

(6) Kq(l,m, n) =
q∑

x,y=1

δq(xy − l)e2πi mx+ny
q ;

in a special case they coincide with the classical Kloosterman sums

Kq(m,n) = Kq(1,m, n) =
q∑

x,y=1

δq(xy − 1)e2πi mx+ny
q .

We mention the simplest properties of the sums Kq(l,m, n).
1◦ If (l, q) = 1, then Kq(l,m, n) = Kq(lm, n).
2◦ If q = q1q2 and (q1, q2) = 1, then

Kq(l,m, n) = Kq1(q̄
2
2l,m, n)Kq2(q̄

2
1l,m, n),

where q̄1 and q̄2 are solutions of the congruences q1q̄1 ≡ 1 (mod q2) and q2q̄2 ≡ 1
(mod q1).

3◦ For any permutation σ ∈ S3, we have

Kq(n1, n2, n3) = Kq(nσ(1), nσ(2), nσ(3)).

4◦. Kq(l,m, n) = Kq(l,−m,−n).
We obtain the first property if we put x = lx1 in the definition (6). To prove the

second property, it suffices to make the substitutions

x = x1q2 + x2q1, y = y1q2 + y2q1 (1 ≤ x1, y1 ≤ q1, 1 ≤ x2, y2 ≤ q2).

The third property follows from the relation

Kq(l,m, n) =
1
q

q∑
x,y,z=1

e2πi mx+ny+lz−xyz
q .

The fourth property is obtained with the help of the substitution x→ −x, y → −y.
In [7], for the classical Kloosterman sums, Estermann proved the estimate

(7) |Kq(m,n)| ≤ σ0(q) · (m,n, q)1/2 · q1/2.

A similar inequality remains valid for the sums Kq(l,m, n).

Lemma 1. Suppose q is natural, l, m, and n are integers, and a = (l, q). Then

(8) |Kq(l,m, n)| ≤ fq(l,m, n) · q1/2,

where
fq(l,m, n) = σ0(q)σ0((l,m, n, q))(lm, ln,mn, q)1/2.

Proof. Property 2◦ of the sums Kq(l,m, n) and the multiplicativity of fq(l,m, n) as a
function of q show that it suffices to prove (8) in the case where q is a power of a prime
number.

Suppose p is prime, α ≥ 1, q = pα, and (l,m, n, pα) = pλ. If λ = α, then

Kq(l,m, n) =
pα∑

x,y=1

δpα(xy) = (α+ 1)pα − αpα−1 ≤ σ0(q)q,
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and (8) is fulfilled. Now we assume that λ ≤ α− 1, l = pλl1, m = pλm1, and n = pλn1.
By the symmetry 3◦ of the Kloosterman sums, we may assume that (l1, p) = 1. Then,
after the changes x = pβx1, y = pλ−βy1 (0 ≤ β ≤ λ), we obtain

Kpα(l,m, n) =
λ∑

β=0

pα−β∑
x1=1

pα−λ+β∑
y1=1

δpα−λ(x1y1 − l1)e
2πi

m1pβx1+n1pλ−βy1
pα−λ

= pλ
λ∑

β=0

pα−λ∑
x1=1

pα−λ∑
y1=1

δpα−λ(x1y1 − l1)e
2πi

m1pβx1+n1pλ−βy1
pα−λ

= pλ
λ∑

β=0

Kpα−λ(m1p
β , n1p

λ−β , l1).

Using property 1◦ of the sums Kq(l,m, n) and Estermann’s estimate (7), we find∣∣Kpα−λ(m1p
β , n1p

λ−β , l1)
∣∣ = ∣∣Kpα−λ(l1m1p

β , n1p
λ−β , 1)

∣∣
=
∣∣Kpα−λ(l1m1p

β , n1p
λ−β)

∣∣ ≤ σ0(pα)(m1p
β , n1p

λ−β , pα−λ)1/2p(α−λ)/2.

Taking the relation λ+ 1 = σ0((l,m, n, pα)) into account, we arrive at the inequality

|Kpα(l,m, n)| ≤ σ0(pα)σ0((l,m, n, pα))pα/2 max
0≤β≤λ

(mpβ , npλ−β , pα)1/2.

Observing that

(mpβ , npλ−β , pα) ≤ (lm, ln,mn, pα),

we complete the proof of the lemma. �

Remark 1. The sharper estimate

(mpβ , npλ−β , pα)2 = (m2p2β , n2p2α−2β , p2α) ≤ (l2m2, l2n2,m2n2, lmn, p2α)

shows that the inequality in Lemma 1 is valid with the coefficient

fq(l,m, n) = σ0(q)σ0((l,m, n, q))(l2m2, l2n2,m2n2, lmn, q2)1/4.

Corollary 1. Suppose q is natural, l is an integer, and a = (l, q). Then

q∑
m,n=1

|Kq(l,m, n)|
m · n

� σ0(q)σ2
0(a)σ2

−1/2(a) log2(q + 1)q1/2.

Proof. By Lemma 1,

|Kq(l,m, n)| ≤ σ0(q)σ0(a)(lm, ln,mn, q)1/2q1/2.

Therefore, to prove the corollary it suffices to verify that the sum

S =
q∑

m,n=1

(lm, ln,mn, q)1/2

mn

satisfies the estimate

(9) S � σ0(a)σ2
−1/2(a) log2(q + 1).
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We transform the sum S:

S =
∑
δ|q

δ1/2

q∑
m,n=1

[(lm, ln,mn) = δ]
mn

≤
∑
δ|q

δ1/2

q∑
m,n=1

1
mn

[
δ

(l, δ)
| m, δ

(l, δ)
| n, δ | mn

]

≤
∑
δ|q

δ1/2

q∑
m1,n1=1

1
m1n1

· (l, δ)2

δ2
[(l, δ)2 | m1n1δ].

Henceforth, [A] denotes 1 if the assertion A is true and 0 otherwise.
Introducing the parameters δ1 = (δ, l) and δ2 = (δ, δ21), we find

S ≤
∑

δ1|(l,q)

δ21
∑
δ|q

(δ,l)=δ1

1
δ3/2

q∑
m1,n1=1

[δ21 | m1n1δ]
m1n1

≤
∑

δ1|(l,q)

δ21
∑
δ|q

(δ,l)=δ1

1
δ3/2

q∑
m1,n1=1

1
m1n1

[
δ21
δ2
| m1n1

]
.

Note that δ1 | δ2 and δ21/δ2 | δ1. Consequently, the estimate

q∑
m1,n1=1

1
m1n1

[d | m1n1] ≤
q2∑

k=1

σ0(dk)
dk

� σ0(d)
d

· log2(q + 1)

implies that

S � σ0(a) log2(q + 1)
∑

δ1|(l,q)

∑
δ|q

(δ,l)=δ1

δ2
δ3/2

= σ0(a) log2(q + 1)
∑
δ|q

δ2
δ3/2

.

After the changes δ = δ1 · δ0 and (δ1, δ0) = δ′, we have∑
δ|q

δ2
δ3/2

=
∑

δ1|(l,q)

∑
δ|q

(δ,l)=δ1

(δ21 , δ)
δ3/2

≤
∑

δ1|(l,q)

δ
−1/2
1

∑
δ0|q

(δ1, δ0)

δ
3/2
0

=
∑

δ1|(l,q)

δ
−1/2
1

∑
δ′|δ1

δ′
∑
δ0|q

(δ0,δ1)=δ′

1

δ
3/2
0

�
∑
δ1|a

δ
−1/2
1

∑
δ′|a

(δ′)−1/2.

Therefore,

(10)
∑
δ|q

δ2
δ3/2

� σ2
−1/2(a).

Thus, estimate (9) is proved, together with the lemma. �

Separately, we estimate the sums Kq(l,m, n) in the case where one of the arguments
is equal to zero. Let

cq(m,n) = Kq(0,m, n) =
q∑

x,y=1

δq(xy)e2πi mx+ny
q .
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Such sums are generalizations of the Ramanujan sums

cq(n) =
q∑∗

x=1

e2πi nx
q

(from now on the asterisk means that the summation is over the reduced system of
residues), because

cq(n) = Kq(0, 1, n) = cq(1, n).

By property 2◦ of the Kloosterman sums Kq(l,m, n) for q = q1q2, (q1, q2) = 1, we
have

cq(m,n) = cq1(m,n)cq2(m,n).

Therefore, to compute the sums cq(m,n), it suffices to consider the ease where q is a
power of a prime number.

Lemma 2. Suppose p is prime, α ≥ 1, and q = pα. Then

cq(m,n) = gpα(m,n)− gpα−1(m,n),

where

(11) gq(m,n) = q · δq((m, q)(n, q))σ0((m, q)(n, q)q−1).

Proof. If xy ≡ 0 (mod pα), then the relations

x = pβx1, (x1, p) = 1, y = pα−βy1

hold true for some β (0 ≤ β ≤ α). Therefore,

cq(m,n) =
α∑

β=0

pα−β∑∗

x1=1

pβ∑
y1=1

e2πi
mpβx1+npα−βy1

pα

=
α∑

β=0

pα−β∑
x1=1

pβ∑
y1=1

e
2πi

(
mx1

pα−β +
ny1
pβ

)
−

α−1∑
β=0

pα−β−1∑
x1=1

pβ∑
y1=1

e
2πi

(
mx1

pα−β−1 +
ny1
pβ

)

= gpα(m,n)− gpα−1(m,n),

where

gpα(m,n) = pα
α∑

β=0

δpα−β (m)δpβ (n).

To verify (11), we note that if pα - (m, pα)(n, pα), then gpα(m,n) = 0. If (m, pα) = pν1 ,
(n, pα) = pν2 , and ν1 + ν2 ≥ α, then

gpα(m,n) = pα
α∑

β=0

[α− ν1 ≤ β ≤ ν2]

= pα(ν1 + ν2 − α+ 1) = pα · σ0((m, pα)(n, pα)p−α).
�

Corollary 2. For any natural q and integers m and any n, we have

(12) |cq(m,n)| ≤ σ0((m, q))(q,mn).

In particular,

(13) Kq(m, 0, 0) = |cq(m, 0)| ≤ σ0((m, q))q.



ON THE NUMBER OF SOLUTIONS OF THE CONGRUENCE xy ≡ l (mod q) 7

Proof. Since the quantity on the right-hand side of (12) (as well as cq(m,n)) is a multi-
plicative function of the parameter q, it suffices to prove (12) for powers of prime numbers.
Suppose p is prime, α ≥ 1, and q = pα. Consider three cases:

(1) pα | (m, pα)(n, pα), and thus pα−1 | (m, pα−1)(n, pα−1);
(2) pα - (m, pα)(n, pα), but pα−1 | (m, pα−1)(n, pα−1);
(3) pα−1 - (m, pα−1)(n, pα−1).
In the first case, gpα(m,n) > 0, gpα−1(m,n) > 0, and for (m, pα) = pν1 , (n, pα) = pν2

we have

gpα−1(m,n) = pα−1(min{ν1, α− 1}+ min{ν2, α− 1} − α+ 2)

≤ pα−1(ν1 + ν2 − α+ 2) ≤ pα(ν1 + ν2 − α+ 1) = gpα(m,n).

Therefore, by Lemma 2,

0 ≤ cpα(m,n) = gpα(m,n)− gpα−1(m,n) ≤ gpα(m,n),

|cpα(m,n)| ≤ gpα(m,n) ≤ pασ0((m, pα))δpα((m, pα)(n, pα))

= σ0((m, q))(q,mn).

Similarly, in the second case we obtain

|cq(m,n)| = gpα−1(m,n)

≤ pα−1σ0((m, pα))δpα−1((m, pα−1)(n, pα−1)) = σ0((m, q))(q,mn).

Finally, in the third case we have |cq(m,n)| = 0. �

Corollary 3. Suppose q is natural, l is an integer, and a = (l, q). Then
q∑

n=1

|cq(l, n)|
n

� σ0(q)σ0(a) log(q + 1) · a.

Proof. By Corollary 2,
q∑

n=1

|cq(l, n)|
n

≤ σ0(a)
q∑

n=1

1
n

(q, ln) = aσ0(a)
q∑

n=1

1
n

( q
a
, n
)

≤ aσ0(a)
∑
δ|q/a

δ

q∑
n=1
δ|n

1
n
� aσ0(a)σ0(q) log(q + 1).

�

Lemma 3. Suppose q ≥ 1 is natural, l is an integer, Q1, Q2, P1, P2 are real, 0 ≤
P1, P2 ≤ q, and a = (l, q). Then for the sum

Φq(Q1, Q2;P1, P2) =
∑

Q1<u≤Q1+P1
Q2<v≤Q2+P2

δq(uv − l)

we have the asymptotic formula

Φq(Q1, Q2;P1, P2) =
Kq(l, 0, 0)

q2
· P1P2 +O (ψl(q)) ,

where

(14) ψl(q) = σ0(q)σ2
0(a)σ2

−1/2(a) log2(q + 1)q1/2 + σ0(q)σ0(a) log(q + 1)a.
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Proof. We define the integers
M1 = [Q1], M2 = [Q2],

N1 = [Q1 + P1]− [Q1], N2 = [Q2 + P2]− [Q2].

Then

(15) Φq(Q1, Q2;P1, P2) = Φq(M1,M2;N1, N2)

and

(16) 0 ≤ N1, N2 ≤ q,

because

0 ≤ Nj = [Qj + Pj ]− [Qj ] = Pj + {Qj} − {Qj + Pj} ≤ q (j = 1, 2).

First, we prove the lemma with M1, M2, N1, N2 in place of Q1, Q2, P1, P2. If one of
the numbers N1 and N2 is equal to zero, then the lemma is trivial. For this reason, in
the sequel we assume that N1 and N2 are natural numbers. We define two functions

F1 : {M1 + 1, . . . ,M1 + q} → {0, 1}, F2 : {M2 + 1, . . . ,M2 + q} → {0, 1}
by setting

Fj(x) =

{
1 if Mj < x ≤Mj +Nj ,

0 if Mj +Nj < x ≤Mj + q.

These functions have the following Fourier series expansions:

Fj(x) =
∑

−q/2<k≤q/2

F̂j(k)e2πi kx
q

where

F̂j(k) =
1
q

Mj+Nj∑
y=Mj+1

e−2πi ky
q .

For k = 0 we have
F̂j(0) =

1
q
Nj ,

and for the other k ∈ (−q/2, q/2], we can sum the geometric progression to find

F̂j(k) =
1
q
· 1− e−2πikNj/q

1− e−2πik/q
· e−2πik(Mj+1)/q.

Therefore,

(17)

∣∣F̂j(k)
∣∣ = 1

q
· | sin(πkNj/q)|
| sin(πk/q)|

≤ 1
q| sin(πk/q)|

≤ 1
2|k|

(−q/2 < k ≤ q/2; k 6= 0).

In accordance with the said above

Φq(M1,M2;N1, N2) =
M1+q∑

u=M1+1

M2+q∑
v=M2+1

δq(uv − l)F1(u)F2(v)

=
M1+q∑

u=M1+1

M2+q∑
v=M2+1

δq(uv − l)
∑

−q/2<m,n≤q/2

F̂1(m)F̂2(n)e2πi mu+nv
q

=
∑

−q/2<m,n≤q/2

F̂1(m)F̂2(n)Kq(l,m, n).
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Separating out the term with m = n = 0, we obtain the relation

Φq(M1,M2;N1, N2) =
N1N2

q2
·Kq(l, 0, 0) +R1 +R2 +R3,

where

R1 =
∑′

−q/2<n≤q/2

F̂1(0)F̂2(n)Kq(l, 0, n),

R2 =
∑′

−q/2<m≤q/2

F̂1(m)F̂2(0)Kq(l,m, 0),

R3 =
∑′

−q/2<m≤q/2

∑′

−q/2<n≤q/2

F̂1(m)F̂2(n)Kq(l,m, n).

Henceforth, the prime at the summation sign means that the summation index does not
take the value zero. Using inequalities (17) for the Fourier coefficients and properties
3◦–4◦ of the sums Kq(l,m, n), we arrive at the estimates

R1,2 �
q∑

n=1

|Kq(l, 0, n)|
n

,

R3 �
q∑

m,n=1

|Kq(l,m, n)|+ |Kq(−l,m, n)|
mn

.

Applying Corollaries 1 and 3, we obtain the asymptotic formula

Φq(M1,M2;N1, N2) =
N1N2

q2
·Kq(l, 0, 0) +O(ψl(q)),

where the function ψl(q) is as in (14).
The definitions of M1, M2, N1, and N2 and condition (16) imply that

|P1P2 −N1N2| = |P1(P2 −N2) +N2(P1 −N1)| ≤ 2q.

By (13) and (15), this inequality implies that∣∣∣Φq(Q1, Q2;P1, P2)−
P1P2

q2
Kq(l, 0, 0)

∣∣∣
� ψl(q) +

∣∣∣N1N2

q2
Kq(l, 0, 0)− P1P2

q2
Kq(l, 0, 0)

∣∣∣
� ψl(q) +

Kq(l, 0, 0)
q2

q � ψl(q).

The lemma is proved. �

Remark 2. For any P1 and P2 = q, the same arguments yield the formula

Φq(Q1, Q2;P1, P2) =
P1

q
Kq(l, 0, 0) +O(σ0(q)σ0(a)a).

§3. Application of van der Corput’s method

Lemma 4. Let P1 and P2 be real numbers, and let P = P2 − P1 ≥ 1. Assume that a
real function f(x) is continuously differentiable on the entire interval [P1, P2], and that
f ′(x) is monotone, ‖f ′(x)‖ ≥ λ > 0. Then∑

P1<x≤P2

e2πif(x) � λ−1.

Proof. See [8, Theorem 2.1]. �
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Lemma 5. Let P1 and P2 be real numbers, and let P = P2 − P1 ≥ 1. Assume that a
real function f(x) is twice continuously differentiable on the entire interval [P1, P2], and
that, for some A > 0 and w ≥ 1, we have

1
A
≤ |f ′′(x)| ≤ w

A
.

Then ∑
P1<x≤P2

e2πif(x) �w
P√
A

+
√
A.

Proof. See [8, Theorem 2.2]. �

Lemma 6. Let P1 and P2 be real numbers, and let P = P2 − P1 ≥ 2. Assume that a
real function f(x) is twice continuously differentiable on the entire interval [P1, P2], and
that, for some A ≥ P and w ≥ 1, we have

1
A
≤ |f ′′(x)| ≤ w

A
.

Then, for any natural q,

q∑
m=1

∣∣∣∣ ∑
P1<x≤P2

e2πi( mx
q +f(x))

∣∣∣∣�w q

(
P√
A

+ logA
)

+
√
A.

Proof. We note that it suffices to prove the lemma for the sum

S =
∑

1≤m≤q/8

∣∣∣∣ ∑
P1<x≤P2

e2πi( mx
q +f(x))

∣∣∣∣.
Without loss of generality, we may assume that f ′′ > 0 and, for x ∈ [P1, P2], the values
of the derivative of f(x) lie inside an interval of length not exceeding 1/8. Otherwise,
the interval [P1, P2] can be divided into O(P

A + 1) = O(1) shorter intervals such that on
each of them this condition is fulfilled. Thus, the values of the derivative of the function
mx
q + f(x) range inside an interval of length not exceeding 1/4. If this interval contains

a half-integer, then ‖m
q + f ′(x)‖ ≥ 1

4 and, by Lemma 4,

S � q � q

(
P√
A

+ logA
)

+
√
A.

Now we consider the case where, for some integer k, for all 1 ≤ m ≤ q/2 and x ∈ [P1, P2],
the values of the derivative of mx

q + f(x) lie inside the interval [k − 1
2 , k + 1

2 ], i.e.,

k − 1
2
≤ m

q
+ f ′(x) ≤ k +

1
2

(1 ≤ m ≤ q/8, P1 < x ≤ P2).

Let integers m1 and m2 be determined by the conditions

m1

q
+ f ′(P2) ≤ k − 1√

A
,

m1 + 1
q

+ f ′(P2) > k − 1√
A

;

m2

q
+ f ′(P1) ≥ k +

1√
A
,

m2 − 1
q

+ f ′(P1) < k +
1√
A
.
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We write the sum S in the form S = S1 + S2 + S3, where

S1 =
∑

1≤m<m1

∣∣∣∣ ∑
P1<x≤P2

e2πi( mx
q +f(x))

∣∣∣∣,
S2 =

∑
m1<m<m2

∣∣∣∣ ∑
P1<x≤P2

e2πi( mx
q +f(x))

∣∣∣∣,
S3 =

∑
m2≤m≤q/2

∣∣∣∣ ∑
P1<x≤P2

e2πi( mx
q +f(x))

∣∣∣∣.
By Lemma 4,

S1 �
∑

1≤m<m1

1

k −
(

m
q + f ′(P2)

) < ∫ m1

0

dm

k −
(

m
q + f ′(P2)

) � q · logA.

Similarly,

S3 �
∑

m2<m≤q/2

1
m
q + f ′(P1)− k

<

∫ q/2

m2

dm
m
q + f ′(P1)− k

� q · logA.

We apply Lemma 5 to the sum S2:

S2 � (m2 −m1 + 1)
(
P√
A

+
√
A

)
� (m2 −m1 + 1)

√
A

�
(
q

(
1√
A

+
P

A

)
+ 1
)√

A = q

(
1 +

P√
A

)
+
√
A.

Summing the estimates for S1, S2, and S3, we obtain the required estimate of the sum
S. �

§4. Proof of the main result

Lemma 7 (Poisson summation formula). Let h be a real nonnegative function such that
the integral ∫ ∞

−∞
h(x) dx

exists as an improper Riemann integral. Assume also that h is monotone nondecreasing
on the interval (−∞, 0] and is monotone nonincreasing on [0,∞). Then

∞∑
m=−∞

h(m+ 0) + h(m− 0)
2

=
∞∑

n=−∞
ĥ(n),

where the two series converge absolutely, and

ĥ(n) =
∫ ∞

−∞
h(t)e−2πint dt

is the Fourier transform of h.

Proof. See [6, 11.24]. �

Proof of Theorem 1. We assume that A � 1, max {A, q} ≤ P 2, and log(Aq) � logP ,
because otherwise the estimate to be proved is worse than the trivial one.

Note that it suffices to prove the lemma under the assumption that the graph of the
function f(x) for x ∈ [P1, P2] goes through no points of the integer lattice. Indeed, if this
condition is not fulfilled, then ε can be chosen within the limits 0 < ε ≤ A−1/3, so that
for integers x ∈ [P1, P2] the numbers f(x)± ε are not integers. If we assume that for the
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functions f ± ε relation (1) holds true with the remainder term (2), then, by using the
relations

T [f − ε] < T [f ] ≤ T [f + ε], S[f ± ε] = S[f ] +O(PA−1/3),

we obtain the required estimate of the remainder term for the function f as well.
We may also assume that f ≥ 2q, because otherwise we can replace the function f by

f + 2q.
For ∆ < 1/4 and for real α, β (β − α > ∆), we define the functions

ψ(α, β;x) = [α < x ≤ β],

ψ∓(α, β;x) =
1
∆

∫ ∆/2

−∆/2

ψ

(
α± ∆

2
, β ∓ ∆

2
;x+ t

)
dt;

obviously, we have
ψ−(α, β;x) ≤ ψ(α, β;x) ≤ ψ+(α, β;x).

We denote by N(x) the number of solutions of the congruence xy ≡ l (mod q) with
respect to the unknown y that lies within the limits 1 ≤ y ≤ f(x). Then

N−(x) ≤ N(x) =
∞∑

y=−∞
δq(xy − l)ψ

(
1
2
, f(x); y

)
≤ N+(x),

where

N∓(x) =
∞∑

y=−∞
δq(xy − l)ψ∓

(
1
2
, f(x); y

)

=
q∑

k=1

δq(xk − l)
∞∑

m=−∞
ψ∓

(
1
2
, f(x);mq + k

)
.

For any value of k, the functions

h∓(m) = ψ∓

(
1
2
, f(x);mq + k

)
are nonnegative, continuous, and Riemann integrable on the entire real line; also, they
are monotone nondecreasing on the interval (−∞, 0] and monotone nonincreasing on
[0,∞) (recall that f ≥ 2q by assumption). Therefore, the Poisson summation formula
can be applied to them (see Lemma 7), yielding

N∓(x) =
q∑

k=1

δq(xk − l)
∞∑

n=−∞

(∫ ∞

−∞
ψ∓

(
1
2
, f(x); qv + k

)
e−2πinv dv

)

=
1
q

q∑
k=1

δq(xk − l)
∞∑

n=−∞

(∫ ∞

−∞
ψ∓

(
1
2
, f(x);u

)
e−2πin u−k

q du

)

=
1
q

q∑
k=1

δq(xk − l)
∞∑

n=−∞
e2πi nk

q ψ̂∓

(
1
2
, f(x);

n

q

)
.

If n = 0, then

ψ̂∓

(
1
2
, f(x);

n

q

)
= f(x)− 1

2
∓∆.

For n 6= 0, we have

ψ̂∓

(
1
2
, f(x);

n

q

)
= q · t∆(N)

e−2πi n
q ( 1

2±
∆
2 ) − e−2πi n

q (f(x)∓∆
2 )

2πin
,
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where

t∆(n) =
sin πn∆

q

πn∆
q

, |t∆(n)| ≤ T∆(n) = min
{

1,
q

|n|∆

}
.

Consequently,

(18) N∓(x) =
µq,l(x)
q

(
f(x)− 1

2
∓∆

)
+N

(1)
∓ (x) +N

(2)
∓ (x),

where

N
(1)
∓ (x) =

q∑
k=1

δq(xk − l)
∞∑′

n=−∞
t∆(n)

e2πi n
q (k− 1

2∓
∆
2 )

2πin
,

N
(2)
∓ (x) =

q∑
k=1

δq(xk − l)
∞∑′

n=−∞
t∆(n)

e−2πi n
q (f(x)∓∆

2 −k)

2πin
.

Next,
T−[f ] ≤ T [f ] =

∑
P1<x≤P2

N(x) ≤ T+[f ],

where
T∓[f ] =

∑
P1<x≤P2

N∓(x).

By Remark 2, ∑
P1<x≤P2

µq,l(x) =
P

q
Kq(l, 0, 0) +O(σ0(q)σ0(a)a).

Therefore, after summation, formula (18) yields

(19)
T∓[f ] = S[f ]− P

2q2
Kq(l, 0, 0) + T

(1)
∓ [f ] + T

(2)
∓ [f ]

+O
(∆P
q2

Kq(l, 0, 0)
)

+O (σ0(q)σ0(a)a) ,

where
T

(1,2)
∓ [f ] =

∑
P1<x≤P2

N
(1,2)
∓ (x).

It is well known that the function

r(x) =

{
1
2 − {x} if x /∈ Z,
0 if x ∈ Z

has the Fourier series expansion

r(x) =
1

2πi

∞∑′

n=−∞

e2πinx

n
.

This implies that the smoothed function

g(x) =
q

∆

∫ ∆/(2q)

−∆/(2q)

(
1
2
− {x+ t}

)
dt

is representable in the form

g(x) =
1

2πi

∞∑′

n=−∞

t∆(n)
n

· e2πinx.
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For x ∈
(

∆
2q , 1−

∆
2q

)
we have

g(x) =
1
2
− x+O

(
∆
q

)
.

Consequently,

N
(1)
∓ (x) =

q∑
k=1

δq(xk − l)g
(
k

q
− 1

2q
∓ ∆

2q

)

=
q∑

k=1

δq(xk − l)
(

1
2
− k

q
+

1
2q

)
+O

(
∆ · µq,l(x)

q

)
.

To find T (1)
∓ [f ], we split the sum in the variable x into segments the length of which does

not exceed q. For the sums

S′ =
q∑

x,k=1

δq(xk − l)
k

q
and S′′ =

q∑
x,k=1

δq(xk − l)
q − k

q

we have S′ + S′′ = Kq(l, 0, 0) and S′′ = S′ − qδq(l). Therefore,

S′ =
1
2

(Kq(l, 0, 0) + qδq(l)) ,
q∑

x=1

N
(1)
∓ (x) =

1
2

(
Kq(l, 0, 0)

q
− qδq(l)

)
+O

(
∆ ·Kq(l, 0, 0)

q

)
.(20)

Moreover, applying Lemma 3 to the double sums in the identity

P ′∑
x=1

q∑
k=1

δq(xk − l)
k

q
=

P ′∑
x=1

q∑
k=1

δq(xk − l)− 1
q

q∑
b=1

P ′∑
x=1

b−1∑
k=1

δq(xk − l),

for 1 ≤ P ′ ≤ q we obtain

P ′∑
x=1

q∑
k=1

δq(xk − l)
k

q
=
P ′

2q
Kq(l, 0, 0) +O(ψl(q)).

Hence,

(21)
P ′∑

x=1

N
(1)
∓ (x) =

1
2

(P ′
q2
Kq(l, 0, 0)− P ′δq(l)

)
+O(ψl(q)) +O

(∆P ′ ·Kq(l, 0, 0)
q2

)
.

Thus, (4) and (21) show that∑
P1<x≤P2

N
(1)
∓ (x) =

1
2

( P
q2
Kq(l, 0, 0)− Pδq(l)

)
+O(ψl(q)) +O

(∆P ·Kq(l, 0, 0)
q2

)
.

Substituting this in (19), we arrive at the relation

(22) T∓[f ] = S[f ]− P

2
δq(l) + T

(2)
∓ [f ] +O(ψl(q)) +O

(
∆P ·Kq(l, 0, 0)

q2

)
.

Now we estimate T (2)
∓ [f ]. Using the relation

q−1∑
k=0

δq(xk − l)e−2πi nk
q =

1
q

q∑
m=1

Kq(l,m, n)e2πi mx
q ,
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we write the quantity N (2)
∓ (x) in the form

N
(2)
∓ (x) =

1
q

∞∑′

n=−∞
t∆(n)

q∑
m=1

Kq(l,m, n)
e2πi( n

q (f(x)∓∆
2 )−mx

q )

2πin
.

Hence,

|T (2)
∓ [f ]| � 1

q

∞∑
n=1

T∆(n)
n

q∑
m=1

|Kq(l,m, n)| ·
∣∣∣∣ ∑

P1<x≤P2

e2πi
mx−nf(x)

q

∣∣∣∣.
By Lemma 1,

|T (2)
∓ [f ]| � σ0(q)σ0(a)

q1/2
· S,

where a = (l, q),

S =
∞∑

n=1

T∆(n)
n

q∑
m=1

(lm, ln,mn, q)1/2 · |Sq(m,n)| ,

Sq(m,n) =
∑

P1<x≤P2

e2πi
mx−nf(x)

q .

We set δ = (lm, ln,mn, q), δ1 = (l, δ) and transform the sum S:

S =
∑
δ|q

δ1/2
∞∑

n=1

T∆(n)
n

q∑
m=1

[(lm, ln,mn) = δ] · |Sq(m,n)|

≤
∑
δ|q

δ1/2
∞∑

n=1

T∆(n)
n

[
δ

δ1
| n
] q∑

m=1

[
δ

δ1
| m, δ | mn

]
· |Sq(m,n)| .

After the change of summation indices m = δm1/δ1 and n = δn1/δ1, we arrive at the
following bound on S:

S ≤
∑
δ|q

δ1
δ1/2

∞∑
n1=1

T∆(δn1/δ1)
n1

δ1q/δ∑
m1=1

[
δ21 | δm1n1

]
· |Sq(δm1/δ1, δn1/δ1)|

=
∑
δ|q

δ1
δ1/2

∞∑
n1=1

T∆(δn1/δ1)
n1

δ1q/δ∑
m1=1

[
δ21
δ2
| m1n1

]
·
∣∣Sδ1q/δ(m1, n1)

∣∣ ,
where δ2 = (δ21 , δ). Next, we set δ3 = (n1, δ

2
1/δ2). Then

S ≤
∑
δ|q

δ1
δ1/2

∑
δ3|δ2

1/δ2

∞∑
n1=1

T∆(δn1/δ1)
n1

[(n1, δ
2
1/δ2)

= δ3]
δ1q/δ∑
m1=1

[
δ21
δ2δ3

| m1

]
·
∣∣Sδ1q/δ(m1, n1)

∣∣
≤
∑
δ|q

δ1
δ1/2

∑
δ3|δ2

1/δ2

∞∑
n2=1

T∆(δδ3n2/δ1)
δ3n2

δ2δ3q
δδ1∑

m2=1

∣∣∣∣Sδ1q/δ

(
δ21
δ2δ3

m2, δ3n2

)∣∣∣∣ ,
where n1 = δ3n2, m1 = δ2

1
δ2δ3

m2. We estimate the sum of Sδ1q/δ

( δ2
1

δ2δ3
m2, δ3n2

)
. This sum

depends on the function

F (x) =
(
δ21
δ2δ3

m2x− δ3n2f(x)
)

δ

δ1q
,
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for which
F ′′(x) =

δδ3n2

δ1q
f ′′(x) � δδ3n2

δ1qA
=

1
A1

, A1 =
δ1qA

δδ3n2
.

We apply Lemma 6 if A1 ≥ P and Lemma 5 if A1 < P . This shows that S � S1 + S2,
where

S1 =
∑
δ|q

δ1
δ1/2

∑
δ3|δ2

1/δ2

∞∑
n=1

T∆(δδ3n/δ1)
δ3n

(δ2δ3q
δδ1

( P

A
1/2
1

+ logP
)

+A
1/2
1

)
[A1 ≥ P ],

S2 =
∑
δ|q

δ1
δ1/2

∑
δ3|δ2

1/δ2

∞∑
n=1

T∆(δδ3n/δ1)
δ3n

· δ2δ3q
δδ1

( P

A
1/2
1

+A
1/2
1

)
[A1 < P ].

Collecting the terms of the same form in S1 and S2 and using the monotonicity of T∆(n),
we get the estimate

(23) S � S3 + S4 + S5 + S6,

where

S3 =PA−1/2q1/2
∑
δ|q

∑
δ3|δ2

1/δ2

δ2δ
1/2
3

δδ
1/2
1

∞∑
n=1

T∆(δδ3n/δ1)
n1/2

,

S4 =q logP
∑
δ|q

∑
δ3|δ2

1/δ2

δ2
δ3/2

∞∑
n=1

T∆(n)
n

,

S5 =A1/2q1/2
∑
δ|q

∑
δ3|δ2

1/δ2

δ
3/2
1

δδ
3/2
3

∞∑
n=1

T∆(n)
n3/2

,

S6 =A1/2q3/2
∑
δ|q

∑
δ3|δ2

1/δ2

δ2δ
1/2
1

δ2δ
1/2
3

∞∑
n=1

T∆(δδ3n/δ1)
n3/2

[
n >

δ1qA

δδ3P

]
.

Making use of the inequality T∆(n) ≤ min{1, q(∆|n|)−1} and considering the cases where
b∆ > q and b∆ ≤ q, we obtain the estimate

∞∑
n=1

T∆(bn)
n1/2

�
( q

b∆

)1/2

.

Hence,

S3 � PA−1/2∆−1/2q
∑
δ|q

δ2
δ3/2

∑
δ3|δ2

1/δ2

1.

Since ∑
δ3|δ2

1/δ2

1 ≤
∑
δ3|δ1

1 ≤ σ0(a),

inequality (10) implies that

(24)
∑
δ|q

δ2
δ3/2

∑
δ3|δ2

1/δ2

1 � σ0(a)σ2
−1/2(a)

and

(25) S3 � σ0(a)σ2
−1/2(a)PA

−1/2∆−1/2q.

Next, since
∞∑

n=1

T∆(n)
n

� logP,
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by (24) we have

(26) S4 � q log2 P
∑
δ|q

∑
δ3|δ2

1/δ2

δ2
δ3/2

� qσ0(a)σ2
−1/2(a) log2 P.

To estimate the sum S5, we note that
∞∑

n=1

T∆(n)
n3/2

� 1.

Therefore,

S5 � A1/2q1/2
∑
δ|q

∑
δ3|δ2

1/δ2

δ
3/2
1

δδ
3/2
3

� A1/2q1/2
∑
δ|q

δ
3/2
1

δ

� A1/2q1/2
∑

δ1|(q,l)

δ
3/2
1

∑
δ|q

(δ,l)=δ1

1
δ
� A1/2q1/2σ−1(q)σ1/2(a).

Consequently,

(27) S5 � A1/2q1/2a1/2σ−1(q)σ−1/2(a).

For any N , k > 0, we have∑
n>N

T∆(kn)
n3/2

≤
∑
n>N

T∆(kN)
n3/2

� T∆(kN)
N1/2

.

Thus,

S6 � P 1/2qT∆

(
Aq

P

)∑
δ|q

∑
δ3|δ2

1/δ2

δ2
δ3/2

,

and, by (24),

S6 � σ0(a)σ2
−1/2(a)P

1/2qT∆

(
Aq

P

)
.

Now, we apply the inequality

T∆

(
Aq

P

)
= min

{
1,

P

∆A

}
≤
(
P

∆A

)1/2

to get an estimate similar to (25) for the sum S6:

(28) S6 � σ0(a)σ2
−1/2(a)PA

−1/2∆−1/2q.

Substituting (25), (26), and (27) in (23), we arrive at an estimate of the sum S and of
the remainder term T

(2)
∓ [f ]:

S � σ0(a)σ2
−1/2(a)(PA

−1/2∆−1/2q + q log2 P ) + σ−1(q)σ−1/2(a)A1/2q1/2a1/2,

T
(2)
∓ [f ] � σ0(q)σ2

−1/2(a)σ
2
0(a)(PA−1/2q1/2∆−1/2 + q1/2 log2 P )

+σ0(q)σ−1(q)σ0(a)σ−1/2(a)A1/2a1/2.

Now substituting this in (22) and using (13), we obtain (1) with a remainder term

R[f ] � ∆P · q−1σ0(a) + aσ0(q)σ0(a) log(q + 1)

+ σ0(q)σ2
−1/2(a)σ

2
0(a)(PA−1/2q1/2∆−1/2

+ q1/2 log2 P ) + σ0(q)σ−1(q)σ0(a)σ−1/2(a)A1/2a1/2.
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The choice
∆ = qA−1/3σ

2/3
0 (q)σ2/3

0 (a)σ4/3
−1/2(a)

completes the proof of the theorem. �

Remark 3. In applications, as a rule, the greatest contribution is made by the first
summand of the remainder term. For this reason, usually, a simpler estimate of the
remainder term can be used:

(29) R[f ] � σ
2/3
0 (q)σ2

0(a)PA−1/3 +
(
A1/2a1/2 + q1/2 + a

)
P ε.

Remark 4. For q = 1, the theorem proved above converts to a known result on the
number of points under the graph of a twice continuously differentiable function (see [3,
Lemma 4], and also [14, Problem I.6.4]).

§5. A refinement of a result by Porter

Lemma 8. For any natural b ≥ 4, the sums

Dk =
∑
a|b

σk
0 (a)
a

(k ≥ 0)

satisfy the estimate

(30) Dk � (log log b)2
k

.

Proof. The relations σ1(n) = nσ−1(n) and σ1(n) � n log log n (see, e.g., [9, Theorem
323]) imply that the lemma holds true for the sum D0 = σ−1(b). If we assume that (30)
is valid for some k ≥ 0, then for k + 1 we obtain

Dk+1 =
∑
a|b

σk
0 (a)
a

∑
t|a

1 =
∑
t|b

∑
a1|b/t

σk
0 (ta1)
ta1

≤
∑
t|b

σk
0 (t)
t

∑
a1|b/t

σk
0 (a1)
a1

≤ D2
k � (log log b)2

k+1
.

�

Proof of Theorem 2. We assume that ε < 1/6 and denote by Tx(b) the number of solu-
tions of the equation

(31) m1m2 + n1n2 = b

with respect to the unknowns 1 ≤ m1 ≤ n1 and 1 ≤ m2 ≤ n2x. Let T ∗x (b) denote
the number of solutions of equation (31) in which 1 ≤ m1 ≤ n1, (m1, n1) = 1, and
1 ≤ m2 ≤ n2x. For the sum

Nx(b) =
b∑

a=1

s(x)(a/b),

the following relation is valid (see the proof of Lemma 3 in [4]):

Nx(b) = 2T ∗x (b) + b

(
x · [x < 1]− x

x+ 1

)
+O(1).

The quantities Nx(b) and Tx(b) are related to N∗
x(b) and T ∗x (b) by the Möbius inversion

formula
N∗

x(b) =
∑
d|b

µ(d)Nx(b/d), T ∗x (b) =
∑
d|b

µ(d)Tx(b/d).
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Therefore,

(32) N∗
x(b) = 2

∑
d1d2|b

µ(d1)µ(d2)Tx

(
b

d1d2

)
+ ϕ(b)

(
x · [x < 1]− x

x+ 1

)
+O(bε).

To compute Tx(b), we introduce the parameter U = (b log b)1/2 and divide all the solutions
of equation (31) into two groups. We attribute the solutions with n1 < U to the first
group and all other solutions to the second. Accordingly, Tx(b) is represented in the form

(33) Tx(b) = T1(b, U) + T2(b, U).

First, we find an asymptotic formula for T1(b, U). We note that, for fixed n1, the
variables m1 and m2 satisfy the congruence

(34) m1m2 ≡ b (mod n1).

If n1, m1, and m2 are known, then n2 is determined uniquely:

n2 =
b−m1m2

n1
.

The restriction m2 ≤ n2x is equivalent to the inequality

(35) m2 ≤
bx

n1 +m1x
= fn1(m1).

Thus, the problem reduces to the calculation of the number of solutions of the congru-
ence (34) in which the variables satisfy the restrictions 0 < m1 ≤ n1 and m2 ≤ fn1(m1).
We apply Theorem 1 with P1 = 0, P2 = n1, f = fn1 , and with the simpler estimate of
the remainder term (see Remark 3). Since

f ′′n1
(m1) �

b

n3
1

,

we obtain
T [fn1 ] = S[fn1 ]−

n1

2
· δn1(b) +R[fn1 ].

Hence,

(36) T1(b, U) =
∑

n1<U

T [fn1 ] = S1(b, U) +R1(b, U) +O(b1/2+ε),

where

S1(b, U) =
∑

n1<U

S[fn1 ] =
∑

n1<U

1
n1

∑
m1≤n1

µn1,b(m1)fn1(m1),(37)

R1(b, U) =
∑

n1<U

R[fn1 ] � b1/3
∑

n1<U

σ
2/3
0 (n1)σ2

0(a1)

+ bε
∑

n1<U

(
n

3/2
1 a

1/2
1 b−1/2 + n

1/2
1 + a1

)
,(38)

and a1 = (n1, b). Applying the estimate σ0(xy) ≤ σ0(x)σ0(y) and the Hölder inequality,
we see that∑

n1<U

σ
2/3
0 (n1)σ2

0(a1) ≤
∑
a1|b

σ2
0(a1)

∑
n<U/a1

σ
2/3
0 (na1)

≤
∑
a1|b

σ3
0(a1)

 ∑
n<U/a1

σ0(n)

2/3

(U/a1)
1/3 � U log2/3 b

∑
a1|b

σ3
0(a1)
a1

.
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Next, applying Lemma 8, we arrive at the inequality

b1/3
∑

n1<U

σ
2/3
0 (n1)σ2

0(a1) � b5/6 log7/6+ε/2 b.

The contribution of the other terms occurring in the formula for R1(b, U) is smaller
provided ε < 1/6:

b−1/2+ε
∑

n1<U

n
3/2
1 a

1/2
1 � b−1/2+ε

∑
a1|b

a
1/2
1

∑
n<U/a1

(a1n)3/2

� b−1/2+εU5/2
∑
a1|b

a
−1/2
1 � b3/4+2ε,

bε
∑

n1<U

n
1/2
1 � bεU3/2 � b3/4+2ε,

bε
∑

n1<U

a1 � bε
∑
a1|b

a1

∑
n<U/a1

1 ≤ bεUσ−1(b) � b1/2+2ε.

Thus,

(39) T1(b, U) = S1(b, U) +O(b5/6 log7/6+ε b).

To find S1(b, U), first we consider the sum

Φ(U) =
∑
n<U

1
n

∑
m≤n

x

n+mx
,

which can be written in the form

Φ(U) = log(1 + x)
∑
n<U

1
n

+
∑
n<U

1
n

( ∑
m≤n

x

n+mx
− log(1 + x)

)
= log(1 + x)(logU + γ) + h1(x) +O(U−1),

where h1(x) is defined as in (4). Hence, applying the Möbius inversion formula to the
sum

Φ∗(U) =
∑
n≤U

1
n

∑∗

m≤n

x

n+mx
,

we get

Φ∗(U) =
∑
d≤U

µ(d)
d2

· Φ
(
U

d

)
,

which leads to the asymptotic formula

(40) Φ∗(U) =
log(1 + x)
ζ(2)

(
logU + γ − ζ ′(2)

ζ(2)

)
+
h1(x)
ζ(2)

+O

(
log(U + 1)

U

)
.

Substituting µn1,b(m1) = d1 · δd1(b) with d1 = (m1, n1) in (37), after the changes m1 =
d1m and n1 = d1n we obtain

S1(b, U) =
∑

n1<U

1
n1

∑
m1≤n1

bx

n1 +m1x
d1 · δd1(b)

=
∑
d1|b

b

d1

∑
n<U/d1

1
n

∑∗

m≤n

x

n+mx
=
∑
d|b

b

d
Φ∗
(
U

d

)
.

By (40), this can be written as

(41) S1(b, U) =
1
ζ(2)

∑
d|b

b

d

(
log(1 + x)

(
log

U

d
+ γ − ζ ′(2)

ζ(2)

)
+ h1(x)

)
+O

(
b1/2+ε

)
.
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Substituting (41) in (39), we arrive at an asymptotic formula for T1(b, U):

(42)
T1(b, U) =

1
ζ(2)

∑
d|b

b

d

(
log(1 + x)

(
log

U

d
+ γ − ζ ′(2)

ζ(2)

)
+ h1(x)

)
+O

(
b5/6 log7/6+ε b

)
.

To find T2(b, U), we note that, for fixed n2, the variables m1 and m2 satisfy the
congruence

(43) m1m2 ≡ b (mod n2).

If n2, m1, and m2 are known, then n1 is determined uniquely:

n1 =
b−m1m2

n2
.

The restriction max{m1, U} ≤ n1 is equivalent to the inequality

m1 ≤ min
{

b

m2 + n2
,
b− Un2

m2

}
= gn2(m2).

We divide the interval I = (0, n2], inside which the variable m2 changes, into shorter
intervals by the points 1, 2, 22, . . . , 2k (k = [log2 n2]), and to this partition we add the
point m0 = b

U − n2 at which the function gn2 may be nondifferentiable:

I =
k′⊔

j=1

Ij (k′ = k + 2).

We assume that

gn2(m2) =


b

m2 + n2
if m2 ∈

k′′⊔
j=1

Ij ,

b− Un2

m2
if m2 ∈

k′⊔
j=k′′+1

Ij ,

where 0 ≤ k′′ ≤ k′. We apply Theorem 1 to the function gn2 on each of the intervals Ij .
Then for the entire interval I we get

T [gn2 ] = S[gn2 ] +R′′[gn2 ] +R′[gn2 ] +O
(
b1+εU−1

)
,

where

S[gn2 ] =
1
n2

∑
1≤m2≤n2

µn2,b(m2)gn2(m2),

R′′[gn2 ] =
k′′∑
j=1

R(j)[gn2 ], R′[gn2 ] =
k′∑

j=k′′+1

R(j)[gn2 ],

and R(j)[gn2 ] is the remainder term obtained as in Theorem 1 on the interval Ij .
For j = 1, . . . , k′′, we have

gn2(m2) �
b

n3
2

on the interval Ij . Therefore, the sum of the remainders R′′[gn2 ] is estimated like the
sum (38) (with the replacement of U by b/U):

(44)
∑

n2≤b/U

R′′[gn2 ] � b5/6 log7/6+ε b.
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If j = k′′ + 1, . . . , k′, then

g′′n2
(m2) �

b− Un2

m3
2

� b− Un2

23j

on the interval Ij . Consequently, by (29),

R(j)[gn2 ] � σ
2/3
0 (n2)σ2

0(a2)b1/3 + bε/2
(
23j/2a

1/2
2 b−1/2 + n

1/2
2 + a2

)
,

where a2 = (n2, b). Thus,

R′[gn2 ] =
k′∑

j=k′′+1

R(j)[gn2 ] � σ
2/3
0 (n2)σ2

0(a2) log b · b1/3

+ bε
(
n

3/2
2 a

1/2
2 (b− Un2)−1/2 + n

1/2
2 + a2

)
.

Hence, like in the case of R[fn1 ], we arrive at the estimate

(45)
∑

n2≤b/U−2

R′[gn2 ] � b5/6 log7/6+ε b.

If the value of the variable n2 > b/U − 2 is fixed, then n1 can take at most b1/2+ε/2

values, and for fixed n1 and n2, at most σ0(b− n1n2) � bε/2 values of m1 and m2 may
exist. Therefore, by (44) and (45), we have

T2(b, U) =
∑

n2≤b/U

T [gn2 ]

=
∑

n2≤b/U−2

T [gn2 ] +O(b1/2+ε) = S2(b, U) +O(b5/6 log7/6+ε b),

where

S2(b, U) =
∑

n2≤b/U

1
n2

∑
m2≤n2

µn2,b(m2)gn2(m2).

As in the case of the sum S1(b, U), after the change

µn2,b(m2) = d2 · δd2(b), d2 = (m2, n2),

the sum S2(b, U) is written in the form

S2(b, U) =
∑
d|b

b

d

∑
n≤b/(dU)

1
n

∑∗

m≤nx

min
{ 1
m+ n

,
1
m
− dUn

bm

}
=
∑
d|b

b

d
· F ∗x

( b

dU

)
,

where

F ∗x (ξ) =
∑
n≤ξ

1
n

∑∗

m≤nx

min
{ 1
m+ n

,
1
m
− n

mξ

}
.

For the sum F ∗x (ξ), the following asymptotic formula is valid (see [4, Lemma 10]):

F ∗x (ξ) =
log(x+ 1)
ζ(2)

log ξ +
H(x)
ζ(2)

+O
( log2(ξ + 1)

ξ

)
,

where

H(x) = log(1 + x)
(

log x− ζ ′(2)
ζ(2)

− log(x+ 1)
2

+ γ − 1
)

+ h2(x)
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and h2(x) is defined as in (5). Therefore,

S2(b, U) =
1
ζ(2)

∑
d|b

b

d

(
log(x+ 1) log

b

dU
+H(x)

)
+O(b1/2+ε),

T2(b, U) =
1
ζ(2)

∑
d|b

b

d

(
log(x+ 1) log

b

dU
+H(x)

)
+O(b5/6 log7/6+ε b).

Substituting this expression for T2(b, U) and relation (42) in (33), we arrive at an as-
ymptotic formula for Tx(b):

Tx(b) =
1
ζ(2)

∑
d|b

b

d

(
log(x+ 1) log

b

d2
+ C1(x)

)
+O(b5/6 log7/6+ε b),

where

C1(x) = H(x) + log(1 + x)
(
γ − ζ ′(2)

ζ(2)

)
+ h1(x).

We substitute this result in (32). Then, since∑
dd1d2|b

µ(d1)µ(d2)
dd1d2

=
ϕ(b)
b
,

∑
dd1d2|b

µ(d1)µ(d2)
dd1d2

log(d1d2d
2) = 0

(see [11]), we get∑
d1d2|n

µ(d1)µ(d2)Tx

(
b

d1d2

)
=
ϕ(b)
ζ(2)

(log(x+ 1) log b+ C1(x)) +O(b5/6 log7/6+ε b),

N∗
x(b) =

2ϕ(b)
ζ(2)

(log(x+ 1) log b+ C(x)) +O(b5/6 log7/6+ε b),

where C(x) is as in (3). The theorem is proved. �

The author expresses his gratitude to V. A. Bykovskĭı for discussion of the results
obtained and for helpful advice.
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