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The statistics of particle trajectories
in the inhomogeneous Sinai problem

for a two-dimensional lattice

V. A. Bykovskii and A. V. Ustinov

Abstract. In connection with the two-dimensional model known as the
‘periodic Lorentz gas’, we study the asymptotic behaviour of statistical
characteristics of a free path interval of a point particle before its first
occurrence in an h-neighbourhood (a circle of radius h) of a non-zero integer
point as h→ 0 given that the particle starts from the h-neighbourhood of
the origin. We evaluate the limit distribution function of the free path
length and of the input aimed parameter (the distance from the trajectory
to the integer point we are interested in) for a given value of the output
aimed parameter. This problem was studied earlier for a particle starting
from the origin (the homogeneous case).

Keywords: analytic number theory, dynamical systems, continued frac-
tions, Kloosterman sums, billiards, geometry of numbers.

Introduction

We introduce the following notation: ‖x‖ is the distance from a real number x
to the nearest integer, ϕ(d) is the number of integers between 1 and d coprime to d
(the Euler function), µ(d) is the Möbius function and δq(a) = 1 if an integer a is
divisible by q and δq(a) = 0 otherwise (the function of divisibility by q).

We define the finite differences of a function f(m,n) of two variables as follows:

∆1,0f(m,n) = f(m + 1, n)− f(m,n),

∆0,1f(m,n) = f(m,n + 1)− f(m,n),

∆1,1f(m,n) = ∆0,1(∆1,0f)(m,n) = ∆1,0(∆0,1f)(m,n).

Let f(x) and g(x) be functions with the same domain and let g(x) > 0. Then
the expressions

f(x) = O(g(x)), f(x) � g(x)
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mean that the inequality |f(x)|6 cg(x) holds for some absolute positive constant c
on the entire domain. If c = c(ϑ) (that is, the constant depends on some parame-
ter ϑ), then we write

f(x) = Oϑ(g(x)), f(x) �
ϑ

g(x).

When studying rather fast-moving particles (in a crystal) whose trajectories are
governed mainly by their multiple scattering on nuclei, we arrive at the following
rather natural mathematical construction.

For fixed real numbers h and v in the intervals
(
0, 1

8

)
and (−1, 1), respectively,

the line (on the plane) defined parametrically by the rule{
(−hv sinϕ + t cos ϕ, hv cos ϕ + t sinϕ) ∈ R2 | t ∈ (−∞,+∞)

}
(1)

and oriented in the direction (cos ϕ, sinϕ) passes at t = 0 through the point O′ =
(−hv sinϕ, hv cos ϕ), which is its nearest point to the origin O = (0, 0) (O′ is the
projection of O on the line (1)). Another parametric representation{

(x− t′ sinϕ, y + t′ cos ϕ) ∈ R2 | t′ ∈ (−∞,+∞)
}

(2)

defines the line perpendicular to (1) and passing through the point (x, y) at t′ = 0.
These lines meet at some point M = M(ϕ) when

t = R(x, y) = x cos ϕ + y sinϕ, t′ = U(x, y) = x sinϕ− y cos ϕ + hv.

Among the integer points (m,n) on the plane satisfying the conditions

R(m,n) > 0, |U(m,n)| < h,

we choose a point (m(ϕ), n(ϕ)) for which the quantity R(m,n) takes the minimal
value. Such a point (m(ϕ), n(ϕ)) always exists because, by Minkowski’s theorem
on linear forms, there is an integer pair (m,n) 6= (0, 0) for which

|m cos ϕ + n sinϕ| 6 (h(1− |v|))−1, |m sinϕ− n cos ϕ| < h(1− |v|).

Moreover,

|U(m,n)| = |m sinϕ− n cos ϕ + hv| < h(1− |v|) + h|v| = h.

By the h-neighbourhood of a point (x, y) we mean the open circle of radius h
centred at (x, y). Then (m(ϕ), n(ϕ)) is an integer point (m,n) 6= (0, 0) whose
h-neighbourhood is intersected for the first time by a particle moving along the
line (1) from the point O′ in the positive direction. This implies the uniqueness of
the pair (m(ϕ), n(ϕ)). We write

r(ϕ) = hR(m(ϕ), n(ϕ)), u(ϕ) = h−1U(m(ϕ), n(ϕ)).

Here we have
0 < r(ϕ) <

1
1− |v|

, −1 < u(ϕ) < 1.
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Guided by the terminology of nuclear physics, we call the value r = r(ϕ) the
normalized free path and v and u = u(ϕ) the normalized output and input aimed
parameters.

Let
0 < r0 <

1
1− |v|

, −1 < u− < u+ < 1,

and let χI( · ) be the characteristic function of the interval I on the line (−∞,+∞).
Our main result is the following theorem.

Theorem. Let |v| < c < 1. Then the distribution function

Φv(h) = Φv(h;ϕ0, r0, u−, u+) =
∫ ϕ0

0

χ[0,r0](r(ϕ))χ[u−,u+](u(ϕ)) dϕ

satisfies the following asymptotic formula for any ε > 0 as h → 0:

Φv(h) =
∫ ϕ0

0

∫ r0

0

∫ u+

u−

ρ(ϕ, r, v, u) dϕ dr du + Oε,c(h
1
2−ε),

which is uniform with respect to v, u−, u+ and ϕ0 ∈ [0, 2π] and has density

ρ(ϕ, r, v, u) = ρ(r, v, u) = ρ(r, u, v) = ρ(r,−u,−v)

of the following form for u > |v|:

ρ(r, u, v) =



6
π2

, if 0 6 r 6
1

u + 1
,

6
π2

1
u− v

(
1
r
− 1− v

)
, if

1
u + 1

6 r 6
1

1 + v
,

0, if
1

1 + v
6 r.

Remark 1. From a physical point of view, the function 1
2π ρ(ϕ, r, v, u) can be

interpreted as the density of particles moving rectilinearly with unit speed at an
angle ϕ after the first scattering with the output aimed parameter V = hv in
the h-neighbourhood of some node of the integer lattice and traversing a distance
R = h−1r before the repeated scattering for the input aimed parameter hu.

Remark 2. The density ρ(ϕ, r, v, u) does not depend on the angle ϕ (isotropy).
Its symmetry under the replacement of (v, u) by (u, v), (−u,−v) and (−v,−u) is
explained by the isotropy and the ‘reversibility’ of the particle trajectories.

Remark 3. Sinai proved [1] the ergodicity of a rectilinear billiard from which a circle
of radius h is cut away. The statement of the problem on the asymptotic behaviour
as h → 0 of the distribution function for the length of the trajectory before the
first collision with the deleted circle (collisions with the cushions are not taken into
account) is also due to Sinai. This is the special case of the problem in question
when v = 0, u− = 1, u+ = 1 and ϕ0 = 2π.
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Remark 4. For v = 0 (the homogeneous problem) the theorem was proved in [2]. In
the simplest setting in Remark 3, an earlier result was obtained in [3] with a worse
estimate for the remainder (of the form Oε(h

1
8−ε)).

Remark 5. It follows from the results of [4], which were proved by ergodic methods
using Ratner’s theorem on the classification of invariant ergodic measures under
the action of unipotent flows, that the function Φv(h) has a limit as h → 0 in the
special case when ϕ0 = 2π. This is not sufficient to prove the isotropy property.

Remark 6. The two-dimensional model treated in the present paper is of some inter-
est in the theory of channelling for particles moving parallel to the crystallographic
planes (see [5] and [6]).

§ 1. Properties of the integer pairs (m(ϕ), n(ϕ))

According to the definitions, we have

h−1r

(
ϕ +

π

2

)
= n

(
ϕ +

π

2

)
cos ϕ−m

(
ϕ +

π

2

)
sinϕ,

hu

(
ϕ +

π

2

)
= n

(
ϕ +

π

2

)
sinϕ + m

(
ϕ +

π

2

)
cos ϕ + hv.

Since the set of integer points is mapped onto itself under rotation of the plane
through an angle π/2 about the origin and orientation is preserved, it follows that
the output aimed parameter v is also preserved, and

r

(
ϕ +

π

2

)
= r(ϕ), u

(
ϕ +

π

2

)
= u(ϕ).

Therefore,

m

(
ϕ +

π

2

)
= −n(ϕ), n

(
ϕ +

π

2

)
= m(ϕ).

Further,

h−1r

(
π

2
− ϕ

)
= n

(
π

2
− ϕ

)
cos ϕ + m

(
π

2
− ϕ

)
sinϕ,

hu

(
π

2
− ϕ

)
= −n

(
π

2
− ϕ

)
sinϕ + m

(
π

2
− ϕ

)
cos ϕ + hv.

We consider reflection in the line y = x. In this case, the set of integer points on the
plane is mapped onto itself but the orientation is reversed. Therefore, the output
aimed parameter v is taken to −v, and

r

(
π

2
− ϕ

)
= r(ϕ), u

(
π

2
− ϕ

)
= −u(ϕ),

m

(
π

2
− ϕ

)
= n(ϕ), n

(
π

2
− ϕ

)
= m(ϕ).
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Summarizing the above considerations and taking the equality ρ(r, u, v) =
ρ(r,−u,−v) into account, we can conclude that it is sufficient to prove the the-
orem in the case when ϕ0 ∈ (0, π/4).

We shall use another parametrization of the slope angle of the trajectory in terms
of α = α(ϕ) = tanϕ ∈ (0, 1):

sinϕ =
α√

1 + α2
, cos ϕ =

1√
1 + α2

,

R(x, y) =
x + αy√
1 + α2

, U(x, y) =
αx− y√
1 + α2

+ hv,

r(ϕ) = h
m(ϕ) + αn(ϕ)√

1 + α2
, u(ϕ) =

αm(ϕ)− n(ϕ)
h
√

1 + α2
+ v.

Lemma 1. The numbers m(ϕ) and n(ϕ) are coprime.

Proof. Assume that GCD(m(ϕ), n(ϕ)) = q > 1. Writing m = m(ϕ)/q and n =
n(ϕ)/q, we obtain

|U(m,n)| =
∣∣∣∣ αm− n√

1 + α2
+ hv

∣∣∣∣ = ∣∣∣∣1q αm(ϕ)− n(ϕ)√
1 + α2

+
1
q

hv +
q − 1

q
hv

∣∣∣∣
=
∣∣∣∣1q U(m(ϕ), n(ϕ)) +

q − 1
q

hv

∣∣∣∣ < 1
q

h +
q − 1

q
h = h.

Here we have
R(m,n) =

1
q

R(m(ϕ), n(ϕ)) < R(m(ϕ), n(ϕ)),

which contradicts the definition of the pair (m(ϕ), n(ϕ)). Thus, our assumption
is false and q = 1.

We note that the equation (m(ϕ), n(ϕ)) = (1, 0), (m(ϕ), n(ϕ)) = (1, 1) holds
only for α ∈ (0, ϑ0), α ∈ (ϑ1, 1) respectively, where ϑ0 and ϑ1 are the roots of the
equations (in α)

α√
1 + α2

+ hv = h,
α− 1√
1 + α2

+ hv = −h

in the interval (0, 1). Here we have

0 < ϑ0 <
√

8 h < 1−
√

8 h < ϑ1 < 1. (3)

Since
m(ϕ) sinϕ− n(ϕ) cos ϕ + hv > −h,

we have the inequalities

n(ϕ) 6 m(ϕ)α + (1 + v)h
√

1 + α2 6 m(ϕ) +
1
2

.

Therefore, n(ϕ) 6 m(ϕ).
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Writing
M =

{
(m,n) ∈ N2 | 0 < n < m, GCD(m,n) = 1

}
,

we can summarize what has been said as follows.

Remark 7. For any α ∈ [ϑ0, ϑ1] the pair (m(ϕ), n(ϕ)) belongs to the set M.

Let (m,n) ∈ M. We define positive integers m+ and m− by the conditions

nm± ≡ ±1 (mod m), 0 < m± < m. (4)

Since n and m are coprime and m > 2, it follows that m+ and m− are defined
uniquely by their congruences with +1 and −1.

We also set
n− =

nm− + 1
m

, n+ =
nm+ − 1

m
. (5)

Remark 8. Given (m,m+), the number n is defined uniquely by the conditions
0 < n < m and nm+ ≡ 1 (mod m), and the number n− can be recovered uniquely
from (m,n). The same holds for the pair (m,m−).

Lemma 2. We have the following properties for the integers m+, m−, n+ and n−
uniquely determined by a pair (m,n) ∈M:

1) 0 6 n+ < m+ < m and 1 6 n− 6 m− < m,
2) (m+, n+) + (m−, n−) = (m,n),
3) nm+ − n+m = n−m− nm− = n−m+ − n+m− = 1.

Proof. The validity of 1) follows immediately from the equations (5). Adding the
congruences in (4), we obtain

(m+ + m−)n ≡ 0 (mod m).

Since n is coprime to m, it follows that m+ +m− = km for some positive integer k.
However, m+ + m− < 2m, and therefore k = 1. Adding the equalities in (5), we
obtain the other relation, n+ + n− = n. Thus, the validity of 2) is proved. Finally,
according to (5), we have

1 = det
(

n n+

m m+

)
= det

(
n− n
m− m

)
= det

(
n− n+ + n−
m− m+ + m−

)
= det

(
n− n+

m− m+

)
,

as claimed in 3). The proof of the lemma is complete.

Lemma 3. Let α = α(ϕ) ∈ [ϑ0, ϑ1]. A pair (m,n) ∈ M coincides with the pair
(m(ϕ), n(ϕ)) if and only if

U(m+, n+) > h, U(m−, n−) 6 −h, |U(m,n)| < h.

Proof. Assume that the numbers

U(m+(ϕ), n+(ϕ)), U(m−(ϕ), n−(ϕ)) (6)
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have the same sign. Then in accordance with Lemma 2, 2) we have

|U(m(ϕ), n(ϕ))| =
∣∣U(m+(ϕ), n+(ϕ)) + U(m−(ϕ), n−(ϕ))− vh

∣∣ > 2h− h = h,

which contradicts the definition of the pair (m(ϕ), n(ϕ)). Hence, our assumption
is false and the numbers we are interested in have different signs.

We now assume that

U(m+(ϕ), n+(ϕ)) =
αm+(ϕ)− n+(ϕ)√

1 + α2
+ vh 6 −h.

Then
αm+(ϕ)− n+(ϕ) 6 −

√
1 + α2 (1 + v)h < 0.

Since the sign of the number U(m−(ϕ), n−(ϕ)) is opposite to that of the number
U(m+(ϕ), n+(ϕ)), it follows that

αm−(ϕ)− n−(ϕ) >
√

1 + α2 (1− v)h > 0.

Then
n−(ϕ)
m−(ϕ)

< α <
n+(ϕ)
m+(ϕ)

.

However, this contradicts the equation

n−(ϕ)m+(ϕ)− n+(ϕ)m−(ϕ) = 1

in Lemma 2, and our assumption is false. Moreover, |U(m±(ϕ), n±(ϕ))| > h by
the definition of the pair (m(ϕ), n(ϕ)), that is, the first number in (6) is positive
and the other negative. This proves the necessity of the conditions in Lemma 3.

Let us now prove their sufficiency. Suppose that there is an integer pair (m1, n1),
0 < m1 < m, such that |U(m1, n1)| < h. Having regard to the same considera-
tions as those used in the proof of Lemma 1, we may assume that m1 and n1 are
coprime. There are two coprime integers a and b for which the following relations
hold (in accordance with Lemma 2, 3), the determinant of the system from which
the numbers a and b are found is equal to 1):

am+ + bm− = m1, an+ + bn− = n1.

If one of the numbers a and b vanishes, then the other is equal to one, and the pro-
posed inequality fails to hold (by assumption) for the pairs (m+, n+) and (m−, n−)
obtained in this way. Therefore, a and b are non-zero. Suppose that ab < 0. Then

|U(m,n)| =
∣∣aU(m+, n+) + bU(m−, n−) + (1− a− b)vh

∣∣
> |a|h + |b|h− |a + b− 1|h > h.

We have arrived at a contradiction, and therefore a and b are both positive. Then
m1 = am+ + bm− > m+ + m− = m, which again leads to a contradiction. Hence,
the inequality |U(m1, n1)| > h holds for all positive integers m1 < m and any
integer n1. This completes the proof of the lemma.
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§ 2. Auxiliary transformations

Since the equation

χ(u−,u+](u) = χ(−v,u+](u)− χ(−v,u−](u)

holds for −v < u− < u+ and the equation

χ[u−,u+)(u) = χ[u−,−v)(u)− χ[u+,−v)(u)

holds for u− < u+ < −v, it suffices to prove the assertion of the theorem in the
case when

−1 < u− 6 −v 6 u+ < 1,

and we assume in what follows that these conditions are satisfied.
Let (m,n) ∈ M. We denote by I(m,n) = I(h, v, u−, u+;m,n) the subset

of [ϑ0, ϑ1] formed by all numbers α satisfying the conditions

(1− v)h
√

1 + α2 6 αm+ − n+, αm− − n− 6 −(1 + v)h
√

1 + α2 , (7)

(u− − v)h
√

1 + α2 6 αm− n 6 (u+ − v)h
√

1 + α2 . (8)

It follows immediately from (8) that∣∣∣∣α− n

m

∣∣∣∣ 6 2
√

2
h

m
(9)

for any α ∈ I(m,n).
We mentioned in the introduction that the pair (m(ϕ), n(ϕ)) is defined uniquely

by the angle ϕ. Therefore, the domain of integration with respect to α (after
replacing ϕ by arctanα) in the integral defining Φv(h) is partitioned, according to
Lemma 3, into disjoint closed intervals I(m,n), (m,n) ∈ M, [0, ϑ0], and [ϑ1, 1].
Estimating the integrals over the last two intervals (using the inequalities in (3))
and setting α0 = tan ϕ0, we obtain

Φv(h) =
∑

(m,n)∈M

∫
I(m,n)

χ[0,α0](α)χ[0,r0]

(
h

m + αn√
1 + α2

)
dα

1 + α2
+ O(h).

Let

M(R) =
{

(m,n) ∈M |
√

m2 + n2 6 R
}

, Mt(R) =
{

(m,n) ∈M(R)
∣∣∣∣ n

m
6 t

}
,

for R ∈ [1,∞) and t ∈ (0, 1).

Lemma 4. The following equation holds for r0 < (1− |v|)−1 and |v| 6 c < 1:

Φv(h) =
∑

(m,n)∈Mα0 (r0h−1)

mes(I(m,n))
(

1 +
(

n

m

)2)−1

+ Oc(h ln(h−1)).
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Proof. Since (
m + αn√

1 + α2

)2

+
(

αm− n√
1 + α2

)2

= m2 + n2,

it follows that

m2 + n2 − (2h)2 <

(
m + αn√

1 + α2

)2

6 m2 + n2

for α ∈ I(m,n) (see (8)). Hence, by (9),

Φv(h)−
∑

(m,n)∈M(r0h−1)

∫
I(m,n)

χ[0,α0](α)
dα

1 + α2
� h +

∑
(m,n)∈M

06m2+n2−(r0h−1)26(2h)2

∫
I(m,n)

dα

�
∑

16m6r0h−1

∑
06n2−((r0h−1)2−m2)6 1

2

h

m
� h

∑
16m6r0h−1

1
m
�
c

h ln(h−1).

If

χ[0,α0](α) 6= χ[0,α0]

(
n

m

)
for some α ∈ I(m,n), then it follows from the inequality (9) that∣∣∣∣α0 −

n

m

∣∣∣∣ 6 2
√

2
h

m
=⇒ |α0m− n| 6 2

√
2 h <

1
2

.

Therefore,

Φv(h)−
∑

(m,n)∈Mα0 (r0h−1)

∫
I(m,n)

dα√
1 + α2

�
c

h ln(h−1) +
∑

(m,n)∈Mα0 (r0h−1)

|α0m−n|<1/2

mes(I(m,n))

� h ln(h−1) +
∑

m61+r0h−1

h

m
�
c

h ln(h−1).

According to (9), for any α ∈ I(m,n) we have

(1 + α2)−1 −
(

1 +
(

n

m

)2)−1

� h

m
,

and we finally see that

Φv(h)−
∑

(m,n)∈Mα0 (r0h−1)

mes(I(m,n))
(

1 +
(

n

m

)2)−1

�
c

h ln(h−1) +
∑

16m<n6r0h−1

h

m

h

m
�
c

h ln(h−1).

This completes the proof of the lemma.
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We write α = n
m + β and, using the relations in Lemma 2, 3), represent the

inequalities (7) and (8) in the form

− 1
mm+

+(1− v)
h

m+

√
1 +

(
n

m
+β

)2

6 β 6
1

mm−
− (1+ v)

h

m−

√
1 +

(
n

m
+β

)2

,

(u− − v)
h

m

√
1 +

(
n

m
+ β

)2

6 β 6 (u+ − v)
h

m

√
1 +

(
n

m
+ β

)2

.

Let

f1(β) = β +
1

mm+
− (1− v)

h

m+

√
1 +

(
n

m
+ β

)2

.

For an arbitrary f ′1(β) we see that

f ′1(β) = 1−
(1− v)h( n

m + β)
m+

√
1 + ( n

m + β)2
> 1− (1− v)

h

m+
> 1− 2h >

1
2

.

Therefore, f1(β) is an increasing function, and the equation f1(β) = 0 has a unique
root, which we denote by λ−(m,n). One can prove in the same way that the
functions

f2(β) = β − 1
mm−

+ (1 + v)
h

m−

√
1 +

(
n

m
+ β

)2

,

f3(β) = β − (u− − v)
h

m

√
1 +

(
n

m
+ β

)2

,

f4(β) = β − (u+ − v)
h

m

√
1 +

(
n

m
+ β

)2

are increasing and change sign on the interval in question. For this reason, these
functions vanish at unique points, say, λ+(m,n), γ−(m,n), γ+(m,n), respectively.
Hence, the conditions imposed on β can be represented in the form

λ−(m,n) 6 β 6 λ+(m,n), γ−(m,n) 6 β 6 γ+(m,n).

We set

λ̃−(m,n) = − 1
mm+

+ (1− v)
h

m+

√
1 +

(
n

m

)2

,

λ̃+(m,n) =
1

mm−
− (1 + v)

h

m−

√
1 +

(
n

m

)2

,

γ̃−(m,n) = (u− − v)
h

m

√
1 +

(
n

m

)2

, γ̃+(m,n) = (u+ − v)
h

m

√
1 +

(
n

m

)2

.
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Since

0 = f1(λ−(m,n)) = λ−(m,n)− λ̃−(m,n)

+ (1− v)
h

m+

(√
1 +

(
n

m

)2

−

√
1 +

(
n

m
+ λ−(m,n)

)2
)

,

we see from Lagrange’s theorem on the difference between two values of a function
(using the inequality (9)) that

λ−(m,n)− λ̃−(m,n) � h

m+
λ−(m,n) � h2

mm+
.

The following three bounds are obtained in just the same way:

λ+(m,n)− λ̃+(m,n) � h2

mm−
, γ±(m,n)− γ̃±(m,n) � h2

m2
.

Therefore,

mes(I(m,n)) = mes(J(m,n)) + O

(
h2

mm−
+

h2

mm+

)
, (10)

where J(m,n) is the set formed by all numbers β satisfying the condition

max
{
λ̃−(m,n), γ̃−(m,n)

}
6 β 6 min

{
λ̃+(m,n), γ̃+(m,n)

}
.

Since (u− − v) 6 (u+ − v), it follows that γ̃−(m,n) 6 γ̃+(m,n). Hence, J(m,n)
is non-empty only for the pairs (m,n) ∈M for which the inequalities

λ̃−(m,n) 6 λ̃+(m,n), λ̃−(m,n) 6 γ̃+(m,n), γ̃−(m,n) 6 λ̃+(m,n)

hold simultaneously. Using the relation m+ + m− = m, we write these inequalities
in the form

w(m,n) =
(
(1 + v)m+ + (1− v)m−

)
h

√
1 +

(
n

m

)2

6 1, (11)

(
(1− u+)m+ + (1− v)m−

)
h

√
1 +

(
n

m

)2

6 1, (12)

(
(1 + v)m+ + (1 + u−)m−

)
h

√
1 +

(
n

m

)2

6 1. (13)

Since 1− u+ 6 1 + v and 1 + u− 6 1− v by assumption, the inequalities (12) and
(13) are consequences of (11), and we have the following remark.

Remark 9. The closed interval J(m,n), (m,n) ∈ M, is non-empty if and only
if w(m,n) 6 1.
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It can readily be seen that (11) is equivalent to the inequality

λ̃−(m,n) 6 γ̃−(m,n) for u− = −v

and to the inequality

λ̃+(m,n) > γ̃+(m,n) for u+ = −v.

Therefore, the interval J(m,n) is divided by the point

β0 = −2v
h

m

√
1 +

(
n

m

)2

into two intervals J+(m,n) and J−(m,n) which are obtained from J(m,n) by
replacing the pair (u−, u+) by (−v, u+) and (u−,−v), respectively. Here

J+(m,n) =
{
β ∈ R

∣∣β0 6 β 6 min{λ+(m,n), γ+(m,n)}
}
,

J−(m,n) =
{
β ∈ R

∣∣ max{λ−(m,n), γ−(m,n)} 6 β 6 β0

}
,

mes(J(m,n)) = mes(J+(m,n)) + mes(J−(m,n)).

Lemma 5. Under the assumptions of Lemma 4,

Φv(h) = Ψ+
v (h) + Ψ−v (h) + Oc(h ln(h−1)),

where

Ψ±v (h) =
∑

(m,n)∈Mα0 (r0h−1)

w(m,n)61

mes(J±(m,n))
(

1 +
(

n

m

)2)−1

.

Proof. Applying Lemma 4 and taking the asymptotic equality (10) into account,
we obtain (see also Remark 8)

Φv(h)−Ψ+
v (h)−Ψ−v (h) �

c

∑
(m,n)∈M(r0h−1)

(
h2

mm+
+

h2

mm−

)
+ h ln(h−1)

�
∑

0<m′<m6r0h−1

h2

m′m
+ h ln(h−1) �

c
h ln(h−1).

§ 3. Application of estimates for Kloosterman sums

In accordance with the definitions,

mes(J+(m,n))

1 +
(

n
m

)2 =
2v h

m

√
1 +

(
n
m

)2 + min{λ+(m,n), γ+(m,n)}

1 +
(

n
m

)2
=

h

m
g+

(
n

m
,

m−

m

)
,
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where

g+(x, y) =
2v + min{u+ − v, s+(x, y)}√

1 + x2
,

s+(x, y) =
1
y

(
1

mh
√

1 + x2
− (1 + v)

)
.

Here

w(m,n) > 1 ⇐⇒ s+

(
n

m
,

m−

m

)
> −2v.

Similarly,

mes(J−(m,n))

1 +
(

n
m

)2 =
−2v h

m

√
1 +

(
n
m

)2 −max{λ−(m,n), γ−(m,n)}

1 +
(

n
m

)2
=

h

m
g−

(
n

m
,

m+

m

)
,

where

g−(x, y) =
−2v + min{v − u−, s−(x, y)}√

1 + x2
,

s−(x, y) =
1
y

(
1

mh
√

1 + x2
− (1− v)

)
.

Here

w(m,n) > 1 ⇐⇒ s−

(
n

m
,

m+

m

)
> 2v.

We also note that the condition
√

m2 + n2 6 r0h
−1 can be written in the form√

1 +
(

n

m

)2

6
r0

mh
.

Let α1 = min{α0,
√

r2
0(mh)−2 − 1 }. We define a function f± on the rectangle

[0, α1]× [0, 1] by setting

f±(x, y) =

{
g±(x, y), if ∓ 2v 6 s±(x, y),
0, if ∓ 2v > s±(x, y).

Then

Ψ±v (h) = h
∑

1<m6r0h−1

W±(m)
m

,

where

W±(m) =
∑

16n6m′

16n′6m

δm(nn′ ± 1)f±

(
n

m
,

n′

m

)

for m′ = [α1m].
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Applying the Abel transformation∑
0<l6N

a(l) b(l) = a(N)
∑

0<k6N

b(k)−
∑

0<l<N

(a(l + 1)− a(l))
( ∑

0<k6l

b(k)
)

to the second variable, we obtain

W±(m) = W
(0)
± (m)−W

(1)
± (m),

where

W
(0)
± (m) =

∑
16n6m′

f±

(
n

m
,

m

m

)( ∑
16n′6m

δm(nn′ ± 1)
)

,

W
(1)
± (m) =

∑
16n6m′

16k′<m

∆0,1f±

(
n

m
,

k′

m

)( ∑
16n′6k′

δm(nn′ ± 1)
)

.

Again making the Abel transformation in both the sums with respect to the first
variable, we see that

W
(0)
± (m) = W

(0,0)
± (m)−W

(0,1)
± (m),

W
(1)
± (m) = W

(1,0)
± (m)−W

(1,1)
± (m),

where

W
(0,0)
± (m) = f±

(
m′

m
,

m

m

) ∑
16n6m′

16n′6m

δm(nn′ ± 1),

W
(0,1)
± (m) =

∑
16k<m′

∆1,0f±

(
k

m
,

m

m

)( ∑
16n6k

16n′6m

δm(nn′ ± 1)
)

,

W
(1,0)
± (m) =

∑
16k′<m

∆0,1f±

(
m′

m
,

k′

m

)( ∑
16n6m′

16n′6k′

δm(nn′ ± 1)
)

,

W
(1,1)
± (m) =

∑
16k<m′

16k′<m

∆1,1f±

(
k

m
,

k′

m

)( ∑
16n6k

16n′6k′

δm(nn′ ± 1)
)

.

We now apply the asymptotic equality (∀ ε > 0)∑
16n6k

16n′6k′

δm(nn′ ± 1) =
ϕ(m)
m2

kk′ + Oε(m
1
2+ε)

for 1 6 k, k′ < m. This inequality can be proved in a standard way (see, for
instance, [7]) using Estermann’s estimates for Kloosterman sums [8]. As a result,
we obtain the eight equalities (0 6 i, j 6 1)

W
(i,j)
± (m) =

ϕ(m)
m2

D
(i,j)
± (m) + Oε(G

(i,j)
± (m)m

1
2+ε),
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where

D
(0,0)
± (m) = f±

(
m′

m
,

m

m

)
m′m, G

(0,0)
± (m) = 1,

D
(0,1)
± (m) =

∑
16k<m′

∆1,0 f±

(
k

m
,

m

m

)
km,

G
(0,1)
± (m) =

∑
16k<m′

∣∣∣∣∆1,0 f±

(
k

m
,

m

m

)∣∣∣∣,
D

(1,0)
± (m) =

∑
16k′<m

∆0,1 f±

(
m′

m
,

k′

m

)
m′k′,

G
(1,0)
± (m) =

∑
16k′<m

∣∣∣∣∆0,1 f±

(
m′

m
,

k′

m

)∣∣∣∣,
D

(1,1)
± (m) =

∑
16k<m′

16k′<m

∆1,1f±

(
k

m
,

k′

m

)
kk′,

G
(1,1)
± (m) =

∑
16k<m′

16k′<m

∣∣∣∣∆1,1 f±

(
k

m
,

k′

m

)∣∣∣∣.
It can readily be seen that the Abel transformation with respect to two variables,

when applied to the sum ∑
16n6m′

16n′6m

f±

(
n

m
,

n′

m

)
b(n, n′)

with b(n, n′) = 1, leads to the equation

S±(m) =
∑

16n6m′

16n′6m

f±

(
n

m
,

n′

m

)
= D

(0,0)
± (m)−D

(0,1)
± (m)−D

(1,0)
± (m) + D

(1,1)
± (m).

Therefore,

W±(m) =
ϕ(m)
m2

S±(m) + Oε(G±(m)m
1
2+ε) (14)

for any ε > 0, where

G±(m) = G
(0,0)
± (m) + G

(0,1)
± (m) + G

(1,0)
± (m) + G

(1,1)
± (m).

We shall need the following obvious remarks.

Remark 10. Both of the functions f±(x, · ) are monotone with respect to the second
variable y for any fixed x.
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Remark 11. Both of the functions f±( · , y) are continuous with respect to the first
variable on the interval [0, α1] for any fixed y. Moreover, these functions are con-
tinuously differentiable, except possibly for a single point, and the inequality

∆1,0 f±

(
k

m
,

k′

m

)
� 1

m

holds uniformly with respect to (x, y).

Lemma 6. For any positive integer m > 2 we have G±(m) � 1.

Proof. It suffices to show that

G
(i,j)
± (m) � 1

for 0 6 i, j 6 1. When i = j = 0 we have G
(0,0)
± (m) = 1, and the desired inequality

holds. By Remark 10, when i = 1 and j = 0 we see that

G
(1,0)
± (m) = −

∑
16k′<m

∆0,1 f±

(
m′

m
,

k′

m

)
= f±

(
m′

m
,

1
m

)
− f±

(
m′

m
,

m

m

)
� 1.

By Remark 11, when i = 0 and j = 1 we obtain

G
(0,1)
± (m) �

∑
16k<m′

1
m
� 1.

It remains to treat the most complicated case, i = j = 1.
We note that

∂2g±
∂x ∂y

(x, y) =

{
g′′±(x, y), if s±(x, y) < ±(u± − v),
0, if s±(x, y) > ±(u± − v),

on the rectangle [0,m′/m]× [0, 1], where

g′′±(x, y) =
x

mhy2(1 + x2)2
(
2− (1± v)mh

√
1 + x2

)
.

Let α± be the positive roots of the equations

2− (1± v)mh
√

1 + x2 = 0

in x.
Suppose that mα± > m′. Then except at points on the curves

s±(x, y) = ±(u± − v), (15)

the mixed derivative of the function g± is non-negative on the rectangle under
consideration. Hence,

∆1,1 f±

(
k

m
,

k′

m

)
> 0
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at all points
(

k
m , k′

m

)
with 1 6 k < m′ and 1 6 k′ < m, except possibly at the

points at which the curves in (15) intersect the square
[

k
m , k+1

m

]
×
[

k′

m , k′+1
m

]
.

The number of these points is O(m) and, according to Remark 11, at these points
we have∣∣∣∣∆1,1 f±

(
k

m
,

k′

m

)∣∣∣∣ 6 ∣∣∣∣∆1,0 f±

(
k

m
,

k′

m

)∣∣∣∣+ ∣∣∣∣∆1,0 f±

(
k

m
,

k′ + 1
m

)∣∣∣∣� 1
m

.

Therefore,

G
(1,1)
± (m) =

∑
16k<m′

16k′<m

∆1,1f±

(
k

m
,

k′

m

)

=
m′−1∑
k=1

(
∆1,0 f±

(
k

m
,

m

m

)
−∆1,0 f±

(
k

m
,

1
m

))
= f±

(
m′

m
,

m

m

)
− f±

(
1
m

,
m

m

)
− f±

(
m′

m
,

1
m

)
+ f±

(
1
m

,
1
m

)
� 1.

Now suppose that mα± < m′. We denote by l± the largest integers not exceeding
mα± and decompose the sum G

(1,1)
± (m) into three sums, G′±, G′′± and G′′′± . We put

the summands with 0 < k′ < l± into the first sum, those with k′ = l± into the
second, and those with l± < k′ < m′ into the third. The sums G′± and G′′′± can
be estimated using the same lines of reasoning as in the previous case (mα± > m′)
because, in the first case, the mixed derivative is everywhere non-negative and,
in the second, this derivative is everywhere non-positive (except at points on the
curve (15)). Moreover, paying heed to Remark 10, we have

G′′± =
∑

16k′<m

∣∣∣∣∆1,1f±

(
l±
m

,
k′

m

)∣∣∣∣
6

∑
16k′<m

(∣∣∣∣∆0,1f±

(
l±
m

,
k′

m

)∣∣∣∣+ ∣∣∣∣∆0,1f±

(
1 + l±

m
,

k′

m

)∣∣∣∣)

= f±

(
l±
m

,
1
m

)
− f±

(
l±
m

,
m

m

)
+ f±

(
1 + l±

m
,

1
m

)
− f±

(
1 + l±

m
,

m

m

)
� 1.

The proof of the lemma is complete.

§ 4. Distinguishing the leading term

Let F (x) be an arbitrary fixed piecewise-differentiable function on the interval
[x0, x1] with bounded derivative. As is well known,

∑
y06 k

N 6y2

F

(
k

N

)
= N

∫ y1

y0

F (x) dx + O(1) (16)
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for x0 6 y0 < y1 6 x1. Applying the asymptotic equality (16) twice and taking
Remarks 10 and 11 into account, we obtain

S±(m) =
∑

16n′6m

(
m

∫ α1

0

f±

(
x,

n′

m

)
dx + O(1)

)

= m2

∫ α1

0

∫ 1

0

f±(x, y) dx dy + O(m).

Applying Lemmas 5 and 6 together with the asymptotic equality (14), we see that

Φv(h) = h

∫ α0

0

∫ 1

0

(Q+(x, y) + Q−(x, y))
dx dy√
1 + x2

+ Oc,ε(h
1
2−ε)

for any ε > 0, where

Q±(x, y) =
∑

mh
√

1+x26r0

ϕ(m)
m

Θ±
(
y, mh

√
1 + x2

)
,

Θ+(y, r) = χ[r,∞)

(
1

1 + v(1− 2y)

)(
2v + min

{
u+ − v,

1
y

(
1
r
− (1 + v)

)})
,

Θ−(y, r) = χ[r,∞)

(
1

1− v(1− 2y)

)(
−2v + min

{
v − u−,

1
y

(
1
r
− (1− v)

)})
.

The first factors in the formulae for Θ+(y, r) and Θ−(y, r) ensure the validity
of the conditions

s+(x, y) > −2v, s−(x, y) > 2v

mentioned at the beginning of § 3.
Since

ϕ(m)
m

=
∑
d|m

µ(d)
d

=
∑

dn=m

µ(d)
d

,

it follows that

Q±(x, y) =
∑

dh
√

1+x26r0

µ(d)
d

∑
ndh

√
1+x26r0

Θ±
(
y, ndh

√
1 + x2

)
.

Since ndh
√

1 + x2 6 r0 6 1
1−c and the function Θ±(y, r) is bounded and monotone

with respect to r, we can see by replacing the inner sum over n by the corresponding
integral that

Q±(x, y) =
∑

dh
√

1+x26r0

µ(d)
d

(
1

dh
√

1 + x2

∫ r0

0

Θ±(y, r) dr + Oc(1)
)

=
1

h
√

1 + x2

( ∑
dh
√

1+x26r0

µ(d)
d2

)(∫ r0

0

Θ±(y, r) dr

)
+ Oc(ln(h−1)).
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Since ∑
dh
√

1+x26r0

µ(d)
d2

=
∞∑

d=1

µ(d)
d2

+ Oc(h−1) =
1

ζ(2)
+ Oc(h−1) =

6
π2

+ Oc(h−1),

it follows that

Q±(x, y) =
6

π2h
√

1 + x2

∫ r0

0

Θ±(y, r) dr + Oc(ln(h−1)).

Paying heed to the equality
∫ α0

0
dx

1+x2 =
∫ ϕ0

0
dϕ, we finally obtain

Φv(h) =
6
π2

(K+(u+) + K−(u−))
∫ ϕ0

0

dϕ + Oc,ε(h
1
2−ε),

where

K±(u±) =
∫ 1

0

∫ r0

0

Θ±(y, r) dy dr.

We write τ = 1
r − (1 + v). Since

χ[r,∞)

(
1

1 + v(1− 2y)

)
= χ[−2v,∞)

(
τ

y

)
,

it follows that

K+(u+) =
∫ r0

0

k+(u+, r) dr,

where

k+(u+, r) =
∫ 1

0

χ[−2v,∞)

(
τ

y

)(
2v + min

{
u+ − v,

τ

y

})
dy.

By assumption, u+ − v > −2v. Therefore,

∂

∂u+
k+(u+, r) =

∫ 1

0

χ[u+−v,∞)

(
τ

y

)
dy.

In the case when u+ − v > 0, this implies that

∂

∂u+
k+(u+, r) =


1, if τ > u+ − v,

τ

u+ − v
, if 0 6 τ < u+ − v,

0, if τ < 0.

In the case when u+ − v < 0, we have

∂

∂u+
k+(u+, r) =


1, if τ > 0,

1− τ

u+ − v
, if u+ − v 6 τ < 0,

0, if τ < u+ − v.
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Since k+(−v, r) = 0, it follows that

6
π2

K+(u+) =
∫ r0

0

∫ u+

−v

ρ(r, u, v) dr du.

We recall that the function ρ is defined in the theorem in the introduction.
The equality

6
π2

K−(u−) =
∫ r0

0

∫ −v

u−

ρ(r, u, v) dr du

can be proved in just the same way. Thus,

Φv(h) =
∫ ϕ0

0

∫ r0

0

∫ u+

u−

ρ(r, u, v) dϕ dr du + Oc,ε(h
1
2−ε).

This completes the proof of the theorem.
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