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1 Introduction

The purpose of this paper is to give a complete derivation of the limiting distrib-
ution of large Frobenius numbers outlined in [1] and fill some gaps formulated there
as hypotheses. We start with the basic definitions and descriptions of some results.

Consider n mutually coprime positive integers a1, a2, . . . , an. This means that
there is no r > 1 such that each aj , 1 6 j 6 n, is divisible by r. Take N which later
will tend to infinity and will be our main large parameter. Introduce the ensemble
QN of mutually coprime a = (a1, . . . , an), 1 6 aj 6 N , 1 6 j 6 n, and PN be
the uniform probability distribution on QN . For each a ∈ QN denote by F (a) the
largest integer number that is not representable in the form x = x1a1 + · · ·+ xnan,
where xj are non-negative integers. F (a) can be considered as a random variable
defined on QN . The basic problem which will be discussed in this paper is the
existence and the form of the limiting distribution for the normalized Frobenius

number f(a) =
1

N1+1/n
F (a). The reason for this normalization will be explained

below.

The case of n = 2 is simple in view of the classical result of Sylvester (see [7])
according to which F (a1, a2) = a1a2 − a1 − a2. It shows that in a typical situation
F grows as N2. The first non-trivial case is n = 3 where F (a) grows as N3/2. It is
known (see [11]) that the numbers F (a1, a2, a3) have weak asymptotics:

1

x1x2a
7/2
3

∑

a16x1a3

∑

a26x2a3

(
F (a1, a2, a3)− 8

π

√
a1a2a3

)
= Ox1,x2,ε

(
a
−1/6+ε
3

)

(i.e. average value of F (a1, a2, a3) over small cube with the center (a, b, c) is equal
to 8

π

√
abc). For arbitrary n the following theorem was proven in [1].

Theorem 1. Under some additional technical condition (see [1]) the family of
probability distributions of f(a) = 1

N
1+ 1

n−1
F (a) is weakly compact. This means that

for every ε > 0 one can find D = D(ε) such that

PN

{
1

N1+ 1
n−1

F (a) 6 D
}

> 1− ε.
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In this theorem ε,D do not depend on N . It also implies the existence of the
limiting points (in the sense of weak convergence) for the sequence of probability
distributions of fN (a). As was already mentioned, in this paper we shall study

the limiting distribution of fN (a) =
1

N3/2
F (a), a = (a1, a2, a3) as N → ∞. This

distribution is not universal and will be described below.

Take any ρ, 0 < ρ < 1, and consider its expansion into continued fraction

ρ = [0;h1, h2, . . . , hs, . . . ] (1)

where hj > 1 are integers. If ρ is rational then the continued fraction (1) is finite.
The finite continued fractions ρs = [0;h1, . . . , hs] =

ps

qs
are called the s-approximants

of ρ. The numbers qs satisfy initial conditions q0 = 1, q1 = h1 and recurrent relations

qs = hsqs−1 + qs−2, s > 2 . (2)

Introduce the Gauss measure on [0, 1] given by the density π(x) = 1
ln 2(1+x) . Then

the elements of the continued fraction (1) become random variables. It is well known
that their probability distributions are stationary in the sense that the distribution
of any hm−k, hm−k+1 , . . . , hm, . . . , hm+k does not depend on m. We shall need the
values of s = s1, such that qs1 is the first qs greater than

√
N . It was proven in [6]

that qs1/
√

N have a limiting distribution as N −→∞. More precisely, the following
theorem holds true.

Theorem 2. Let k be fixed and s(R) be the first number for which qs > R. As
R →∞ there exists the joint limiting distribution of qs(R)

R , hs(R)−k, . . . , hs(R)+k.

In the paper [10] the analytic form of this distribution was given.
Consider the sub-ensemble Q

(0)
N ⊂ QN for which a1, a3 are coprime. Then there

exists a−1
1 (mod a3), 1 ≤ a−1

1 < a3. Denote ρ = a−1
1 a2(mod a3)

a3
. The expansion of ρ

into continued fraction will be need below. Clearly, ρ is a rational number. However,
the following theorem is valid.

Theorem 3. As before, consider s1 such that qs1−1 <
√

N < qs1. Then in the
sub-ensemble Q

(0)
N equipped with the uniform measure and for any k > 0 in the limit

N → ∞ there exists the joint limiting probability distribution of qs1√
N

, hs1−k, . . . ,
hs1+k which coincides with the distribution in Theorem 2.

A stronger version of theorem 3 is also valid.

Theorem 4. Let the first elements of the continued fraction for ρ are given:
h1, h2, . . . , hl. Then as N → ∞ the conditional distribution of qs1√

N
, hs1−k, . . . ,

hs1+k converges to the same limit as in Theorems 2 and 3.

All these theorems are proven in section 3. Now we can formulate the main
result of this paper.

Theorem 5. There exists the limiting distribution of fN (a) = fN ((a1, a2, a3)),
(a1, a2, a3) ∈ QN as N →∞.
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The proof of the main theorem is given in section 2. First we consider the
sub-ensemble Q

(0)
N and then explain how to extend the proof to QN .

Recently J. Marklof using different methods proved the existence of the limiting
distribution of 1

N
1+ 1

n−1
F (a) for any n (see [3]).

The second author thanks NSF for the financial support, grant DMS No. 0600996.
The research of the third author was supported by Russian Foundation for Basic
Research (grant No. 07-01-00306), the Far Eastern Branch of the Russian Academy
of Sciences (project No. 09-I-Π4-03), Dynasty Foundation and the Russian Science
Support Foundation.

2 The limiting Distribution of fN(a).

Return back to the case of arbitrary n. Introduce arithmetic progressions

Πr = {r + man,m > 0}, 0 6 r < an.

For non-negative integers x1, . . . , xn−1 such that x1a1 +x2a2 + · · ·+xn−1an−1 ∈ Πr

we write
x1a1 + · · ·+ xn−1an−1 = r + m(x1, . . . , xn−1)an.

Define m(r) = min
x1...,xn−1

m(x1, . . . , xn−1) and put

F1(a) = max
06r<an

min
x1,...,xn−1

x1a1+···+xn−1an−1∈
Q

r

(r + m(x1, . . . , xn−1)an)

= max
0≤r<an

min
x1a1+...+xn−1 an−1≡ r( mod an)

(x1a1 + . . . + xn−1an−1) .

It was proven in [4] that F (a) = F1(a) − an. A slightly weaker statement can be
found in [1]. Since in a typical situation aj grow as N while F1(a) grows as N1+ 1

n−1

(see also [BS]) the limiting behavior of F (a)

N
1+ 1

n−1
and F1(a)

N
1+ 1

n−1
is the same, but the

analysis of F1(a)

N
1+ 1

n−1
is slightly simpler. Let us write for n = 3

x1a1 + x2a2 = r + m(x1, x2)a3

or
x1a1 + x2a2 ≡ r(mod a3) (3)

Assume that a1, a3 are coprime. Then there exists a−1
1 , 1 6 a−1

1 < a3, such that
a1 · a−1

1 ≡ 1(mod a3). Choose a−1
1 so that 1 6 a−1

1 < a3 and rewrite (3) as follows

x1 + a12x2 ≡ r1(mod a3) (4)

where a12 ≡ a−1
1 a2(mod a3), 0 < a12 < a3 and r1 ≡ ra−1

1 (mod a3), 0 6 r1 < a3.
From (4)

a12x2 ≡ (r1 − x1)(mod a3) (5)
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The expression (5) has a nice geometric interpretation. Consider S = [0, 1, . . . , a3−1]
as a “discrete circle”. Let R be the rotation of this circle by a12, i.e.
Rx = x + a12(moda3). Then Rpx = x + pa12(moda3) and (5) means that r1 − x1

belongs to the orbit of 0 under the action of R. From the definition of F1(a),

F1(a) = max
06r<a3

min
x1a1+x2a2≡r( mod a3)

06x1,x2<a3

(x1a1 + x2a2) =

= N3/2 max
06r1<a3

min
x1+x2a12≡r1 (mod a3)

(
x1√
N

a1

N
+

x2√
N

a2

N

)
(6)

Choose h(j) = (h(j)
1 , . . . , h

(j)
m ), j = 1, 2, 3, and denote by Q

(0)

N,h(1),h(2),h(3) the ensemble

of a = (a1, a2, a3) ∈ Q
(0)
N such that the first m elements of the continued fraction

of aj

N are given by hj , j = 1, 2, 3. This step means the localization of the ensemble
Q

(0)
N . It is easy to see that for every ε > 0 one can find rational α1, α2, α3 and N

such that
∣∣aj

N − αj

∣∣ 6 ε, 1 6 j 6 3. Then in (6) one can replace aj

N by αj . Since xj√
N

will take the values O(1) the whole expression in (6) takes values O(1) and instead
of (6) we consider

max
r1

min
x1+a12x2≡r1 (mod a3)

(
x1√
N

α1 +
x2√
N

α2

)
(7)

with the error O(ε). We assume that in Q
(0)

N,h(1),h(2),h(3) we also have the uniform
distribution.

We shall need some facts from the theory of rotations of the circle. According
to our assumption a12 and a3 are coprime. Therefore R is ergodic in the sense that
Ra3 = Id and a3 is the smallest number with this property. Put ρ = a12

a3
and write

down the expansion of ρ into continued fraction: ρ = [h1, h2, . . . , hs0 ]. Also let
ρs = [h1, h2, . . . , hs] = ps

qs
and s1 be such that qs1−1 <

√
N < qs1 .

It will be more convenient to consider the usual unit circle instead of S and use
the same letter R for the rotation of the unit circle by ρ. Introduce the interval ∆

(p)
0

bounded by 0 and {qpρ} and ∆
(p)
j = Rj∆

(p)
0 . Using the induction one can show that

∆
(p)
j , 0 6 j < qp+1 and ∆

(p+1)
j′ , 0 6 j′ < qp are pair-wise disjoint and their union is

the whole circle except the boundary points (see [5]). Denote by η(p) the partition of
the unit circle onto ∆

(p)
j , ∆

(p+1)
j′ . Then η(p+1) > η(p) in the sense that each clement

of η(p) consists of several elements of η(p+1). More precisely, ∆
(p−1)
0 consists of hp

elements ∆
(p)
j and one element ∆

(p+1)
0 . The partitions η(p) show how the orbit of 0

fills the circle.

Return back to the discrete circle S. The partitions η(p) can be constructed in
the same way as before. We have to analyze

max
06r1<a3

min
x1,x2

x1+a12x2≡r1( mod a3)

(
x1√
N

α1 +
x2√
N

α2

)
(8)

for given α1, α2, 0 < α1, α2 < 1.
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Lemma 1. There exists some number C1(α1, α2) = C1 such that for any r1 the
point x1 giving min

(
x1√
N

α1 + x2√
N

α2

)
under the condition x1 + a12x2 ≡ r1(mod a3)

is such that r1 − x1 is an end-point of some element η(s1+m1) where m1 > 0 and
qs1+m1/qs1 ≤ C1(α1, α2).

Proof. Choose y1 so that r1 − y1 is an end-point of some element η(s1) and find
y2 for which r1 − y1 ≡ a12y2(mod a3). Then both y1, y2 satisfy the inequalities
|y1| 6 C2 · q(s1), |y2| 6 C2 · q(s1) where C2 is another constant depending on the
elements of our continued fraction near s1 and y1√

N
α1 + y2√

N
α2 < 2C2(α1, α2). If

r1 − x1 is the end-point of some element of η(s1+m1) which is not the end-point of
some element of η(s1+m1−1) then x1√

N
α1 + x2√

N
α2 > 2C2)(α1, α2) and the pair (x1, x2)

cannot give the solution of our max-min problem. This completes the proof of the
lemma. ¤

Its meaning is the following. If r1 − x1 is an end-point of η(s1+m1) with too big
m1 then x2 is also too big. The next lemma shows that x1 also cannot be too big.

Lemma 2. There exists an integer m2 > 0 depending on α1, α2, the ratio qs1/N
and the elements of the continued fraction hs1 , hs1+1, . . . , hs1+m2 of ρ such that for
any r1 the interval [r1 − x1, r1] corresponding to the minimum of

x1√
N

α1 +
x2√
N

α2

has not more than m2 elements of η(s1).

The proof is also simple. If x1 is such that [r1−x1, r1] is an element of η(s1) then

x1√
N

α1 +
x2√
N

α2 6 C3

where C3 is a number of depending on the values of parameters given in the formu-
lation of the lemma. On the other hand if [r1−x1, r1] consists of m elements of η(s1)

then
x1√
N

α1 +
x2√
N

α2 > x1√
N

α1 =
ml√
N

α1

where ` is the minimal length of the elements of η(s1). Therefore

`√
N

=
qs√
N

· `

qs
> C4

where C4 is another constant. If m is so large that mC4α1 > C3 then the corre-
sponding x1, x2 cannot give the solution of the main max-min problem.

The values of qs1/
√

N and hs1 , hs1+1 . . . , hs1+m2 determine the structure of the
partitions η(s1), . . . , η(s1+m2). The conclusion which follows from both lemmas is
that for each r1 we check only finitely many x1 and x2 and find min(x1α1 + x2α2)
among them. The number of points which have to be checked depends on α1, α2,
qs1√

N
and hs1 , . . . , hs1+m2 .
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Now we remark that r1 must be also an end-point of η(s1). Indeed, if r1 increases
within some element of η(s1) then the set of values r1−x1 which have to be checked
remain the same. The maximum over r1 is attained at the end-point of this element
η(s1) because r1 − x1 is a monotone increasing function of r1.

The last step in the proof is the final choice of r1. As was mentioned above r1

must be an end-point of some element of η(s1) and x1√
N

takes finitely many values.

Therefore r1 should be chosen so that x2/
√

N takes the largest possible value. Take
the last point r′1 = Rqs1−10 on the orbit of 0 of the length qs1 . Assume for definiteness
that r′1 lies to the left from 0. Consider m2 elements of η(s1) which start from r′1 and
go left. Then r1 must be one of the end-points of these elements. Indeed, if r1 lies
more to the left from 0 then the values x1 take finitely many values and x2 will be
significantly smaller. Therefore it cannot give maximum over r of our basic linear
form.

Thus we take m2 elements of η(s1), consider their end-points. Each end-point is a
possible value of r. Taking finitely many x1 (see Lemma 1 and 2) we find minimum
of our basic linear form. After that we find r for which this minimum takes maximal
value. In this way we get the solution of our max-min problem. It is clear that this
solution is a function of qs1√

N
and the elements hj , s1 ≤ j ≤ s1 + m1 of the continued

fraction of ρ near s1. Since qs1√
N

and hj , s1 ≤ j ≤ s1 + m1 have limiting distribution

as N →∞ the number fN (a) = 1
N3/2 F1(a) has also a limiting distribution.

It remains to extend our proof to the case when the pairs from a1, a2, a3 have
non-trivial common divisors, say k1 is gcd of a1, a3 and k2 is gcd of a2, a3. The
same methods which are used in the proof of the existence of the limiting density
of the ensemble QN allow to prove the existence of the limiting distribution of k1

and k2. Fixing k1, k2, we can write a1 = k1a
′
1, a2 = k2a

′
2, a3 = k1k2a

′
3 where

a′1, a
′
3 are coprime, a′2, a3 are coprime and k1, k2 are coprime. This implies that

(a′1)
−1( mod a′3) exists and we can multiply both sides of (3) by (a′1)

−1. This will
give

k1x1 + k2a
′
2 · x2 ≡ r1( mod a3) (9)

where r1 = r · (a′1)−1( mod a3). Denote b = a′2(a
′
1)
−1.

Then from (9) we have the linear form

k1x1 + k2bx2 ≡ r1( mod a3) (10)

which we can treat in the same way as before.

3 Statistical properties of continued fractions

Statistical properties of elements of continued fractions usually are identical for
real numbers and for rationales with bounded denominators (see [8]–[10]).
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Let M be a set of integer matrices S =
(

P P ′
Q Q′

)
with determinant detS = ±1

such that 1 6 Q 6 Q′, 0 6 P 6 Q, 1 6 P ′ 6 Q′. For real α ∈ (0, 1) the fractions
P/Q and P ′/Q′ with S =

(
P P ′
Q Q′

) ∈M will be consecutive convergents to α (distinct
from α) if and only if

0 <
Q′α− P ′

−Qα + P
= S−1(α) < 1

(see [8, lemma 1]). Moreover if α = [0;h1, h2, . . .] then for some s > 1,

P

Q
= [0;h1, . . . , hs−1],

P ′

Q′ = [0;h1, . . . , hs], (11)

Q

Q′ = [0;hs, . . . , h1],
Q′α− P ′

−Qα + P
= [0;hs+1, hs+2, . . .].

It means that distribution of partial quotients hs−k, . . . , ah+k depends on Gauss-
Kuz’min statistics of fractions Q/Q′ and (Q′α− P ′)/(−Qα + P ).

For real α, x1, x2, y1, y2 ∈ (0, 1) denote by Nx1,x2,y1,y2(α, R) the number of
solutions of the following system of inequalities

0 < S−1(α) 6 x1, Q 6 x2Q
′, Q 6 y1R, R 6 y2Q

′, (12)

with variables P , P ′, Q, Q′ such that S =
(

P P ′
Q Q′

) ∈M. Let

N(R) = Nx1,x2,y1,y2(R) =
∫ 1

0
Nx1,x2,y1,y2(α, R) dα

and

F (x1, x2, y1, y2) =





2
ζ(2)

(
log(1 + x1x2) log y1y2

x2
− Li2(−x1x2)

)
, if x2 6 y1y2;

− 2
ζ(2)Li2(−x1y1y2), if x2 > y1y2,

where Li2(·) is dilogarithm

Li2(z) =
∞∑

k=1

zk

k2
= −

∫ z

0

log(1− t)
t

dt.

The next statement implies Theorem 2.

Proposition 1. For R > 2,

N(R) = F (x1, x2, y1, y2) + O

(
x1 log R

R

)
.

Proof. For every number α = [0; a1, a2, . . .] we can find unique matrix S ∈ M with
elements P , P ′, Q, Q′ defined by (11) with additional restriction Q 6 R < Q′.
Inequalities 0 < S−1(α) 6 x1 define interval Ix1(S) ⊂ (0, 1) of the length

|Ix1(S)| =
∣∣∣∣
P ′ + x1P

Q′ + x1Q
− P ′

Q′

∣∣∣∣ =
x1

Q′(Q′ + x1Q)
.
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Hence

N(R) =
∑

(
P P ′
Q Q′

)
∈M

[Q 6 x2Q
′, Q 6 y1R, R 6 y2Q

′]
x1

Q′(Q′ + x1Q)
,

where [A] is equal to 1 if statement A is true, and it is equal to 0 otherwise. Second
row (Q,Q′) can be complemented to the matrix from M in two ways. That is why

N(R) = 2
∑

Q′>R/y2

∑

(Q,Q′)=1

[Q 6 x2Q
′, Q 6 y1R]

x1

Q′(Q′ + x1Q)
. (13)

In the first case x2 6 y1y2 and the Möbius inversion formula gives

N(R) =2
∑

d6R

µ(d)
d2

∑

R/(y2d)6Q′<y1R/(x2d)

∑

Q6x2Q′

x1

Q′(Q′ + x1Q)
+

+2
∑

d6R

µ(d)
d2

∑

Q′>y1R/(x2d)

∑

Q6y1R/d

x1

Q′(Q′ + x1Q)
=

=
2

ζ(2)

(
log(1 + x1x2) log

y1y2

x2
+

∫ ∞

1/(x1x2)
log

(
1 +

1
t

)
dt

t

)
+ O

(
x1 log R

R

)
=

=
2

ζ(2)

(
log(1 + x1x2) log

y1y2

x2
− Li2(−x1x2)

)
+ O

(
x1 log R

R

)
.

Second case x2 > y1y2 can be treated in the same way.

Let
L(R) = Lx1,x2,y1,y2(R) =

∑

b6R2

∑
a6b

(a,b)=1

Nx1,x2,y1,y2

(a

b
, R

)
.

Theorem 3 will be proved in the following form.

Proposition 2. For R > 2,

2ζ(2)
R4

L(R) = F (x1, x2, y1, y2) + O

(
x1 log2 R

R

)
.

Proof. Let α = a/b be a given number and S =
(

P P ′
Q Q′

) ∈ M is a solution of the
system (12). Define by m and n such integers that mP + nP ′ = a,mQ + nQ′ = b.
Then the system (12) can be written in the following way

mP + nP ′ = a, mQ + nQ′ = b,

0 < m/n 6 x1, 0 < Q/Q′ 6 x2, Q 6 y1R, R 6 y2Q
′.

Summing up solutions of this system over a and b we get that the sum L(R) is equal
to the number of solutions of the following system

mQ + nQ′ 6 R2, 0 < m/n 6 x1, 0 < Q/Q′ 6 x2, Q/y1 6 R < y2Q
′,
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where
(

P P ′
Q Q′

) ∈ M, 0 6 m 6 n, (m,n) = 1. For known Q and Q′ the values of P
and P ′ can be founded in two ways. The number of solutions of the last system is
equal to the area of corresponding domain multiplied by 1/ζ(2) (see [13, Chapter II,
Problems 21–22])

R4

2ζ(2)
· x1

Q′(Q′ + x1Q)
+ O

(
x1R

2 log R

Q′

)
.

It leads to the sum similar to (13):

L(R) =
R4

ζ(2)

∑

R/y26Q′6R2

∑

Q6min{y1R,x2Q′}
(Q,Q′)=1

x1

Q′(Q′ + x1Q)
+ O(x1R

3 log2 R).

Therefore

L(R) =
R4

ζ(2)
N(R) + O(x1R

3 log2 R),

and Proposition 2 follows from Proposition 1.

In order to prove Theorem 4 we have to use Kloosterman sums

Kq(m,n) =
q∑

x,y=1

δq(xy − 1) e
2πi mx+ny

q .

Using Estermann bound (see [2])

|Kq(m,n)| 6 σ0(q) · (m,n, q)1/2 · q1/2.

it is easy to prove the following statement (see [9] for details).

Lemma 3. Let q > 1 be an integer, Q1, Q2, P1, P2 be real numbers and
0 6 P1, P2 6 q. Then the sum

Φq(Q1, Q2; P1, P2) =
∑

Q1<u6Q1+P1
Q2<v6Q2+P2

δq(uv − 1)

satisfies the asymptotic formula

Φq(Q1, Q2;P1, P2) =
ϕ(q)
q2

· P1P2 + O (ψ(q)) ,

where
ψ(q) = σ0(q) log2(q + 1)q1/2.

It implies more general result (see [8]).
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Lemma 4. Let q > 1 be an integer and let a(u, v) be a function that is defined
in integral points (u, v) such that 1 6 u, v 6 q. Assume that this function satisfies
the inequalities

a(u, v) > 0, ∆1,0a(u, v) 6 0, ∆0,1a(u, v) 6 0, ∆1,1a(u, v) > 0 (14)

at all points at which these conditions are meaningful. Then the sum

W =
q∑

u,v=1

δq(uv − 1)a(u, v)

satisfies the asymptotic relation

W =
ϕ(q)
q2

q∑

u,v=1

a(u, v) + O (Aψ(q)
√

q) ,

where ψ(q) is the function from lemma 3 and A = a(1, 1) is the maximum of the
function a(u, v).

Let

Nz(R) =Nz,x1,x2,y1,y2(R) =
∫ z

0
Nx1,x2,y1,y2(α,R) dα,

Lz(R) =Lz,x1,x2,y1,y2(R) =
∑

b6R2

∑
a6zb

(a,b)=1

Nx1,x2,y1,y2

(a

b
,R

)
.

The next statement implies Theorem 4.

Proposition 3. For R > 2,

Nz(R) =z · F (x1, x2, y1, y2) + O

(
x1 log3 R

R1/2

)
,

2ζ(2)
R4

Lz(R) =z · F (x1, x2, y1, y2) + O

(
x1 log3 R

R1/2

)
.

Proof. Let

Mz =
{(

P P ′

Q Q′

)
∈M :

P ′

Q′ 6 z

}
.

For a given z there is at most one matrix S =
(

P P ′
Q Q′

) ∈ M such that Q 6 R < Q′

and z ∈ Ix1(S). Hence

Nz(R) =
∑

(
P P ′
Q Q′

)
∈Mz

[Q 6 x2Q
′, Q 6 y1R, R 6 y2Q

′]
x1

Q′(Q′ + x1Q)
+ O

( x1

R2

)
.
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If Q′ is fixed then P ′ and Q satisfy the congruence P ′Q ≡ ±1 (mod Q′). Therefore

Nz(R) =
∑

Q′>R/y2

Q′∑

P ′,Q=1

δQ′(P ′Q± 1)[Q 6 min{x2Q
′, y1R}, P ′ 6 zQ′]

x1

Q′(Q′ + x1Q)
+

+ O
( x1

R2

)
.

Using Lemma 4 we obtain

Nz(R) =
∑

Q′>R/y2

ϕ(Q′)
(Q′)2

Q′∑

P ′,Q=1

[Q 6 min{x2Q
′, y1R}, P ′ 6 zQ′]

x1

Q′(Q′ + x1Q)
+

+O

(
x1 log3 R

R1/2

)
=

=z
∑

Q′>R/y2

ϕ(Q′)
Q′

Q′∑

Q=1

[Q 6 min{x2Q
′, y1R}] x1

Q′(Q′ + x1Q)
+

+O

(
x1 log3 R

R1/2

)
.

Applying the formula
ϕ(Q′)

Q′ =
∑

d|Q′

µ(d)
d

(15)

we get the same sum as in the proof of Proposition 1.
As in Proposition 2 the sum Lz(R) is equal to the number of solutions of the

system

mQ + nQ′ 6 R2, mP + nP ′ 6 z(mQ + nQ′),
0 < m/n 6 x1, 0 < Q/Q′ 6 x2, Q/y1 6 R < y2Q

′,

where
(

P P ′
Q Q′

) ∈ M, 0 6 m 6 n, (m,n) = 1. Again, there is at most one matrix
S =

(
P P ′
Q Q′

) ∈M such that Q 6 R < Q′ and z ∈ Ix1(S). Also for Q′ > R,
∑

n>1

∑

m6x1n

[mQ + nQ′ 6 R2] ¿ x1R
2.

This estimate implies that

Lz(R) =
R4

ζ(2)

∑
(

P P ′
Q Q′

)
∈Mz

[R/y2 6 Q′ 6 R2, Q 6 min{y1R, x2Q
′}] x1

Q′(Q′ + x1Q)
+

+O(x1R
3 log2 R) =

=
R4

ζ(2)

∑

R/y26Q′6R2

Q′∑

P ′,Q=1

[Q 6 min{y1R, x2Q
′}, P ′ 6 zQ′]

x1δQ′(P ′Q± 1)
Q′(Q′ + x1Q)

+

+O(x1R
3 log2 R).
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Using Lemma 4 one more time we obtain

Lz(R) =
R4

ζ(2)

∑

Q′>R/y2

ϕ(Q′)
(Q′)2

Q′∑

P ′,Q=1

[Q 6 min{x2Q
′, y1R}, P ′ 6 zQ′]

x1

Q′(Q′ + x1Q)
+

+O
(
x1R

7/2 log3 R
)

=

=
zR4

ζ(2)

∑

Q′>R/y2

ϕ(Q′)
Q′

Q′∑

Q=1

[Q 6 min{x2Q
′, y1R}] x1

Q′(Q′ + x1Q)
+

+O
(
x1R

7/2 log3 R
)

.

Applying formula (15) we get the same sum as in proof of Proposition 1.

Remark 1. In the simplest case x2 = y1 = y2 = 1 we have cumulative distribu-
tion function

F (x) = F (x, 1, 1, 1) = − 2
ζ(2)

Li2(−x),

which is not equal to the Gaussian function log2(1 + x). As x → 0 the function
F (x) (with error terms in Propositions 1 and 2) decreases as a linear function
F (x) ∼ 2x/ζ(2). This fact implies that the expectation of the partial quotient as

(defined by the inequalities qs−1 6 R < qs) equals to infinity.

4 Concluding remarks

Methods of the work [11] allow to prove that normalized Frobenius numbers
F (a, b, c)/

√
abc have the following limit density function (see [12])

p(t) =





0, if t ∈ [0,
√

3];
12
π

(
t√
3
−√4− t2

)
, if t ∈ [

√
3, 2];

12
π2

(
t
√

3 arccos t+3
√

t2−4
4
√

t2−3
+ 3

2

√
t2 − 4 log t2−4

t2−3

)
, if t ∈ [2, +∞).
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