Limiting Distribution of Frobenius Numbers for $n = 3$

V. Shchur[∗] Ya. Sinai† A. Ustinov‡

1 Introduction

The purpose of this paper is to give a complete derivation of the limiting distribution of large Frobenius numbers outlined in [1] and fill some gaps formulated there as hypotheses. We start with the basic definitions and descriptions of some results.

Consider n mutually coprime positive integers a_1, a_2, \ldots, a_n . This means that there is no $r > 1$ such that each $a_j, 1 \leq j \leq n$, is divisible by r. Take N which later will tend to infinity and will be our main large parameter. Introduce the ensemble Q_N of mutually coprime $a = (a_1, \ldots, a_n)$, $1 \leq a_j \leq N$, $1 \leq j \leq n$, and P_N be the uniform probability distribution on Q_N . For each $a \in Q_N$ denote by $F(a)$ the largest integer number that is not representable in the form $x = x_1a_1 + \cdots + x_na_n$, where x_i are non-negative integers. $F(a)$ can be considered as a random variable defined on Q_N . The basic problem which will be discussed in this paper is the existence and the form of the limiting distribution for the normalized Frobenius number $f(a) = \frac{1}{N^{1+1/n}} F(a)$. The reason for this normalization will be explained below.

The case of $n = 2$ is simple in view of the classical result of Sylvester (see [7]) according to which $F(a_1, a_2) = a_1a_2 - a_1 - a_2$. It shows that in a typical situation F grows as N^2 . The first non-trivial case is $n=3$ where $F(a)$ grows as $N^{3/2}$. It is known (see [11]) that the numbers $F(a_1, a_2, a_3)$ have weak asymptotics:

$$
\frac{1}{x_1 x_2 a_3^{7/2}} \sum_{a_1 \leq x_1 a_3} \sum_{a_2 \leq x_2 a_3} \left(F(a_1, a_2, a_3) - \frac{8}{\pi} \sqrt{a_1 a_2 a_3} \right) = O_{x_1, x_2, \varepsilon} \left(a_3^{-1/6 + \varepsilon} \right)
$$

(i.e. average value of $F(a_1, a_2, a_3)$ over small cube with the center (a, b, c) is equal to $\frac{8}{\pi}\sqrt{abc}$. For arbitrary *n* the following theorem was proven in [1].

Theorem 1. Under some additional technical condition (see $[1]$) the family of probability distributions of $f(a) = \frac{1}{1+a}$ $\frac{1}{N^{1+\frac{1}{n-1}}}F(a)$ is weakly compact. This means that for every $\varepsilon > 0$ one can find $\mathcal{D} = \mathcal{D}(\varepsilon)$ such that

$$
P_N\left\{\frac{1}{N^{1+\frac{1}{n-1}}}F(a)\leqslant \mathcal{D}\right\}\geqslant 1-\varepsilon.
$$

[∗]Mathematics Department, Moscow State University, Rassia, vladimir@chg.ru

[†]Mathematics Department, Princeton University, USA, sinai@math.princeton.edu

[‡]Khabarovsk Division of Institute for Applied Mathematics, Far Eastern Branch of the Russian Academy of Science, Russia, ustinov@iam.khv.ru

In this theorem ε , D do not depend on N. It also implies the existence of the limiting points (in the sense of weak convergence) for the sequence of probability distributions of $f_N(a)$. As was already mentioned, in this paper we shall study the limiting distribution of $f_N(a) = \frac{1}{N^{3/2}} F(a), a = (a_1, a_2, a_3)$ as $N \to \infty$. This distribution is not universal and will be described below.

Take any ρ , $0 < \rho < 1$, and consider its expansion into continued fraction

$$
\rho = [0; h_1, h_2, \dots, h_s, \dots]
$$
\n(1)

where $h_i \geq 1$ are integers. If ρ is rational then the continued fraction (1) is finite. The finite continued fractions $\rho_s = [0; h_1, \ldots, h_s] = \frac{p_s}{q_s}$ are called the s-approximants of ρ . The numbers q_s satisfy initial conditions $q_0 = 1$, $q_1 = h_1$ and recurrent relations

$$
q_s = h_s q_{s-1} + q_{s-2}, \ \ s \geqslant 2. \tag{2}
$$

Introduce the Gauss measure on [0, 1] given by the density $\pi(x) = \frac{1}{\ln 2(1+x)}$. Then the elements of the continued fraction (1) become random variables. It is well known that their probability distributions are stationary in the sense that the distribution of any $h_{m-k}, h_{m-k+1}, \ldots, h_m, \ldots, h_{m+k}$ does not depend on m. We shall need the or any $n_{m-k}, n_{m-k+1}, \ldots, n_m, \ldots, n_{m+k}$ does not depend on m. We shall need the values of $s = s_1$, such that q_{s_1} is the first q_s greater than \sqrt{N} . It was proven in [6] that q_{s_1}/\sqrt{N} have a limiting distribution as $N \longrightarrow \infty$. More precisely, the following theorem holds true.

Theorem 2. Let k be fixed and $s(R)$ be the first number for which $q_s \ge R$. As $R \to \infty$ there exists the joint limiting distribution of $\frac{q_{s(R)}}{R}$, $h_{s(R)-k}$, ..., $h_{s(R)+k}$.

In the paper [10] the analytic form of this distribution was given.

Consider the sub-ensemble $Q_N^{(0)} \subset Q_N$ for which a_1, a_3 are coprime. Then there exists $a_1^{-1}(\text{mod }a_3), 1 \le a_1^{-1} < a_3$. Denote $\rho = \frac{a_1^{-1}a_2(\text{mod }a_3)}{a_3}$ $\frac{\text{mod } a_3}{a_3}$. The expansion of ρ into continued fraction will be need below. Clearly, ρ is a rational number. However, the following theorem is valid.

Theorem 3. As before, consider s_1 such that q_{s_1-1} < √ $N < q_{s_1}$. Then in the $sub-ensemble\ Q_N^{(0)}$ $\sum_{N=0}^{(0)}$ equipped with the uniform measure and for any $k > 0$ in the limit $N \rightarrow \infty$ there exists the joint limiting probability distribution of $\frac{q_{s_1}}{\sqrt{N}}$ $\frac{s_1}{N}$, h_{s_1-k} , ..., h_{s_1+k} which coincides with the distribution in Theorem 2.

A stronger version of theorem 3 is also valid.

Theorem 4. Let the first elements of the continued fraction for ρ are given: h_1, h_2, \ldots, h_l . Then as $N \to \infty$ the conditional distribution of $\frac{q_{s_1}}{\sqrt{N}}$ $\frac{s_1}{N}$, h_{s_1-k} , ..., h_{s_1+k} converges to the same limit as in Theorems 2 and 3.

All these theorems are proven in section 3. Now we can formulate the main result of this paper.

Theorem 5. There exists the limiting distribution of $f_N(a) = f_N((a_1, a_2, a_3))$, $(a_1, a_2, a_3) \in Q_N$ as $N \to \infty$.

The proof of the main theorem is given in section 2. First we consider the sub-ensemble $Q_N^{(0)}$ $N^{(0)}$ and then explain how to extend the proof to Q_N .

Recently J. Marklof using different methods proved the existence of the limiting distribution of $\frac{1}{1}$ $\frac{1}{N^{1+\frac{1}{n-1}}} F(a)$ for any n (see [3]).

The second author thanks NSF for the financial support, grant DMS No. 0600996. The research of the third author was supported by Russian Foundation for Basic Research (grant No. 07-01-00306), the Far Eastern Branch of the Russian Academy of Sciences (project No. 09-I-Π4-03), Dynasty Foundation and the Russian Science Support Foundation.

2 The limiting Distribution of $f_N(a)$.

Return back to the case of arbitrary n . Introduce arithmetic progressions

$$
\Pi_r = \{r + ma_n, m \geqslant 0\}, \quad 0 \leqslant r < a_n.
$$

For non-negative integers x_1, \ldots, x_{n-1} such that $x_1a_1 + x_2a_2 + \cdots + x_{n-1}a_{n-1} \in \Pi_r$ we write

$$
x_1a_1 + \cdots + x_{n-1}a_{n-1} = r + m(x_1, \ldots, x_{n-1})a_n.
$$

Define $\overline{m}(r) = \min_{x_1, \dots, x_{n-1}} m(x_1, \dots, x_{n-1})$ and put

$$
F_1(a) = \max_{0 \leq r < a_n} \min_{\substack{x_1, \dots, x_{n-1} \\ x_1 a_1 + \dots + x_{n-1} a_{n-1} \in \prod_r}} (r + m(x_1, \dots, x_{n-1}) a_n)
$$
\n
$$
= \max_{0 \leq r < a_n} \min_{\substack{x_1 a_1 + \dots + x_{n-1} a_{n-1} \equiv r(\bmod a_n)}} (x_1 a_1 + \dots + x_{n-1} a_{n-1}).
$$

It was proven in [4] that $F(a) = F_1(a) - a_n$. A slightly weaker statement can be found in [1]. Since in a typical situation a_j grow as N while $F_1(a)$ grows as $N^{1+\frac{1}{n-1}}$ (see also [BS]) the limiting behavior of $\frac{F(a)}{1}$ $\frac{F(a)}{N^{1+\frac{1}{n-1}}}$ and $\frac{F_1(a)}{N^{1+\frac{1}{n-1}}}$ $\frac{F_1(a)}{N^{1+\frac{1}{n-1}}}$ is the same, but the analysis of $\frac{F_1(a)}{1}$ $\frac{F_1(a)}{N^{1+\frac{1}{n-1}}}$ is slightly simpler. Let us write for $n=3$

$$
x_1a_1 + x_2a_2 = r + m(x_1, x_2)a_3
$$

or

$$
x_1a_1 + x_2a_2 \equiv r(\text{mod }a_3)
$$
\n⁽³⁾

Assume that a_1, a_3 are coprime. Then there exists a_1^{-1} , $1 \leq a_1^{-1} < a_3$, such that $a_1 \cdot a_1^{-1} \equiv 1 \pmod{a_3}$. Choose a_1^{-1} so that $1 \leq a_1^{-1} < a_3$ and rewrite (3) as follows

$$
x_1 + a_{12}x_2 \equiv r_1(\text{mod }a_3)
$$
\n
$$
\tag{4}
$$

where $a_{12} \equiv a_1^{-1} a_2 \pmod{a_3}$, $0 < a_{12} < a_3$ and $r_1 \equiv ra_1^{-1} \pmod{a_3}$, $0 \leq r_1 < a_3$. From (4)

$$
a_{12}x_2 \equiv (r_1 - x_1)(\text{mod }a_3) \tag{5}
$$

The expression (5) has a nice geometric interpretation. Consider $S = [0, 1, \ldots, a_3-1]$ as a "discrete circle". Let $\mathcal R$ be the rotation of this circle by a_{12} , i.e. $\mathcal{R}x = x + a_{12}(\text{mod}a_3)$. Then $\mathcal{R}^p x = x + pa_{12}(\text{mod}a_3)$ and (5) means that $r_1 - x_1$ belongs to the orbit of 0 under the action of R . From the definition of $F_1(a)$,

$$
F_1(a) = \max_{0 \le r < a_3} \min_{\substack{x_1 a_1 + x_2 a_2 \equiv r \pmod{a_3} \\ 0 \le x_1, x_2 < a_3}} (x_1 a_1 + x_2 a_2) =
$$
\n
$$
= N^{3/2} \max_{0 \le r_1 < a_3} \min_{\substack{x_1 + x_2 a_1 \equiv r_1 \pmod{a_3}}} \left(\frac{x_1}{\sqrt{N}} \frac{a_1}{N} + \frac{x_2}{\sqrt{N}} \frac{a_2}{N} \right) \tag{6}
$$

Choose $h^{(j)} = (h_1^{(j)})$ $\mathcal{A}_1^{(j)}, \ldots, \mathcal{h}_m^{(j)}$, $j = 1, 2, 3$, and denote by $Q_{N,h^{(1)},h^{(2)},h^{(3)}}^{(0)}$ the ensemble of $a = (a_1, a_2, a_3) \in Q_N^{(0)}$ $_N^{(0)}$ such that the first m elements of the continued fraction of $\frac{a_j}{N}$ are given by h^j , $j = 1, 2, 3$. This step means the localization of the ensemble $Q_N^{(0)}$ ⁽⁰⁾. It is easy to see that for every $\varepsilon > 0$ one can find rational $\alpha_1, \alpha_2, \alpha_3$ and N such that $\frac{a_j}{N} - \alpha_j$ see that for every $\varepsilon > 0$ one can find rational $\alpha_1, \alpha_2, \alpha_3$ and $T \leq \varepsilon$, $1 \leq j \leq 3$. Then in (6) one can replace $\frac{a_j}{N}$ by α_j . Since $\frac{x_j}{\sqrt{N}}$ N will take the values $O(1)$ the whole expression in (6) takes values $O(1)$ and instead of (6) we consider

$$
\max_{r_1} \quad \min_{x_1 + a_{12}x_2 \equiv r_1} \text{ (mod } a_3) \left(\frac{x_1}{\sqrt{N}} \alpha_1 + \frac{x_2}{\sqrt{N}} \alpha_2 \right) \tag{7}
$$

with the error $O(\varepsilon)$. We assume that in $Q_{N,h^{(1)},h^{(2)},h^{(3)}}^{(0)}$ we also have the uniform distribution.

We shall need some facts from the theory of rotations of the circle. According to our assumption a_{12} and a_3 are coprime. Therefore $\mathcal R$ is ergodic in the sense that $\mathcal{R}^{a_3} = Id$ and a_3 is the smallest number with this property. Put $\rho = \frac{a_{12}}{a_2}$ $\frac{a_{12}}{a_{3}}$ and write down the expansion of ρ into continued fraction: $\rho = [h_1, h_2, \dots, h_{s_0}]$. Also let $\rho_s = [h_1, h_2, \ldots, h_s] = \frac{p_s}{q_s}$ and s_1 be such that $q_{s_1-1} < \sqrt{N} < q_{s_1}$.

It will be more convenient to consider the usual unit circle instead of S and use the same letter R for the rotation of the unit circle by ρ . Introduce the interval $\Delta_0^{(p)}$ 0 bounded by 0 and $\{q_p \rho\}$ and $\Delta_j^{(p)} = \mathcal{R}^j \Delta_0^{(p)}$ $_{0}^{(p)}$. Using the induction one can show that $\varDelta_i^{(p)}$ $j^{(p)}$, $0 \leqslant j < q_{p+1}$ and $\Delta_{j'}^{(p+1)}$ $j^{(p+1)}$, $0 \leq j' < q_p$ are pair-wise disjoint and their union is the whole circle except the boundary points (see [5]). Denote by $\eta^{(p)}$ the partition of the unit circle onto $\Delta_i^{(p)}$ $j^{(p)}$, $\Delta_{j'}^{(p+1)}$. Then $\eta^{(p+1)} \geqslant \eta^{(p)}$ in the sense that each clement of $\eta^{(p)}$ consists of several elements of $\eta^{(p+1)}$. More precisely, $\Delta_0^{(p-1)}$ $_0^{(p-1)}$ consists of h_p elements $\Delta_i^{(p)}$ $j^{(p)}$ and one element $\Delta_0^{(p+1)}$ $\eta^{(p+1)}$. The partitions $\eta^{(p)}$ show how the orbit of 0 fills the circle.

Return back to the discrete circle S. The partitions $\eta^{(p)}$ can be constructed in the same way as before. We have to analyze

$$
\max_{0 \le r_1 < a_3} \quad \min_{\substack{x_1, x_2 \\ x_1 + a_{12} x_2 \equiv r_1 \pmod{a_3}}} \left(\frac{x_1}{\sqrt{N}} \alpha_1 + \frac{x_2}{\sqrt{N}} \alpha_2 \right) \tag{8}
$$

for given $\alpha_1, \alpha_2, 0 < \alpha_1, \alpha_2 < 1$.

Lemma 1. There exists some number $C_1(\alpha_1, \alpha_2) = C_1$ such that for any r_1 the **Lemma 1.** *Inere exists some number* $C_1(\alpha_1, \alpha_2) = C_1$ *such that for any* r_1 *the* point x_1 giving min $\left(\frac{x_1}{\sqrt{N}}\alpha_1 + \frac{x_2}{\sqrt{N}}\alpha_2\right)$ under the condition $x_1 + a_{12}x_2 \equiv r_1 \pmod{a_3}$ is such that $r_1 - x_1$ is an end-point of some element $\eta^{(s_1+m_1)}$ where $m_1 \geq 0$ and $q_{s_1+m_1}/q_{s_1} \leq C_1(\alpha_1,\alpha_2).$

Proof. Choose y_1 so that $r_1 - y_1$ is an end-point of some element $\eta^{(s_1)}$ and find y_2 for which $r_1 - y_1 \equiv a_{12}y_2 \pmod{a_3}$. Then both y_1, y_2 satisfy the inequalities $|y_1| \leq C_2 \cdot q^{(s_1)}, |y_2| \leq C_2 \cdot q^{(s_1)}$ where C_2 is another constant depending on the elements of our continued fraction near s_1 and $\frac{y_1}{\sqrt{N}}$ $\frac{y_1}{\overline{N}}\alpha_1 + \frac{y_2}{\sqrt{\overline{N}}}$ $\frac{2}{N}\alpha_2 < 2C_2(\alpha_1, \alpha_2)$. If $r_1 - x_1$ is the end-point of some element of $\eta^{(s_1+m_1)}$ which is not the end-point of some element of $\eta^{(s_1+m_1-1)}$ then $\frac{x_1}{\sqrt{N}}\alpha_1 + \frac{x_2}{\sqrt{N}}\alpha_2 \geq 2C_2(\alpha_1, \alpha_2)$ and the pair (x_1, x_2) cannot give the solution of our max-min problem. This completes the proof of the lemma. \Box

Its meaning is the following. If $r_1 - x_1$ is an end-point of $\eta^{(s_1+m_1)}$ with too big m_1 then x_2 is also too big. The next lemma shows that x_1 also cannot be too big.

Lemma 2. There exists an integer $m_2 > 0$ depending on α_1, α_2 , the ratio q_{s_1}/N and the elements of the continued fraction $h_{s_1}, h_{s_1+1}, \ldots, h_{s_1+m_2}$ of ρ such that for any r_1 the interval $[r_1 - x_1, r_1]$ corresponding to the minimum of

$$
\frac{x_1}{\sqrt{N}}\alpha_1 + \frac{x_2}{\sqrt{N}}\alpha_2
$$

has not more than m_2 elements of $\eta^{(s_1)}$.

The proof is also simple. If x_1 is such that $[r_1-x_1, r_1]$ is an element of $\eta^{(s_1)}$ then

$$
\frac{x_1}{\sqrt{N}}\alpha_1 + \frac{x_2}{\sqrt{N}}\alpha_2 \leq C_3
$$

where C_3 is a number of depending on the values of parameters given in the formulation of the lemma. On the other hand if $[r_1-x_1, r_1]$ consists of m elements of $\eta^{(s_1)}$ then

$$
\frac{x_1}{\sqrt{N}}\alpha_1 + \frac{x_2}{\sqrt{N}}\alpha_2 \geqslant \frac{x_1}{\sqrt{N}}\alpha_1 = \frac{ml}{\sqrt{N}}\alpha_1
$$

where ℓ is the minimal length of the elements of $\eta^{(s_1)}$. Therefore

$$
\frac{\ell}{\sqrt{N}} = \frac{q_s}{\sqrt{N}} \cdot \frac{\ell}{q_s} \geqslant C_4
$$

where C_4 is another constant. If m is so large that $mC_4\alpha_1 > C_3$ then the corresponding x_1, x_2 cannot give the solution of the main max-min problem.

The values of $q_{s_1}/$ √ N and $h_{s_1}, h_{s_1+1}, \ldots, h_{s_1+m_2}$ determine the structure of the partitions $\eta^{(s_1)}, \ldots, \eta^{(s_1+m_2)}$. The conclusion which follows from both lemmas is that for each r_1 we check only finitely many x_1 and x_2 and find min $(x_1\alpha_1 + x_2\alpha_2)$ among them. The number of points which have to be checked depends on α_1 , α_2 , $\frac{q_{s_1}}{q}$ $\frac{s_1}{N}$ and $h_{s_1}, \ldots, h_{s_1+m_2}$.

Now we remark that r_1 must be also an end-point of $\eta^{(s_1)}$. Indeed, if r_1 increases within some element of $\eta^{(s_1)}$ then the set of values $r_1 - x_1$ which have to be checked remain the same. The maximum over r_1 is attained at the end-point of this element $\eta^{(s_1)}$ because $r_1 - x_1$ is a monotone increasing function of r_1 .

The last step in the proof is the final choice of r_1 . As was mentioned above r_1 must be an end-point of some element of $\eta^{(s_1)}$ and $\frac{x_1}{\sqrt{N}}$ takes finitely many values. Therefore r_1 should be chosen so that x_2/\sqrt{N} takes the largest possible value. Take √ the last point $r'_1 = \mathcal{R}^{q_{s_1}-1}0$ on the orbit of 0 of the length q_{s_1} . Assume for definiteness that r'_1 lies to the left from 0. Consider m_2 elements of $\eta^{(s_1)}$ which start from r'_1 and go left. Then r_1 must be one of the end-points of these elements. Indeed, if r_1 lies more to the left from 0 then the values x_1 take finitely many values and x_2 will be significantly smaller. Therefore it cannot give maximum over r of our basic linear form.

Thus we take m_2 elements of $\eta^{(s_1)}$, consider their end-points. Each end-point is a possible value of r. Taking finitely many x_1 (see Lemma 1 and 2) we find minimum of our basic linear form. After that we find r for which this minimum takes maximal value. In this way we get the solution of our max-min problem. It is clear that this solution is a function of $\frac{q_{s_1}}{(\lambda)}$ $\frac{s_1}{N}$ and the elements $h_j, s_1 \leq j \leq s_1 + m_1$ of the continued fraction of ρ near s_1 . Since $\frac{q_{s_1}}{\sqrt{N}}$ $\frac{s_1}{N}$ and $h_j, s_1 \leq j \leq s_1 + m_1$ have limiting distribution as $N \to \infty$ the number $f_N(a) = \frac{1}{N^{3/2}} F_1(a)$ has also a limiting distribution.

It remains to extend our proof to the case when the pairs from a_1, a_2, a_3 have non-trivial common divisors, say k_1 is gcd of a_1, a_3 and k_2 is gcd of a_2, a_3 . The same methods which are used in the proof of the existence of the limiting density of the ensemble Q_N allow to prove the existence of the limiting distribution of k_1 and k_2 . Fixing k_1, k_2 , we can write $a_1 = k_1 a'_1$, $a_2 = k_2 a'_2$, $a_3 = k_1 k_2 a'_3$ where a'_1, a'_3 are coprime, a'_2, a_3 are coprime and k_1, k_2 are coprime. This implies that $(a'_1)^{-1}$ (mod a'_3) exists and we can multiply both sides of (3) by $(a'_1)^{-1}$. This will give

$$
k_1 x_1 + k_2 a_2' \cdot x_2 \equiv r_1 \pmod{a_3} \tag{9}
$$

where $r_1 = r \cdot (a'_1)^{-1} (\text{ mod } a_3)$. Denote $b = a'_2 (a'_1)^{-1}$.

Then from (9) we have the linear form

$$
k_1 x_1 + k_2 bx_2 \equiv r_1 \pmod{a_3} \tag{10}
$$

which we can treat in the same way as before.

3 Statistical properties of continued fractions

Statistical properties of elements of continued fractions usually are identical for real numbers and for rationales with bounded denominators (see $[8]-[10]$).

Let $\mathcal M$ be a set of integer matrices $S =$ $\left(\begin{smallmatrix} P & P' \\ Q & Q' \end{smallmatrix}\right)$ ¢ with determinant det $S = \pm 1$ such that $1 \leq Q \leq Q'$, $0 \leq P \leq Q$, $1 \leq P' \leq Q'$. For real $\alpha \in (0,1)$ the fractions such that $1 \leq Q \leq Q$, $0 \leq P$
 P/Q and P'/Q' with $S = \begin{pmatrix} P & P' \\ Q & Q' \end{pmatrix}$ ¢ $\in \mathcal{M}$ will be consecutive convergents to α (distinct from α) if and only if

$$
0<\frac{Q'\alpha-P'}{-Q\alpha+P}=S^{-1}(\alpha)<1
$$

(see [8, lemma 1]). Moreover if $\alpha = [0; h_1, h_2, \ldots]$ then for some $s \geq 1$,

$$
\frac{P}{Q} = [0; h_1, \dots, h_{s-1}], \quad \frac{P'}{Q'} = [0; h_1, \dots, h_s],
$$
\n
$$
\frac{Q}{Q'} = [0; h_s, \dots, h_1], \quad \frac{Q'\alpha - P'}{-Q\alpha + P} = [0; h_{s+1}, h_{s+2}, \dots].
$$
\n(11)

It means that distribution of partial quotients h_{s-k}, \ldots, a_{h+k} depends on Gauss-Kuz'min statistics of fractions Q/Q' and $(Q'\alpha - P')/(-Q\alpha + P)$.

For real α , x_1 , x_2 , y_1 , $y_2 \in (0,1)$ denote by $N_{x_1,x_2,y_1,y_2}(\alpha, R)$ the number of solutions of the following system of inequalities

$$
0 < S^{-1}(\alpha) \leqslant x_1, \quad Q \leqslant x_2 Q', \quad Q \leqslant y_1 R, \quad R \leqslant y_2 Q', \tag{12}
$$

with variables P, P', Q, Q' such that $S =$ $\left(\begin{smallmatrix} P & P' \\ Q & Q' \end{smallmatrix}\right)$ ¢ ∈ M. Let

$$
N(R) = N_{x_1, x_2, y_1, y_2}(R) = \int_0^1 N_{x_1, x_2, y_1, y_2}(\alpha, R) d\alpha
$$

and

$$
F(x_1, x_2, y_1, y_2) = \begin{cases} \frac{2}{\zeta(2)} \left(\log(1 + x_1 x_2) \log \frac{y_1 y_2}{x_2} - \text{Li}_2(-x_1 x_2) \right), & \text{if } x_2 \leq y_1 y_2; \\ -\frac{2}{\zeta(2)} \text{Li}_2(-x_1 y_1 y_2), & \text{if } x_2 > y_1 y_2, \end{cases}
$$

where $\text{Li}_2(\cdot)$ is dilogarithm

$$
\text{Li}_2(z) = \sum_{k=1}^{\infty} \frac{z^k}{k^2} = -\int_0^z \frac{\log(1-t)}{t} dt.
$$

The next statement implies Theorem 2.

Proposition 1. For $R \geqslant 2$,

$$
N(R) = F(x_1, x_2, y_1, y_2) + O\left(\frac{x_1 \log R}{R}\right).
$$

Proof. For every number $\alpha = [0; a_1, a_2, \ldots]$ we can find unique matrix $S \in \mathcal{M}$ with elements P, P', Q, Q' defined by (11) with additional restriction $Q \le R < Q'$. Inequalities $0 < S^{-1}(\alpha) \leq x_1$ define interval $I_{x_1}(S) \subset (0,1)$ of the length

$$
|I_{x_1}(S)| = \left| \frac{P' + x_1 P}{Q' + x_1 Q} - \frac{P'}{Q'} \right| = \frac{x_1}{Q'(Q' + x_1 Q)}.
$$

Hence

$$
N(R) = \sum_{\begin{pmatrix} P & P' \\ Q & Q' \end{pmatrix} \in \mathcal{M}} [Q \leqslant x_2 Q', Q \leqslant y_1 R, R \leqslant y_2 Q'] \frac{x_1}{Q'(Q'+x_1 Q)},
$$

where $[A]$ is equal to 1 if statement A is true, and it is equal to 0 otherwise. Second row (Q, Q') can be complemented to the matrix from M in two ways. That is why

$$
N(R) = 2 \sum_{Q' \ge R/y_2} \sum_{(Q,Q')=1} [Q \le x_2 Q', Q \le y_1 R] \frac{x_1}{Q'(Q'+x_1 Q)}.
$$
 (13)

In the first case $x_2 \leq y_1y_2$ and the Möbius inversion formula gives

$$
N(R) = 2 \sum_{d \le R} \frac{\mu(d)}{d^2} \sum_{R/(y_2 d) \le Q' < y_1 R/(x_2 d)} \sum_{Q \le x_2 Q'} \frac{x_1}{Q'(Q'+x_1 Q)} +
$$

+2
$$
\sum_{d \le R} \frac{\mu(d)}{d^2} \sum_{Q' \ge y_1 R/(x_2 d)} \sum_{Q \le y_1 R/d} \frac{x_1}{Q'(Q'+x_1 Q)} =
$$

=
$$
\frac{2}{\zeta(2)} \left(\log(1+x_1x_2) \log \frac{y_1y_2}{x_2} + \int_{1/(x_1x_2)}^{\infty} \log \left(1 + \frac{1}{t}\right) \frac{dt}{t} \right) + O\left(\frac{x_1 \log R}{R}\right) =
$$

=
$$
\frac{2}{\zeta(2)} \left(\log(1+x_1x_2) \log \frac{y_1y_2}{x_2} - \text{Li}_2(-x_1x_2) \right) + O\left(\frac{x_1 \log R}{R}\right).
$$

Second case $x_2 > y_1y_2$ can be treated in the same way.

 \Box

Let

$$
L(R) = L_{x_1,x_2,y_1,y_2}(R) = \sum_{b \leq R^2} \sum_{\substack{a \leq b \\ (a,b)=1}} N_{x_1,x_2,y_1,y_2}\left(\frac{a}{b},R\right).
$$

Theorem 3 will be proved in the following form.

Proposition 2. For $R \geqslant 2$,

$$
\frac{2\zeta(2)}{R^4}L(R) = F(x_1, x_2, y_1, y_2) + O\left(\frac{x_1 \log^2 R}{R}\right).
$$

Proof. Let $\alpha = a/b$ be a given number and $S =$ $\left(\begin{smallmatrix} P & P' \\ Q & Q' \end{smallmatrix}\right)$ ¢ $\in \mathcal{M}$ is a solution of the system (12). Define by m and n such integers that $mP + nP' = a$, $mQ + nQ' = b$. Then the system (12) can be written in the following way

$$
mP + nP' = a, \quad mQ + nQ' = b,
$$

$$
0 < m/n \leq x_1, \quad 0 < Q/Q' \leq x_2, \quad Q \leq y_1R, \quad R \leq y_2Q'.
$$

Summing up solutions of this system over a and b we get that the sum $L(R)$ is equal to the number of solutions of the following system

$$
mQ+nQ'\leqslant R^2,\quad 0
$$

where $\begin{pmatrix} P & P' \\ Q & Q' \end{pmatrix}$ $(\theta) \in \mathcal{M}, 0 \leqslant m \leqslant n, (m, n) = 1$. For known Q and Q' the values of P and P' can be founded in two ways. The number of solutions of the last system is equal to the area of corresponding domain multiplied by $1/\zeta(2)$ (see [13, Chapter II, Problems 21–22])

$$
\frac{R^4}{2\zeta(2)} \cdot \frac{x_1}{Q'(Q'+x_1Q)} + O\left(\frac{x_1R^2\log R}{Q'}\right).
$$

It leads to the sum similar to (13):

$$
L(R) = \frac{R^4}{\zeta(2)} \sum_{R/y_2 \leqslant Q' \leqslant R^2} \sum_{\substack{Q \leqslant \min\{y_1, x_2, Q'\} \\ (Q, Q') = 1}} \frac{x_1}{Q'(Q' + x_1 Q)} + O(x_1 R^3 \log^2 R).
$$

Therefore

$$
L(R) = \frac{R^4}{\zeta(2)} N(R) + O(x_1 R^3 \log^2 R),
$$

and Proposition 2 follows from Proposition 1.

In order to prove Theorem 4 we have to use Kloosterman sums

$$
K_q(m, n) = \sum_{x,y=1}^q \delta_q(xy-1) \, e^{2\pi i \frac{mx+ny}{q}}.
$$

Using Estermann bound (see [2])

$$
|K_q(m, n)| \leq \sigma_0(q) \cdot (m, n, q)^{1/2} \cdot q^{1/2}.
$$

it is easy to prove the following statement (see [9] for details).

Lemma 3. Let $q \geq 1$ be an integer, Q_1 , Q_2 , P_1 , P_2 be real numbers and $0 \leqslant P_1, P_2 \leqslant q$. Then the sum

$$
\Phi_q(Q_1, Q_2; P_1, P_2) = \sum_{\substack{Q_1 < u \leq Q_1 + P_1 \\ Q_2 < v \leq Q_2 + P_2}} \delta_q(uv - 1)
$$

satisfies the asymptotic formula

$$
\Phi_q(Q_1, Q_2; P_1, P_2) = \frac{\varphi(q)}{q^2} \cdot P_1 P_2 + O(\psi(q)),
$$

where

$$
\psi(q) = \sigma_0(q) \log^2(q+1) q^{1/2}.
$$

It implies more general result (see [8]).

 \Box

Lemma 4. Let $q \geq 1$ be an integer and let $a(u, v)$ be a function that is defined in integral points (u, v) such that $1 \leq u, v \leq q$. Assume that this function satisfies the inequalities

$$
a(u, v) \ge 0, \quad \Delta_{1,0}a(u, v) \le 0, \quad \Delta_{0,1}a(u, v) \le 0, \quad \Delta_{1,1}a(u, v) \ge 0 \tag{14}
$$

at all points at which these conditions are meaningful. Then the sum

$$
W = \sum_{u,v=1}^{q} \delta_q(uv-1)a(u,v)
$$

satisfies the asymptotic relation

$$
W = \frac{\varphi(q)}{q^2} \sum_{u,v=1}^{q} a(u,v) + O\left(A\psi(q)\sqrt{q}\right),
$$

where $\psi(q)$ is the function from lemma 3 and $A = a(1,1)$ is the maximum of the function $a(u, v)$.

Let

$$
N_z(R) = N_{z,x_1,x_2,y_1,y_2}(R) = \int_0^z N_{x_1,x_2,y_1,y_2}(\alpha, R) d\alpha,
$$

$$
L_z(R) = L_{z,x_1,x_2,y_1,y_2}(R) = \sum_{b \le R^2} \sum_{\substack{a \le zb \\ (a,b)=1}} N_{x_1,x_2,y_1,y_2}(\frac{a}{b}, R).
$$

The next statement implies Theorem 4.

Proposition 3. For $R \geqslant 2$,

$$
N_z(R) = z \cdot F(x_1, x_2, y_1, y_2) + O\left(\frac{x_1 \log^3 R}{R^{1/2}}\right),
$$

$$
\frac{2\zeta(2)}{R^4} L_z(R) = z \cdot F(x_1, x_2, y_1, y_2) + O\left(\frac{x_1 \log^3 R}{R^{1/2}}\right).
$$

Proof. Let

$$
\mathcal{M}_z = \left\{ \begin{pmatrix} P & P' \\ Q & Q' \end{pmatrix} \in \mathcal{M} : \frac{P'}{Q'} \leq z \right\}.
$$

For a given z there is at most one matrix $S =$ $\left(\begin{smallmatrix} P & P' \\ Q & Q' \end{smallmatrix}\right)$ ϕ $\in \mathcal{M}$ such that $Q \leq R < Q'$ and $z \in I_{x_1}(S)$. Hence

$$
N_z(R) = \sum_{\begin{pmatrix} P & P' \\ Q & Q' \end{pmatrix} \in \mathcal{M}_z} [Q \leq x_2 Q', Q \leq y_1 R, R \leq y_2 Q'] \frac{x_1}{Q'(Q'+x_1 Q)} + O\left(\frac{x_1}{R^2}\right).
$$

If Q' is fixed then P' and Q satisfy the congruence $P'Q \equiv \pm 1 \pmod{Q'}$. Therefore

$$
N_z(R) = \sum_{Q' \ge R/y_2} \sum_{P',Q=1}^{Q'} \delta_{Q'}(P'Q \pm 1)[Q \le \min\{x_2Q', y_1R\}, P' \le zQ'] \frac{x_1}{Q'(Q'+x_1Q)} + O\left(\frac{x_1}{R^2}\right).
$$

Using Lemma 4 we obtain

$$
N_z(R) = \sum_{Q' \ge R/y_2} \frac{\varphi(Q')}{(Q')^2} \sum_{P',Q=1}^{Q'} [Q \le \min\{x_2 Q', y_1 R\}, P' \le zQ'] \frac{x_1}{Q'(Q'+x_1 Q)} +
$$

+
$$
O\left(\frac{x_1 \log^3 R}{R^{1/2}}\right) =
$$

=
$$
z \sum_{Q' \ge R/y_2} \frac{\varphi(Q')}{Q'} \sum_{Q=1}^{Q'} [Q \le \min\{x_2 Q', y_1 R\}] \frac{x_1}{Q'(Q'+x_1 Q)} +
$$

+
$$
O\left(\frac{x_1 \log^3 R}{R^{1/2}}\right).
$$

Applying the formula

$$
\frac{\varphi(Q')}{Q'} = \sum_{d|Q'} \frac{\mu(d)}{d} \tag{15}
$$

we get the same sum as in the proof of Proposition 1.

As in Proposition 2 the sum $L_z(R)$ is equal to the number of solutions of the system

$$
mQ + nQ' \le R^2, \quad mP + nP' \le z(mQ + nQ'),
$$

$$
0 < m/n \le x_1, \quad 0 < Q/Q' \le x_2, \quad Q/y_1 \le R < y_2Q',
$$

where $\begin{pmatrix} P & P' \\ Q & Q' \end{pmatrix}$ ¢ $\in \mathcal{M}, 0 \leq m \leq n, (m, n) = 1.$ Again, there is at most one matrix $S =$ $\begin{pmatrix} P & P' \\ Q & Q' \end{pmatrix}$ Q' \in \mathcal{M} such that $Q \le R < Q'$ and $z \in I_{x_1}(S)$. Also for $Q' \ge R$,

$$
\sum_{n\geqslant 1}\sum_{m\leqslant x_1n}[mQ+nQ'\leqslant R^2]\ll x_1R^2.
$$

This estimate implies that

$$
L_z(R) = \frac{R^4}{\zeta(2)} \sum_{\substack{P \mid P' \\ Q \ Q' \neq R}} [R/y_2 \leq Q' \leq R^2, Q \leq \min\{y_1 R, x_2 Q'\}] \frac{x_1}{Q'(Q' + x_1 Q)} +
$$

+
$$
O(x_1 R^3 \log^2 R) =
$$

=
$$
\frac{R^4}{\zeta(2)} \sum_{R/y_2 \leq Q' \leq R^2} \sum_{P', Q=1}^{Q'} [Q \leq \min\{y_1 R, x_2 Q'\}, P' \leq zQ'] \frac{x_1 \delta_{Q'}(P'Q \pm 1)}{Q'(Q' + x_1 Q)} +
$$

+
$$
O(x_1 R^3 \log^2 R).
$$

Using Lemma 4 one more time we obtain

$$
L_z(R) = \frac{R^4}{\zeta(2)} \sum_{Q' \ge R/y_2} \frac{\varphi(Q')}{(Q')^2} \sum_{P',Q=1}^{Q'} [Q \le \min\{x_2 Q', y_1 R\}, P' \le zQ'] \frac{x_1}{Q'(Q'+x_1 Q)} +
$$

+
$$
O\left(x_1 R^{7/2} \log^3 R\right) =
$$

$$
= \frac{zR^4}{\zeta(2)} \sum_{Q' \ge R/y_2} \frac{\varphi(Q')}{Q'} \sum_{Q=1}^{Q'} [Q \le \min\{x_2 Q', y_1 R\}] \frac{x_1}{Q'(Q'+x_1 Q)} +
$$

+
$$
O\left(x_1 R^{7/2} \log^3 R\right).
$$

Applying formula (15) we get the same sum as in proof of Proposition 1.

 \Box

Remark 1. In the simplest case $x_2 = y_1 = y_2 = 1$ we have cumulative distribution function

$$
F(x) = F(x, 1, 1, 1) = -\frac{2}{\zeta(2)} \text{Li}_2(-x),
$$

which is not equal to the Gaussian function $\log_2(1+x)$. As $x \to 0$ the function $F(x)$ (with error terms in Propositions 1 and 2) decreases as a linear function $F(x) \sim 2x/\zeta(2)$. This fact implies that the expectation of the partial quotient a_s (defined by the inequalities $q_{s-1} \leq R < q_s$) equals to infinity.

4 Concluding remarks

Methods of the work [11] allow to prove that normalized Frobenius numbers $F(a, b, c)/\sqrt{abc}$ have the following limit density function (see [12])

$$
p(t) = \begin{cases} 0, & \text{if } t \in [0, \sqrt{3}]; \\ \frac{12}{\pi} \left(\frac{t}{\sqrt{3}} - \sqrt{4 - t^2} \right), & \text{if } t \in [\sqrt{3}, 2]; \\ \frac{12}{\pi^2} \left(t\sqrt{3} \arccos \frac{t + 3\sqrt{t^2 - 4}}{4\sqrt{t^2 - 3}} + \frac{3}{2}\sqrt{t^2 - 4} \log \frac{t^2 - 4}{t^2 - 3} \right), & \text{if } t \in [2, +\infty). \end{cases}
$$

References

- [1] Bourgain J., Sinai Ya. G. Limiting behavior of large Frobenius numbers. Uspekhi Mat. Nauk 62 (2007), no. 4(376), 77–90; translation in Russian Math. Surveys 62 (2007), no. 4, 713–725.
- [2] ESTERMANN T. On Kloosterman's sum. Mathematika, 8 (1961), 83-86.
- [3] Marklof J. The Asymptotic Distribution of Frobenius Numbers. Preprint, Bristol University (2009).
- [4] Selmer E.S., Beyer O. On the linear diophantine problem of Frobenius in three variables. — J. Reine Angewandte Math., 301 (1978), 161–170.
- [5] Sinai Ya.G. Topics in Ergodic Theory, Princeton University Press, Princeton, NJ (1994), 218.
- [6] Sinai Ya. G., Ulcigrai C. Renewal-type limit theorem for Gauss map and continued fractions. — Ergodic Theory & Dynam. Sys., 28 (2008), 643-655.
- [7] SYLVESTER J.J. Problem $7382. \textit{Educational Times}$ 37 (1884), 26; reprinted in: Mathematical questions with their solution, Educational Times (with additional papers and solutions) 41 (1884), 21.
- [8] USTINOV A. V. On the statistical properties of finite continued fractions Zap . Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 322 (2005), Trudy po Teorii Chisel, 186–211; translation in J. Math. Sci. (N. Y.) 137 (2006), no. 2, 4722–4738.
- [9] USTINOV A. V. On the number of solutions of the congruence $xy \equiv l \pmod{q}$ under twice differentiabie curve — Algebra and Analysis $20: 5$ (2008), 186–216.
- [10] USTINOV A.V. On the Statistical Properties of Elements of Continued Frac $tions$ — Doklady Mathematics, **79**: 1 (2009), 87-89.
- [11] USTINOV A. V. The solution of Arnold's problem on weak asymptotic for Frobenius numbers with three arguments, $-$ Mat. Sb., 200: 4 (2009), 131-160.
- $[12]$ USTINOV A. V. On the distribution of Frobenius numbers with three arguments — Izvestiya Rossiiskoi Akademii Nauk. Seriya Mathematicheskaya, (submitted).
- [13] Vinogradov I. M. Elements of number theory. Moscow: "Nauka", 1972.