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ON THE NUMBER OF SOLUTIONS OF THE CONGRUENCE
zy =1 (mod ¢) UNDER THE GRAPH OF A TWICE CONTINUOUSLY
DIFFERENTIABLE FUNCTION

A. V. USTINOV

ABSTRACT. A result by V. A.Bykovskil (1981) on the number of solutions of the
congruence zy = | (mod ¢) under the graph of a twice continuously differentiable
function is refined. As an application, Porter’s result (1975) on the mean number of
steps in the Euclid algorithm is sharpened and extended to the case of Gauss—Kuzmin
statistics.

§1. INTRODUCTION

Notation.

1) For a natural number g, we denote by d4(n) the characteristic function of divisi-
bility by ¢:

0 ifn#0 (mod q).

2) The sum of powers of divisors of a natural number ¢ is denoted by

oalg) =) d*.

5,(n) = {1 ifn=0 (mod q),

dlq
3) If A is a statement, then [A] means 1 if A is true and 0 otherwise.
4) For a rational number r, r = [tg;¢1,. .., ts] denotes the canonical continued frac-
tion of length s = s(r), where o = [r] (the integral part of r), t1,...,t, are

quotients (natural numbers), and t; > 2 for s > 1.
5) For rational r = [to;t1,...,ts] and real z € [0, 1], by s(*)(r) we denote the Gauss—
Kuzmin statistics
s(x)(r) =#{j:1<j<s,[05t,...,t] < a}.

In particular, the length of a continued fraction is s = s(r) = s (7).

Let ¢ be a natural number, [ an integer, and f a nonnegative function. Denote by
T[f] the number of solutions of the congruence zy = [ (mod ¢) that lie in the domain
Pi<z<P 0<y< f(x):

Tifl= > Y. dglay—1).
Py <x<P 0<y<f(x)

In a series of number-theoretic problems, the need for asymptotic formulas for T7[f]
arises. They underlie results on convolutions of arithmetic functions [10, 12], on sums
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of arithmetic functions on the values of a quadratic polynomial [2, 12], on statistical
properties of the Euclid algorithm [1, 5, 13], etc.

We denote

Sifl=5 > @),
Py <z<P;

where f,;(x) is the number of solutions of the congruence zy =1 (mod ¢) with respect
to the variable y lying within the limits 1 <y < gq.

The following statement is the main result of the present paper.

Theorem 1. Let P; and Py be real numbers, let P = P, — Py > 2, and let a nonnegative
function f(x) be twice continuously differentiable on the entire interval [Py, Ps]. Suppose
that

1 w
— < |f" < —.
T @< g

for some A >0 and w > 1. Then the following asymptotic formula is valid:

(1) T(7) = 1]~ 4 +6,0) + RLf)
where

R[f) <w 03 * ()03 * ()0 (a) PATV/?
2) +00(9)o0(a)(AV2a 201 (q)o_1 2 (a)

+q'%09(a)0 31/2(a) log? P + alog P)
and a = (l,q).
This theorem refines a result of the paper [2], where formula (1) was proved with the
remainder term
R[f] < a'?¢(PA™Y3 + A*3)10g?? P + ¢'/%10g? P).

As an application of Theorem 1, we prove a refinement of a result due to Porter [13]
(see also [1]) extended to the case of Gauss—Kuzmin statistic.

Theorem 2. Suppose b > 2 is natural and x € (0, 1] is real. Then the sum

Ni(b) = > s(a/b)
1<a<b
(a,b)=1

satisfies the following asymptotic formula:
2¢(b)

N (b
ANNE)
where ¢ > 0 is an arbitrarily small number,

C(z) =log(1 + z) (logx - w Loy 2ég((;)) B 1)

(log(z + 1) log b+ C(x)) + O, (55/6 log"/6+< b) :

3)

+h1(x)+h2(x)+@ (x-[:ﬂ< 1] - 1f_£> :
(4) () = Z% (Z log<1+x>> ,
(5) @)=Y Sl +a)
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Moreover, the estimate of the remainder term is uniform in x provided x € [xg,1] for
some fized x¢ > 0.

§2. ESTIMATES OF KLOOSTERMAN SUMS

Suppose ¢ is a natural number and I, m, n are integers. We define the sums

q
(6) K,(l,m,n) = Z 0y (zy — l)e%im;ny;

z,y=1

in a special case they coincide with the classical Kloosterman sums

a
Ky(m,n) = K,(1,m,n) = Z 8q(zy — 1),

z,y=1
We mention the simplest properties of the sums Ky(I,m,n).
1°If (I,q) = 1, then K, (I,m,n) = K,(Im,n).
2° If ¢ = q1q2 and (q1,g2) = 1, then
KQ(Z’ m, n) = Kq, (Cj%l, m, n)qu (Cﬁlv m, n)’

where g; and g» are solutions of the congruences 11 = 1 (mod ¢2) and ¢2G2 = 1
(mod ¢1).

3° For any permutation o € Ss, we have

Kqy(n1,m2,n3) = K¢(ng(1), Mo (2): No(3))-

4°. K (I,m,n) = K,(l, —m, —n).

We obtain the first property if we put & = lz; in the definition (6). To prove the
second property, it suffices to make the substitutions

T=21¢2+22q1, Y=+ ya 1<z, <@l < 32,52 < g2).

The third property follows from the relation

a
1 Cmatnytlz—zyz

2 mrrnyritz—Ty=z

K,(,m,n)=— E e a

q z,y,z=1

The fourth property is obtained with the help of the substitution x — —z, y — —y.
In [7], for the classical Kloosterman sums, Estermann proved the estimate

(7) Ky (m,n)| < o0(q) - (m,n,q)"/ - q"/2.
A similar inequality remains valid for the sums K, (I, m,n).
Lemma 1. Suppose q is natural, [, m, and n are integers, and a = (l,q). Then
(8) |Kq(lmn)| < fo(l,myn) - /2,
where

fa(l,m,n) = oo(q)ao((l,m, n, q))(Im, In, mn, ¢)*/2.

Proof. Property 2° of the sums K,(l,m,n) and the multiplicativity of f,(I,m,n) as a
function of ¢ show that it suffices to prove (8) in the case where ¢ is a power of a prime
number.

Suppose p is prime, a > 1, ¢ = p*, and (I,m,n,p*) = p*. If A = a, then

pOé
Ey(Lmn) = 3 by ey) = (@ + Dp* — ap®~" < o0(g)a,

z,y=1
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and (8) is fulfilled. Now we assume that A < a — 1, [ = p*y, m = p*my, and n = p*n;.
By the symmetry 3° of the Kloosterman sums, we may assume that (I1,p) = 1. Then,
after the changes x = p°x1, y = p* Py (0 < B <)), we obtain

aBaA+B s

B
o marT ety pT Py w1+"11’ Y1
o(l,m,n) g E g dpa—r(m1y1 —l1)e pa=A
B=0z1=1 y;=1

ApaAaA 8

opjmaptzitngp” Tyl Baq+nip? Y1
AE E E 5axl‘1y1—l1) pa—A

pB=0z1=1y1=1
A

=) Kpeos (map? map™ 2 1),
B=0

Using property 1° of the sums K, (I, m,n) and Estermann’s estimate (7), we find

’Kpafk(mlpﬂ/nlp)\_ﬂvll)’ = ’Kpo‘*A(llmlpganlp)\_B? 1)’

| K oo (lymap®, map2)| < 00(p) (map?, nap*=2, po=) 1/ 2pla=N/2,

Taking the relation A + 1 = o¢(({, m, n,p*)) into account, we arrive at the inequality

o < @ ) ye/2 A—p /2
| Kpe (1, m,n)| < ao(p™)oo((l,m,n, p*))p” Oglgg(mp ,np” =P, p%)

Observing that
(mp®, np*~2,p*) < (Im, In, mn, p*),

we complete the proof of the lemma. O

Remark 1. The sharper estimate

( & A—pB

mp®, np (225 2 _20—283

p*)? = (m*p*? n’p P2 < (Pm?, 1Pn®,m*n?, lmn, p**)
shows that the inequality in Lemma 1 is valid with the coefficient

fo(l,m,n) = oo(q)ao((1,m,n,q))(1°m?, 1*>n?, m?n?, Imn, ¢*)/*.
Corollary 1. Suppose q is natural, 1 is an integer, and a = (I,q). Then
> Blbmoml o) a)ot e tos(a + 12

m,n=1

Proof. By Lemma 1,
|Kq(l,m,n)| < oo(g)oo(a)(lm, In,mn, q)*?q'/2.

Therefore, to prove the corollary it suffices to verify that the sum
1/2

q
g Z (Im,In,mn, q)

mn

m,n=1

satisfies the estimate

(9) S« ao(a)agl/z (a)log?(q + 1).
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We transform the sum S:

soy gy [minmn) =4

6“1 m,n=1
q
1 ) 5
< 51/2 B 5 )
- ;qj mEnjzl mn |:(l,5) | m, (l75) | n, | mn
<) o2 zq: I (1,6)2[@ 5)2 | manyd]
>~ Slq mi,mi=1 miny 02 ’ 1M10].

Henceforth, [A] denotes 1 if the assertion A is true and 0 otherwise.
Introducing the parameters §; = (6,1) and o = (4, 67), we find

1 L [62 §
s< 3R Y mm Y B

61](La) Slq mimi=1
(8,0)=61
1 a 1 52
iy o5 Y [1|mm1]
3/2
611(l,9) 8lq J mym—1 T P
(571):51

Note that d; | d2 and 02/6 | §;. Consequently, the estimate

M)

i 1 1 0'()( (d)

o L] dk d

mi,ni=1 k=1

implies that

S <oola)log?(g+1) > Y. W_UO a)log*(q +1 253/2'

311(L,9) 5|q dlq

After the changes 6 = & - 69 and (1, 0p) = &', we have

51,5 —1/2 (01,00)
3/2 - Z Z 53/2 = Z 0y Z 53/2
dlq s1l(La)  dlg 311(L,q) dolg 0
(6,[):61

Sy Y ey <<Z(5 VAN ()R

511(L,q) 8’(01 dolg 0 S1la §'a
(60,61)=6"
Therefore,
2
(10) Zm < 031/2(@.

dlq

Thus, estimate (9) is proved, together with the lemma.

]

Separately, we estimate the sums K,(l,m,n) in the case where one of the arguments

is equal to zero. Let

q

cqg(m,n) = K (0,m,n) = Z 5q(xy)62mmzq+ny.

z,y=1
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Such sums are generalizations of the Ramanujan sums

a *

s nT

n) = E 627” q
=1

(from now on the asterisk means that the summation is over the reduced system of
residues), because

cq(n) = K4(0,1,n) = ¢4(1,n).

By property 2° of the Kloosterman sums K (I,m,n) for ¢ = q1¢2, (q1,92) = 1, we
have

CQ(m’ n) = qu (m’ n)cfh (m’ ’I’L)

Therefore, to compute the sums c¢,(m,n), it suffices to consider the ease where ¢ is a
power of a prime number.

Lemma 2. Suppose p is prime, o > 1, and ¢ = p®. Then

cq(m,n) = gpe (M, n) = gpo—1(m,n),
where
(11) gq(m,n) = q - 84((m, q)(n, q))oo((m, q)(n, q)g ).
Proof. If zy =0 (mod p®), then the relations

v=pz, (z1,p)=1 y=p*"

hold true for some § (0 < 8 < «). Therefore,

P8

LSS e

B=0z1=1y1=1

1

oz—lpo‘*ﬁ*1 B

a B
o mxq nyl P mxq nyj
:Z Z Z 271'1 o ﬁ—&- o 2627” pa—p— 1+p/")

B=0z1=1y1=1 =0 z1=1 y1=1
= Gp~ ( )_gpo“l(mvn)v

=

where
Gpe (ma n) = pa Z 5p“‘*5 (m)apﬁ (’ﬂ)
5=0

To verify (11), we note that if p® t (m, p®)(n,p®), then gp«(m,n) = 0. If (m, p*) = p**,
(n,p%*) = p*2, and 11 + 12 > «, then

[e3

gpe(mym) =p* Y [ — vy < B < 1y
B=0

=p*(v1 + v —a+1) =p* - oo((m,p*)(n, p*)p~ ).

Corollary 2. For any natural q and integers m and any n, we have

(12) [cq(m, n)| < ao((m,q))(g, mn).

In particular,

(13) Kq(m,0,0) = [cq(m, 0)] < oo((m; q))g.
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Proof. Since the quantity on the right-hand side of (12) (as well as ¢,(m, n)) is a multi-
plicative function of the parameter g, it suffices to prove (12) for powers of prime numbers.
Suppose p is prime, @ > 1, and ¢ = p®. Consider three cases:

(1) p™ | (m,p™)(n,p®), and thus p~* | (m,p*~1)(n, p*~1);

(2) p™ f (m,p™)(n, p*), but p*~* | (m,p*~")(n,p*~1);

(3) p*~ "t (m,p*~ 1) (n, p* ).

In the first case, gy« (m,n) > 0, gyo-1(m,n) >0, and for (m,p®) = p**, (n,p*) =p
we have

V2
Gpe—1(m,n) = p* (min{vy,a — 1} + min{va, a — 1} — a + 2)
<pru e —a+2) <p*(vi +ve —a+ 1) = gpe(m,n).
Therefore, by Lemma 2,
0 <y (11.1) = gy (1, 1) = gy s (m, ) < gy (m, ),
|cpe (m, )| < gpe (m,n) < po, ((mm"))(spa((m,p”‘)(n,p”‘))
= ao((m, q))(g,mn).
Similarly, in the second case we obtain
|cq(m,n)| = gpa-1(m,n)
< p* oo ((m, p*))8pa-1 ((m, p*~ 1) (n,p°7 1)) = o0((m, q)) (g, mn).

Finally, in the third case we have |cq(m,n)| = 0. O

Corollary 3. Suppose q is natural, 1 is an integer, and a = (I,q). Then

S 1l o oy grontatosta + 1) -a

n=1

Proof. By Corollary 2,

q q q
leg(l,n)| 1 1
q

z >

dla/a

< aop(a)oo(q)log(qg + 1).

*‘H
S

O

Lemma 3. Suppose q > 1 is natural, | is an integer, Q1, Q2, P1, P> are real, 0 <
Py, P, <gq, and a = (l,q). Then for the sum

Pq(Q1,Qa; P1, P) = D ACTE)
Q1<u<@Q1+P
Q2<v<Q2+P>
we have the asymptotic formula

K(lOO)

Dy(Q1,Q2; P1, Po) = PP+ 0 (Yi(q))

where

(14) i(q) = o’o(q)crg(a)cralp(a) log®(q 4 1)¢*? + 00(q)oo(a) log(q + 1)a.
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Proof. We define the integers
My = [Q1], M = [Q2],
N =[Q1+ P —[Q1], No=[Q2+ P] - [Q2].

Then

(15) @q(Q17Q2;P1,P2):q’q(Mth;Nl,NQ)
and

(16) 0< Ny, N2 <gq,

because

0<N; =[Q;+ P - [Qj] =P +{Q;} —{Q; + P} <q (j=1,2).
First, we prove the lemma with M7, Ms, Ny, Ny in place of @1, Q2, P;, P>. If one of
the numbers N; and Ny is equal to zero, then the lemma is trivial. For this reason, in
the sequel we assume that N; and Ny are natural numbers. We define two functions

F1Z{M1+17...,M1+q}—>{0,1}, FQ{Mg—l—l,,MQ—‘r(]}—){O,l}
by setting
FJ((E): 1 lf Mj<$§Mj+Nj,
0 if Mj+Nj<.’L‘SMj—|—q.

These functions have the following Fourier series expansions:

Fi@)= Y Ek)e*™ s

—q/2<k<q/2
where
1 M;+Nj; .
—~ y
GICEEID S
q y=M;+1
For k = 0 we have 1
F;(0) = gNjy

and for the other k € (—¢/2, /2], we can sum the geometric progression to find

1 1-— 6727rikN]-/q

By = & e,
Therefore,
|ﬁ](k)|:} |sin.(7rkNj/q)| < 1
(17) q1 |sin(7k/q)| q|sin(wk/q)]|
< o] (—q/2 <k <q/2; k#0).

In accordance with the said above
Mi+q Ma+q
O, (My, Ma; Ny, No) = Z Z 8q(uv — ) Fy (u) Fa(v)
u=M1+1 v=Ms+1
Mi+q Ma+q R R
oY Sww-n Y Rm)Bmem
u=M;+1 v=Ms+1 —q/2<m,n<q/2
= Yo Ri(m)B(n)E,(l,m,n).

—q/2<m,n<q/2
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Separating out the term with m = n = 0, we obtain the relation

N1 N:
O, (M, My; N1, No) = 6112 2 -K4(1,0,0) + Ry + Ry + Ra,
where
I o~ o~
Ri= > F(0)F(n)K,10n),
—q/2<n<q/2
/ o~ o~
Ry= Y Fi(m)Fy(0)K,(l,m,0),
—q/2<m<q/2

/ ! ~ ~
Ry= > > Fi(m)Fa(n)Ky(l,m,n).
—q/2<m<q/2—q/2<n<q/2
Henceforth, the prime at the summation sign means that the summation index does not
take the value zero. Using inequalities (17) for the Fourier coefficients and properties
3°—4° of the sums K,(I,m,n), we arrive at the estimates

q
K, (1,0,
Rua < 37 [l 0m)]

n
n=1

RS < i |Kq(l7m’n)|+|Kq(_l>m7n)|'

mn

m,n=1
Applying Corollaries 1 and 3, we obtain the asymptotic formula

N1 N.
O, (My, My; Ny, Ny) = ;2 2 K4(1,0,0) + O(4hu(q)),

where the function ¥;(g) is as in (14).
The definitions of M;, My, N1, and Ny and condition (16) imply that

|P1P2 — N1N2| = |P1(P2 — Ng) —|— NQ(Pl — N1)| S 2(]
By (13) and (15), this inequality implies that

P, P
Dy (Q1,Qa; P1, P2) — %an,w’

N1Ns PP ‘

< Pi(q) + TK(;(LO,O) - qTKq(la(),O)

K, (l,0,0)
+q72

< i(q) q < Yi(q).

The lemma is proved. O

Remark 2. For any P; and P, = ¢, the same arguments yield the formula
P
4(Q, Qui P1, P2) = <2 K,(1,0,0) + O(00(g)oo(a)a).

§3. APPLICATION OF VAN DER CORPUT’S METHOD

Lemma 4. Let Py and Py be real numbers, and let P = P, — Py > 1. Assume that a

real function f(x) is continuously differentiable on the entire interval [Py, Ps], and that
f'(z) is monotone, ||f'(x)|| > A > 0. Then

Z eQTrif(Qf) < )\—1 .
Py <xz<P>

Proof. See [8, Theorem 2.1]. O
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Lemma 5. Let P; and P> be real numbers, and let P = P, — Py > 1. Assume that a
real function f(x) is twice continuously differentiable on the entire interval [Py, Ps], and
that, for some A >0 and w > 1, we have

TS @<y
Then
Z 2™l < Ed +VA.
Pi<z<P> \/‘Z
Proof. See [8, Theorem 2.2]. O

Lemma 6. Let P, and Py be real numbers, and let P = P, — Py > 2. Assume that a
real function f(x) is twice continuously differentiable on the entire interval [Py, Ps], and
that, for some A > P and w > 1, we have

<) <

| =
N

Then, for any natural q,

>

m=1

o P
Z 62777,(q+f(37))‘ < w q ( + log A) + \/Z
Py <z<P, \/Z

Proof. We note that it suffices to prove the lemma for the sum

s- %

1<m<q/8

S )
P <x<P;

Without loss of generality, we may assume that f” > 0 and, for = € [Py, P»], the values
of the derivative of f(x) lie inside an interval of length not exceeding 1/8. Otherwise,
the interval [Py, P,] can be divided into O(4 + 1) = O(1) shorter intervals such that on
each of them this condition is fulfilled. Thus, the values of the derivative of the function
% + f(x) range inside an interval of length not exceeding 1/4. If this interval contains

a half-integer, then ||+ + f'(z) > 1 and, by Lemma 4,

P
S<<q<<q<\/z+logA>+\/Z.

Now we consider the case where, for some integer k, for all 1 < m < ¢/2 and = € [Py, Py],
the values of the derivative of %% + f(z) lie inside the interval [k — Lk+1] e,

k-5 <

SIE

1
+f’(x)§k+5 (1<m<q/8, PL<z<P).

N | =

Let integers m1 and ms be determined by the conditions

my +1 , 1
, + f[(P) > k— —;
mo — 1

/ 1
) q +f(P1)<k+\/Z

% +f(Py) <k —

o=

%w’(a)zm
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We write the sum S in the form S = S; + S5 + S3, where

S= Y ) 62ﬂi("3”+f(z))’7

1<m<m, | Py<z<P;
= Y ) 627ri("';”+f(r))‘,
mi<m<ms | Py<z<P,
s= Y ) 627ri("‘f+f(z))‘_
ma<m<gq/2 ' Pi<a<P,
By Lemma 4,
Si< > ! </ml dm < q-logA.
i k= (24 fB) o k= (2 ()
Similarly,
1 a/2 dm
S3< > m“!‘f/(PI)_k</mz W<<q.1og/1.

ma<m<q/2 9
We apply Lemma 5 to the sum Ss:

Sy < (mg —my +1) (;%—F\/Z) < (mg—my +1)VA

<<<q(\/12+i>+1>\/2q(1+\g)+\/2.

Summing the estimates for S7, S, and S3, we obtain the required estimate of the sum
S. |

§4. PROOF OF THE MAIN RESULT

Lemma 7 (Poisson summation formula). Let h be a real nonnegative function such that

the integral
/ h(z) dx

exists as an improper Riemann integral. Assume also that h is monotone nondecreasing
on the interval (—o0, 0] and is monotone nonincreasing on [0,00). Then

oo

Z h(m—l—O)—;—h(m—O): Z B,

m=—0oQ n=—oo

where the two series converge absolutely, and
o0
h(n) = / h(t)e=2int gy
— 00
is the Fourier transform of h.

Proof. See [6, 11.24]. O

Proof of Theorem 1. We assume that A > 1, max {A, ¢} < P?, and log(4q) < log P,
because otherwise the estimate to be proved is worse than the trivial one.

Note that it suffices to prove the lemma under the assumption that the graph of the
function f(z) for x € [Py, P2] goes through no points of the integer lattice. Indeed, if this
condition is not fulfilled, then € can be chosen within the limits 0 < ¢ < A~'/3, so that
for integers « € [Py, P»] the numbers f(z) £ ¢ are not integers. If we assume that for the
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functions f + e relation (1) holds true with the remainder term (2), then, by using the
relations

T(f —el <T[f] <T[f+el, SIf el =S[f]+OPA3),

we obtain the required estimate of the remainder term for the function f as well.
We may also assume that f > 2¢, because otherwise we can replace the function f by

f+2q.
For A < 1/4 and for real «, 8 (8 — a > A), we define the functions

Y(a, Biz) = [a <z < ],
1 A2 A A
Yx(a, Biz) = A/A/zd) <04i 5»5? 2;$+t> dt;
obviously, we have
Y (a,B;7) < P(a, B57) < Py (a, B5).

We denote by N(z) the number of solutions of the congruence xy = I (mod ¢) with
respect to the unknown y that lies within the limits 1 <y < f(z). Then

N-@) <N = 3 dylan =10 (5.0 ) < Nylo)

y=—o00
where

i 8wy — D (; f(@); y)

Yy=—00
q

Sq(zk —1) Z wx( mq+k>
k=1 m=—o0

For any value of k, the functions

hee () = 5 <;,f(x);mq+k>

are nonnegative, continuous, and Riemann integrable on the entire real line; also, they
are monotone nondecreasing on the interval (—oo,0] and monotone nonincreasing on
[0,00) (recall that f > 2¢ by assumption). Therefore, the Poisson summation formula
can be applied to them (see Lemma 7), yielding

q e o] 1 )
Z (zk —1) Z </ (RS (2, f(x);qv+ k> e~ 2minv dv)
k=1 n=—o0 -0

— éz (zk —1) Z (/_ - (;,f(x);u> o 2min du)
_5 (x n__ooe X (m),g .

If n =0, then

For n # 0, we have

e 2miE(3£%) _ p2mi2 (f(2)F3)

2min ’

Or (5 1@ ) =+ ta)
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where
sin % . q
ta(n) = ——, |ta(n)| < Ta(n) = mln{l, m}.
q
Consequently,
1
(18) Nefe) = 45 () - S a) 4 N0+ NP (o),
where
q o° 2mi 2 (k—3F %)
W ! e
N (@) = bg(ak—1) Y ta(n)——5——
k=1 n=-—oo
a © —2mi 2 (f(z)F £ —k)
(2) . / e q
NP =3 d(ek =) 3 a5
Next,
TfI<Tlf]= > N@)<T[f],
Pi<z<P>
where
fl= Y Np).
P <z<P;
By Remark 2,

Z Pgi(x) = qu(Z,0,0) + O(oo(q)on(a)a).

Pi<z<P>
Therefore, after summation, formula (18) yields
P 1 2
Te () = 811 = 55 Kal1:0,0) + T 1] + T2
AP
2

(19)

+0( =5 Ky(1,0,0)) + 0 (o(a)on(a)a)

where

8= Y N ().

Py <z<P;
It is well known that the function

B %f{x} if =¢2Z,
T(x)_{o if ze7Z

has the Fourier series expansion

This implies that the smoothed function

@=L [ (A terny) a
g(x) = — - — x+t) t
A J a/@q) \2

is representable in the form
o0
! tA (n) 2mwinx
T) = — —— e .
9() 271 n

13
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For x € (2%,1 — %) we have

Consequently,
q
1) k 1 A
N @) =Y ay(ek =g (£ 07 )
F a
— q 2q 2
q
1k 1 A
= Gq(zk —1) (2—+2) + ( Hall ))
1 q q

To find Tj(Fl) [f], we split the sum in the variable x into segments the length of which does
not exceed ¢. For the sums

q
S’:qu(xk—l)g and S”—Zémk—l —k

z,k=1 z,k=1
we have S + 5" = K,(1,0,0) and S” = 5" — ¢d4(1). Therefore,

1
S = by (Kq(lv 0, 0) + qéq(l)) )
! 1 (K,(1,0,0 A K,(1,0,0
@) YN = (R ) o (SR,
=1
Moreover, applying Lemma 3 to the double sums in the identity
qg P b-1
ZZ& a:k—l ZZ& (zk —1) ZZZ& (xk —1),
z=1k=1 z=1k=1 4=
for 1 < P’ < q we obtain
G I
> Gglak =)o = =K, (1,0,0) + O(ti(g)).
rx=1k=1 q q
Hence,
: 1,P AP - K,(1,0,0

@) YN = L (D k,0.0.0) - Pa,0) + o) + o BT Kl 00y

r=1 2 q q
Thus, (4) and (21) show that

1/P AP - K,(1,0,0
S 8P = 5 (500,00 - P5,0) + Otin(a)) + O( S ELEED),

Pi<z<P;
Substituting this in (19), we arrive at the relation

P AP - K,(1,0,0

@) T =501 S0+ TP+ Owa) + 0 (SRR,

Now we estimate T(Q)[f}. Using the relation

q—1 . q

— L jma
> Sq(wk —1)e ™ > Ky(l,m,n)e*™
k=0

m=1

Q\'—‘
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we write the quantity Nj(Fz)(a:) in the form

oo crn A mx
9 1 ’ a 2mi(g (f(@)F2)—3%)
NP (@) == > tan) Y Ky(l,m,n) P
q n=—oo m=1
Hence,
9 1 & TA(n) 4 i (@)
T < =S 2 S K (mn)| | SD EEE
= m=1 Pi<z<P;
By Lemma 1,

where a = (I, q),

We set § = (Im,In,mn,q), 61 = (1,6

=36y TAn( ") S {(tm, I, min) = 6] 1, (m, n)|

and transform the sum S:

~—

5|q n=1 m=1
> Ta(n) [ 6 SN
sZ&”QZ* {51 |n] > [(Slm,5|mn} |5, (m, )] .
§|q n=1 m=1

After the change of summation indices m = dm4/d1 and n = dn1/d1, we arrive at the
following bound on S:

01q/6

> Ta(dn1/8
§< ;51/2 ZlA(nf/l) Zl [62 | Smini] - |Sq(9ma /61,61 /61)]
q ni= mi=
d1q/6
Ta(ony/d 52
Z 51/2 Z a( 1/ ) Z {5; | m1n1] -|S51q/6(m1,n1)|7
dlg ny=1 my=1

where 5 = (5%,6). Next, we set d3 = (n1,6%/d2). Then

CED DRI Sl DECLLTLBIENE YN

dlq 35]62 /85 n1=1
51‘1/‘s (S%
= 03 Z {5253 |m1] "Sélq/é(mhnl)‘
m1:1
Ta (8630 /(5 6%:;?(1 2
A(003m2/01
< 5 RO S s, (ghmatn)|
Slq 63|82 /85 n2=1 =

_ _ 3 : 5 .
where nq = d3n9, M1 = 5k M We estimate the sum of S(;lq/(;(mmg, d3m2). This sum
depends on the function

0

52
F(z) = ((52(537”251” 53n2f(=’f)) @,
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for which
F//(x) —

66377,2 17 (5(5377/2 1 51qA
20512 = ==, A= .
o1q f @) S1gA — A T 803my

We apply Lemma 6 if A; > P and Lemma 5 if A; < P. This shows that S <« S; + S,

where
=Yg X 3 PR (T hoer) )2
1

5lq 83162 /65 n=1
Ta 55371/51 (0203 ¢ P 1/2
=Y s D > (=7 + A7) 141 < P)
551 A
dlq 83|62 /62 n=1 1

Collecting the terms of the same form in S; and Ss and using the monotonicity of Ta(n),
we get the estimate

(23) S <« S34 54+ S5+ S,

where
1 2 oo

526 Ta(68351/51)
1212 2 A 3 1
S3 =PA~'/2¢!/ Z Z 1/2 Z nl/2 )

dlq 53|52/52 1

Si=glogpy Y 2> A,

dlq 5a|5 /52 n=1

—AL/2 1/22 Z )2

dlq 63163 /62

— Ta(n)
(5(53/2 n3/2 )

1/2 )

020 Ta(003n/61) 01¢A
1/2,.3/2 2 A\003 1 14
Ay S Sy RO > ).

Slg 53\52/62

Making use of the inequality Ta(n) < min{1, g(A|n|)~!} and considering the cases where
bA > q and bA < g, we obtain the estimate

= Ta(b 1/2
>l < (%)

n=1

Hence,
1/2 A—1/2
Sy« PATAT Y B S
dlq 83|63 /82
Since
YDIRED JRP

83162 /62 93|01
inequality (10) implies that

[P
(24) Z W Z 1K UO(@)U%I/Q(G)

dlq 53|6% /62

and
(25) S3 <« ao(a)azl/z(a)PA_l/zA_l/Qq.

Next, since

>

n=1

<< log P,
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by (24) we have

(26) Sy < qlog® PZ Z 3/2 < qop(a)o 31/2(a)10g2 P.
Slg 85167 /62

To estimate the sum S5, we note that

i Taln)

3/2
n=1 n/
Therefore,
1241/ g2y 0
1/241/2 1/241/2
S < A >y 553/2<<A >
3lq 65162/ Sla
< A2gHR N g N 5 < AY2q 0y (q)or a(a).
b11(a.0) Slq
(6,1)=61
Consequently,
(27) Ss < AV2q 20 o1 (q)o 1 ja(a).

For any N, k > 0, we have

5 Ta(kn) _ 5 Ta(kN) _ Ta(kN)

3/2 3/2 1/2
N / N / NY
Thus,
Sg < PY%qT Aq >y
qin 53/27
dlq 63|62/§2
and, by (24),

A
S < Uo(a)031/2(a)P1/2qTA (Pq) :

Now, we apply the inequality

Aq , P P \?
il Il P g
s () i = (33
to get an estimate similar to (25) for the sum Se:

(28) Se <K oo(a)azl/z(a)PA_l/QA_l/Qq.

Substituting (25), (26), and (27) in (23), we arrive at an estimate of the sum S and of
the remainder term TJ(FQ) [f):

S < Uo(a)a%l/z(a)(PA_l/QA_l/Qq +qlog? P) + 0_1(q)o_19(a)AY?¢"/2a?/?,
TJ(FQ) [f] < ao(q)azl/z(a)crg(a)(PAil/qu/zA*l/2 +¢'/?1og? P)
+UO(Q)U—1(Q)Uo(a)0—1/2(a)Al/Qal/Q-

Now substituting this in (22) and using (13), we obtain (1) with a remainder term

R[f] < AP -q 'og(a) + aco(q)oo(a)log(q + 1)
+ oo(q)agl/z(a)ag(a)(PA_l/qu/ZA_l/Q
+q'/?1og? P) + 00(g)0-1(q)o0(a)o_1/5(a) A'2al /2.
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The choice
_ 2/3 2/3 4/3
A=gqA 1/3‘70/ (q)ao/ (a)a—/l/Q(a)

completes the proof of the theorem. |

Remark 3. In applications, as a rule, the greatest contribution is made by the first
summand of the remainder term. For this reason, usually, a simpler estimate of the
remainder term can be used:

(29) RIf] < o3 *(@)of(@)PAT* + (422 4 ¢/ 4-a) P-.
Remark 4. For ¢ = 1, the theorem proved above converts to a known result on the

number of points under the graph of a twice continuously differentiable function (see |3,
Lemma 4], and also [14, Problem 1.6.4]).

§5. A REFINEMENT OF A RESULT BY PORTER
Lemma 8. For any natural b > 4, the sums
Dp=>_ @ (k> 0)
alb
satisfy the estimate
(30) Dy, < (loglogb)?*

Proof. The relations o1(n) = no_1(n) and o1(n) < nloglogn (see, e.g., [9, Theorem
323]) imply that the lemma holds true for the sum Dy = o_1(b). If we assume that (30)
is valid for some k > 0, then for k + 1 we obtain

Dk-HZZ Zl_zzaotm

alb tla t\b alb/t
<2 AU 5 B <z < oglogy?
tb arb/t O

Proof of Theorem 2. We assume that € < 1/6 and denote by T,(b) the number of solu-
tions of the equation

(31) mimso + NiNg = b

with respect to the unknowns 1 < m; < ny and 1 < my < ngx. Let T.(b) denote
the number of solutions of equation (31) in which 1 < m; < ny, (mq,n1) = 1, and
1 < mgy < nox. For the sum

b
b =3 5@ (a/),

the following relation is valid (see the proof of Lemma 3 in [4]):

N, (b) = 2T(b) + b ( r<1]— il) +0(1).

The quantities N, (b) and T, (b) are related to N (b) and T (b) by the M&bius inversion

formula
=> ud)Ny(b/d), T;(b) = p(d)Tw(b/d).

djb djb
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Therefore,

“(p) — b R P .
(32) NA@—{g;mmmw@n<%®)+wm( o< 1= 5 00,

To compute T, (b), we introduce the parameter U = (blog b)'/? and divide all the solutions
of equation (31) into two groups. We attribute the solutions with ny < U to the first
group and all other solutions to the second. Accordingly, T..(b) is represented in the form

(33) T, (b) = Ty (b, U) + Tu (b, U).

First, we find an asymptotic formula for T3 (b,U). We note that, for fixed ny, the
variables m; and ms satisfy the congruence

(34) mims =b (mod nq).
If n1, mq, and my are known, then ns is determined uniquely:
b— mimso
Ng = —————.
ny

The restriction my < nox is equivalent to the inequality

(35) my< 0% Foi(ma).

Thus, the problem reduces to the calculation of the number of solutions of the congru-
ence (34) in which the variables satisfy the restrictions 0 < m; < ny and my < f,,, (my).
We apply Theorem 1 with P, =0, P, = n1, f = fn,, and with the simpler estimate of
the remainder term (see Remark 3). Since

b
7 -
fn1 (ml) -~ ni?a

we obtain n
Hence,
(36) Ty(0,U) = > Tlfa,] = S1(b,U) + Ry (b,U) + O(b"/>*9),
n1<U
where
1
(37) Si0,U)= D Slfad= Y — D sy p(ma) fu, (ma),
n1<U n1<U ! m1<ni
Ri(b,U) = > Rlfu] < 3" 0p*(n1)od (@)
ni<U ny<U
(38) +0° Z (n?/Qa}/Qb_l/g +ni/? 4 al) )
ni1<U

and a1 = (n1,b). Applying the estimate og(zy) < og(z)oo(y) and the Holder inequality,
we see that

> o3 Mm)of(a) <Y o) Y o (na)
ny<U ailb n<U/ay
2/3

- Zo-g(al) Z 0’0(?’7,) (U/a1)1/3 <<U10g2/3bz @

a1|b n<U/a1 al‘b 1
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Next, applying Lemma 8, we arrive at the inequality
pi/3 Z ag/g(nl)ag(al) < b°/0 log7/6+‘3/2 b.
ni<U

The contribution of the other terms occurring in the formula for R;(b,U) is smaller
provided ¢ < 1/6:

p—l/2te Z ni’/2a}/2 < b1/2He Z a%/z Z (0L1n)3/2

ny<U ailb n<U/ay
< bV N g P PR

al\b

Y /P < U < b3

ni<U

Y ar<b Y ar Y L<HUo_(b) < b/

ny<U aylb n<U/a1
Thus,

(39) Ty (b,U) = S1(b,U) + O(b>¢log™/6+< b).
To find S1(b, U), first we consider the sum

Z Zn—l—maz

n<U m<n

which can be written in the form

(U) = log(1 + x) Z +Z (

n<U n<U

—log(1 + x))

= log(1 + z)(log U +7) + hl(z) + O( ),

where hq(z) is defined as in (4). Hence, applying the Mébius inversion formula to the

sum
we get
. p(d) U
) = 22 e (=
)=y M ( 7).
d<U

which leads to the asymptotic formula
log(1 + x) < C’(Z)) hi(zx) (log(U + 1))
40 " (U)= ————(logU + v — + +0 .
oy =" @) " @ U
Substituting p,, »(m1) = di - dq, (b) with di = (mq,n1) in (37), after the changes m; =
dim and n; = din we obtain

S0 =Y = 3 mmw d1 - 64, (b)

n1<U m1<n
= = (I)*
S Y et (3):
d1|b n<U/d m<n
By (40), this can be written as

(41)  Si(b,U) = ﬁ > g <log(1 + ) <logg oy — CC/((22))> T h1($)> L O®Y/2).
dlb
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Substituting (41) in (39), we arrive at an asymptotic formula for T (b, U):

BRI BN S
) T1(b,U) = <(2);d <1og(1+ )<log 7 +y C(2)>+h1( )>

+ O(b‘r’/6 log™/6+e b).

To find T5(b,U), we note that, for fixed ny, the variables m; and mqy satisfy the
congruence

(43) mime =b  (mod ny).
If no, my, and mso are known, then n; is determined uniquely:
b— mimso
n=——-—.
na

The restriction max{m;,U} < n; is equivalent to the inequality

b b—U
”}z%mm»

mo + No ’ mo
We divide the interval I = (0,n2], inside which the variable ms changes, into shorter
intervals by the points 1, 2, 22, ..., 2¥ (k = [log, n2]), and to this partition we add the
point mg = % — ng at which the function g,, may be nondifferentiable:

my < min{

k:/
I=||1; (K=k+2).
j=1

We assume that

b k//
i mee || I
ma + N2 ? j|Z|1 !
gn2 (m2) = b _ UnQ

%
if mg € |_| Ij,
mo j=k"+1

where 0 < k" < k’. We apply Theorem 1 to the function g,, on each of the intervals I;.
Then for the entire interval I we get

T(gn,) = Slgn,] + R [gn,] + R'[gn,] + O (b' U,

where

S[gm]:ni Z Pins b (2)Gn, (M),

1<ma<na
k// ' k/ '
R"[gn,] = ZR(])[anL R [gn,] = Z R(J)[9n2]>
j=1 j=k"+1

and R[g,,] is the remainder term obtained as in Theorem 1 on the interval I;.
For j=1,...,k", we have
b

Gns(M2) < —
no ng

on the interval I;. Therefore, the sum of the remainders R"[gy,] is estimated like the
sum (38) (with the replacement of U by b/U):

(44) > R[gn,] < b0 log™/ ot b,
na<b/U
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Ifj=k"+1,...,k then

b*UﬂQ - b*UTlQ
mi T 23

Iy (M2) <
on the interval I;. Consequently, by (29),
RW[gn,] < 03/3(712)08(@2)171/3 + b2 (23j/2a§/2b*1/2 Jrn;/Z + a2) 7

where as = (ng,b). Thus,

k/
Rlgn) = > RDga,) < 07/*(n2)o?(az)logb - b'/3
=k 41

+b° (ng/zaé/z(b —Uny) "2+ n;/Q + ag) .
Hence, like in the case of R[f,,], we arrive at the estimate

45 R'[gn.] < b%/010g7/6t .
(45) > Rgn, g
nggb/U—Q

If the value of the variable ny > b/U — 2 is fixed, then n; can take at most pl/2+e/2
values, and for fixed ny and ns, at most og(b — ning) < be/2 values of m; and mq may
exist. Therefore, by (44) and (45), we have

T,0,U)= Y Tlgn,]
’nng/U

= > Tlgn,) +OB?T¢) = Sy(b,U) + O(b*/log™/* < b),
na<b/U—2

where

S(b,U) = Y L Dt (12)gny (m2).

n2
na<b/U ma<ngy

As in the case of the sum S1(b,U), after the change
:u‘nzyb(mQ) = dy - ba, (b)v do = (m27n2)7
the sum So(b, U) is written in the form

=3 Y sy mn{m - T Y ()

d|b n<b/ du) m<nr d|b

where

=Y i

n<§ m<nz
For the sum F} (), the following asymptotic formula is valid (see [4, Lemma 10]):

log(z + 1)
¢(2)

H(zx) +O<log2(§+ 1))’

F (&) = ¢

where

H(z) =log(1l + x) <logx - — +v- 1> + ha(x)
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and ha(x) is defined as in (5). Therefore,

S2(b,U) = ﬁ %b: g <log(x +1)log % + H(x)) + O(b'/2Fe),

1 b b .
(b, U) = 0] % p <10g(:17 +1)log Ut H(x)) +O(b/510g7/0+< ).

Substituting this expression for T5(b, U) and relation (42) in (33), we arrive at an as-
ymptotic formula for T, (b):

T, (b) = ﬁ Z g (10g(aj +1)log % + O (x)) + O(b5/6 10g7/6+5 b,

dlb

where

Ci(x) = H(x) +log(1 + ) (7 — g((QZ))) + hi(z).

We substitute this result in (32). Then, since

pu(di)p(da) _ o(b) pi(d1)p(d2) 2y _
2 Tnd, T b 2 dga, 8ldkd) =0
ddyda|b ddyda|b

(see [11]), we get

d1d2|n

> nld)u(d)T; (dlbdz> = ?gi(log(x +1)logh + Ci(x)) + 0%/ log™/ 5+ b),

N;(b) = ?Q?(log(x +1)logb+ C(x)) + O(b*/%1log™/ 5+ p),

where C(z) is as in (3). The theorem is proved. O

The author expresses his gratitude to V. A. Bykovskii for discussion of the results
obtained and for helpful advice.
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