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The solution of Arnold’s problem on the weak
asymptotics of Frobenius numbers with three arguments

A.V. Ustinov

Abstract. It is shown that on the average the Frobenius numbers f(a, b, c)
behave like 8

π

√
abc .
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§ 1. Introduction

Let a1, . . . , an be jointly coprime positive integers, which means that their
greatest common divisor (a1, . . . , an) is 1. The Frobenius number g(a1, . . . , an) of
a1, . . . , an is the largest integer m that cannot be represented as

x1a1 + · · ·+ xnan = m, (1)

where x1, . . . , xn are non-negative integers. Often it is more convenient to consider
the function

f(a1, . . . , an) = g(a1, . . . , an) + a1 + · · ·+ an,

which is equal to the largest integer m that cannot be represented in the form (1)
with positive integer coefficients x1, . . . , xn (see, for example, Johnson’s identity in
the proof of Lemma 3). The problem of finding g(a1, . . . , an) is called Frobenius’s
problem. The most comprehensive review of problems and results in this area is
presented in [1].

For n = 2 we have Sylvester’s formula f(a, b) = ab (see [2]). If n = 3, then the
problem of finding f(a, b, c) reduces to the case of pairwise coprime arguments, and
for b ≡ lc (mod a), 1 6 l 6 a, the value of f(a, b, c) can be expressed in terms of
the partial quotients of the continued fraction for l/a (see the results due to Selmer
and Beyer, and Rødseth in [3] and [4]; as concerns other formulae for calculating
f(a, b, c), see [1], Ch. 2 and [5], [6]). For n > 4 no formulae for f(a1, . . . , an)
are known. It has been proved that for fixed n the Frobenius number can be
calculated in polynomial time (see [7]), while finding f(a1, . . . , an) for arbitrary n
is an NP -complete problem (see [8]).

In the case (a, b, c) = 1 Davison [9] proved the estimate f(a, b, c) >
√

3abc ;
the constant

√
3 here is sharp. He also conjectured in the same paper that for

a ‘random’ set (a, b, c) the function f(a, b, c) has order
√
abc . This was stated as

two conjectures. Consider the set XN =
{
(a, b, c) : 1 6 a, b, c 6 N, (a, b, c) = 1

}
.
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Conjecture 1. The following inequality holds:

sup
N

1
|XN |

∑
(a,b,c)∈XN

f(a, b, c)√
abc

<∞.

Conjecture 2. There exists a finite limit

lim
N→∞

1
|XN |

∑
(a,b,c)∈XN

f(a, b, c)√
abc

.

Arnold formulated a stronger conjecture (see [10], problems 1999-8, 2003-5; see
also [11]).

Conjecture 3. For each n > 2 the distribution of the values of f(a1, . . . , an) is
determined by a density proportional to n−1

√
a1 · · · an . In other words, if

QN,r = QN,r(α1, . . . , αn)

=
{

(a1, . . . , an) :
∣∣∣∣aj

N
− αj

∣∣∣∣ < r, j = 1, . . . , n, (a1, . . . , an) = 1
}
,

then for some constant cn, as N →∞ and r = r(N) → 0, the normalized sum

1
|QN,r|

∑
(a1,...,an)∈QN,r

f(a1, . . . , an),

behaves asymptotically like

cnN
1−1/n n−1

√
α1 · · ·αn .

The results of the corresponding numerical experiments were presented in
[11]–[13].

Burgain and Sinai [14] investigated the limiting behaviour of the quantities
f(a, b, c)N−3/2 for 1 6 a, b, c 6 N . Imposing a natural assumption, which was
subsequently justified in [15], they proved by probabilistic methods the existence
of a limiting distribution for f(a, b, c)N−3/2.

It turns out that for n = 3 the required density can be obtained by averaging
with respect to two (of the three) parameters, and it can be explicitly described.
The constant c3 = 8/π = 2.546 . . . is important in this analysis.

Consider the set

Ma(x1, x2) =
{
(b, c) : 1 6 b 6 x1a, 1 6 c 6 x2a, (a, b, c) = 1

}
.

Theorem 1. Let a be a positive integer and x1, x2 and ε be positive real numbers.
Then

1
a3/2|Ma(x1, x2)|

∑
(b,c)∈Ma(x1,x2)

(
f(a, b, c)− 8

π

√
abc

)
= Oε(Rε(a;x1, x2)),

where

Rε(a;x1, x2) =
(
a−1/6(x1 + x2) + a−1/4(x3/2

1 + x
3/2
2 )(x1x2)−1/4 + a−1/2

)
aε

�x1,x2 a
−1/6+ε.
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The proof of this theorem is based on Rødseth’s formula for Frobenius numbers
in [3], continued fraction theory and estimates for Kloosterman sums. It also uses
ideas that we used earlier to investigate the statistical properties of continued frac-
tions (see [16]–[18]).

The square ∣∣∣∣ ba − β

∣∣∣∣ < r,

∣∣∣∣ ca − γ

∣∣∣∣ < r

in the (b, c)-plane can be expressed as combinations of rectangles of the form
[0, x1a] × [0, x2a], where x1 = β ± r, x2 = γ ± r. Hence from Theorem 1 we
obtain a stronger form of Arnold’s conjecture for n = 3 with constant c3 = 8/π: if

Q′
N,r =Q′

N,r(α, β, γ)=
{

(a, b, c) : a = αN,

∣∣∣∣ bN −β
∣∣∣∣ < r,

∣∣∣∣ cN −γ
∣∣∣∣ < r, (a, b, c) = 1

}
,

then

1
|Q′

N,r|
∑

(a,b,c)∈Q′
N,r

f(a, b, c) =
8
π

√
αβγ N3/2

(
1 +Oα,β,γ,ε(r−2N−1/6+ε + r)

)
.

This is a nontrivial result for N−1/12+ε � r � N−ε.
It also follows from Theorem 1 that Conjecture 2 holds in a stronger form.

Theorem 2. Let YN =
{
(a, b, c) : a = N, 1 6 b, c 6 N, (a, b, c) = 1

}
. The for

each ε > 0,
1

|YN |
∑

(a,b,c)∈YN

f(a, b, c)√
abc

=
8
π

+Oε(N−1/12+ε).

The author is grateful to the referee for some valuable observations pertaining
to the original version of this paper.

§ 2. Continuants

Let a, b and c be positive integers, (a, b) = (a, c) = (b, c) = 1, and let l be an
integer such that bl ≡ c (mod a), 1 6 l 6 a. Rødseth’s formula for f(a, b, c) is based
on the expansion of a/l in a reduced regular continued fraction (see [19], §§ 42, 43):

a

l
= 〈b0; b1, . . . , bm〉 = b0 −

1
b1− . . . − 1

bm

, (2)

where b0 = da/le = −b−a/lc (the integer closest from above) and b1, . . . , bm > 2.
We denote by m = m(a/l) the length of the fraction (2). To work with such
fractions it is convenient to modify the standard definition of continuants as follows
(see [20], § 6.7):

K0( ) = 1, K1(x1) = x1,

Kn(x1, . . . , xn) = xnKn−1(x1, . . . , xn−1)−Kn−2(x1, . . . , xn−2), n > 2.
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It is also natural to set K−1 = 0. Due to the recurrence relations for the numerators
and denominators of continued fractions, for m > 0 we have

〈x0;x1, . . . , xm〉 =
Km+1(x0, x1, . . . , xm)
Km(x1, . . . , xm)

.

We reformulate Euler’s rule (see [20]): the polynomial Kn(x1, . . . , xn) can be
obtained by starting from the product x1 · · ·xn, removing pairs of the form xkxk+1

from it in all possible ways, and adding all the results together, taking the coef-
ficients to be (−1)j , where j is the total number of pairs deleted. For example,

K4(x1, x2, x3, x4) = x1x2x3x4 − x1x2x3x4 − x1x2x3x4 − x1x2x3x4 + x1x2x3x4

= x1x2x3x4 − x3x4 − x1x4 − x1x2 + 1.

From Euler’s rule we obtain the symmetry

Kn(x1, . . . , xn) = Kn(xn, . . . , x1),

the left-hand recurrence relation

Kn(x1, . . . , xn) = x1Kn−1(x2, . . . , xn)−Kn−2(x3, . . . , xn), n > 2,

and the more general formula

Km+n(x1, . . . , xm, xm+1, . . . , xm+n) = Km(x1, . . . , xm)Kn(xm+1, . . . , xm+n)
−Km−1(x1, . . . , xm−1)Kn−1(xm+2, . . . , xm+n)

(this corresponds to (6.133) in [20]). All these relations are special cases of Euler’s
identity

Km+n(x1, . . . , xm+n)Kl(xm+1, . . . , xm+l)
−Km+l(x1, . . . , xm+l)Kn(xm+1, . . . , xm+n)
+Km−1(x1, . . . , xm−1)Kn−l−1(xm+l+2, . . . , xm+n) = 0

(m > 1, l > 0, n > l + 1), which can be interpreted as the vanishing Pfaffian of
a singular 4× 4 matrix (see [21]).

Below we use the simple notation K(x1, . . . , xn) without subscripts because the
number of arguments of a continuant will always be clear from the context.

§ 3. The Rødseth function

Let l be a fixed integer, 1 6 l 6 a, (l, a) = 1, and let l be the solution of
the congruence l · l ≡ 1 (mod a), 1 6 l 6 a. In accordance with [3] consider the
expansion of a/l as a continued fraction ‘with minus signs’

a

l
= 〈a1; . . . , am〉

and consider the sequences {sj} and {qj}, −1 6 j 6 m, defined by the equalities

sj = K(aj+2, . . . , am), qj = K(a1, . . . , aj).
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The following properties of {sj} and {qj} are easy to prove.
1◦. The sequences {sj} and {qj} are uniquely determined by the initial conditions

sm = 0, sm−1 = 1, q−1 = 0, q0 = 1

and the recurrence relations

sj−1 = aj+1sj − sj+1, qj+1 = aj+1qj − qj−1, 0 6 j 6 m− 1.

Furthermore,

s−1 = qm = K(a1, . . . , am) = a, s0 = K(a2, . . . , am) = l,

qm−1 = K(a1, . . . , am−1) = l.

2◦. The sequence {sj} is monotonically decreasing and {qj} is monotonically
increasing, and we have

0 =
sm

qm
<
sm−1

qm−1
< · · · < s0

q0
<
s−1

q−1
= ∞.

3◦. For each n, 0 6 n 6 m, the vectors en = (qn, sn) and en−1 = (qn−1, sn−1)
form a basis of the lattice

Λl =
{
(x, y) ∈ Z2 : xl ≡ y (mod a)

}
.

Furthermore, ∣∣∣∣ qn sn

qn−1 sn−1

∣∣∣∣ = det Λl = a.

4◦. The points (qn, sn), −1 6 n 6 m, are the vertices of the convex hull of the
points in Λl distinct from the origin that lie in the first quadrant.

5◦. For 1 6 l < a, (l, a) = 1 the quadruples (qn, sn−1, qn−1, sn), 0 6 n 6 m(l/a),
are in one-to-one correspondence with the solutions (u1, u2, v1, v2) of the equation

u1u2 − v1v2 = a

such that

0 6 v1 < u1 6 a, (u1, v1) = 1, 0 6 v2 < u2 6 a, (u2, v2) = 1.

6◦. For 0 6 n 6 m,

sn−1 − sn 6
a

qn
, qn − qn−1 6

q

sn−1
.

Properties 1◦ and 2◦ are an immediate consequence of the definitions.
To prove 3◦ we observe that the vector pairs (en−1, en) and (en, en+1) are related

by means of a unimodular transformation:(
en

en−1

)
=

(
0 1
−1 an+1

) (
en+1

en

)
, 1 6 n < m.
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Furthermore, e−1 = (0, a) and e0 = (1, l) form a basis of Λl, and we have∣∣∣∣ q0 s0
q−1 s−1

∣∣∣∣ =
∣∣∣∣1 l
0 a

∣∣∣∣ = a.

Property 4◦ follows from the monotonicity of the sequences {sj}, {qj} and prop-
erty 3◦.

Now we prove 5◦. By property 3◦ each quadruple (qn, sn−1, qn−1, sn) satisfies the
equation u1u2−v1v2 = a. To construct the inverse map we consider the expansions

u1

v1
= 〈an; . . . , a1〉,

u2

v2
= 〈an+1; . . . , am〉

and take l = K(a2, . . . , am).
Property 6◦ holds because the equality qrsr−1 − qr−1sr = a (see property 3◦)

can be written as

qn(sn−1 − sn) + sn(qn − qn−1) = a or (qn − qn−1)sn−1 + qn−1(sn−1 − sn) = a.

Hence sn−1 − sn 6 a/qn and qn − qn−1 6 a/sn−1.
Consider the Rødseth function ρl,a(t1, t2) that is defined by the equality

ρl,a(t1, t2) = t1sn−1 + t2qn −min{t1sn, t2qn−1} (3)

for t1 > 0 and t2 > 0 such that

sn

qn
6
t2
t1
<
sn−1

qn−1

(in view of property 2◦, in this way ρl,a(t1, t2) is well defined for all t1 > 0 and
t2 > 0). Then it was shown in [3] that for (b, a) = 1 and c ≡ bl (mod a) the
Frobenius number can be found by the formula

f(a, b, c) = ρl,a(b, c). (4)

Remark 1. The function ρl,a(t1, t2) is continuous and satisfies equality (3) for

sn

qn
6
t2
t1

6
sn−1

qn−1
.

§ 4. Integer points in domains

Let Ω be a simply connected plane domain with rectifiable boundary. Let V be
the area of Ω, P its perimeter, and N the number of points in the lattice Z2 lying
in the interior of Ω. For convex domains we have Jarnik’s inequality

|V −N | < P + 1

(see [22]). However, we also need to use the estimate

V −N = O(P + 1)

in a more general situation (see [23]).
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Lemma 1. For a simply-connected plane domain with rectifiable boundary

|V −N | < 4(P + 1).

Proof. Let N1 be the number of squares of the form [a, a+ 1)× [b, b+ 1), a, b ∈ Z,
in the interior of Ω and N2 the number of squares intersecting Ω (maybe in just
a single point). Then

N1 6 V,N 6 N2,

so that |V − N | 6 M = N2 − N1, where M is the number of squares intersecting
the boundary of Ω. In each of these squares we pick a point Ak from the boundary
of Ω, 0 6 k < M (we number these points in accordance with their order on the
boundary). From any system of five squares intersecting the boundary of Ω we
can select two with disjoint closures. Hence for each k the piece of the boundary
between Ak and Ak+4 has length l(Ak, Ak+4) > 1. Consequently,

P > l(A0, A4) + l(A4, A8) + · · ·+ l(A4bM/4c−4, A4bM/4c) >
⌊
M

4

⌋
>
M

4
− 1.

Hence M < 4(P + 1) and |V −N | < 4(P + 1).

We introduce the following notation (see [20]): if A is a proposition, then [A] = 1
if A is true and [A] = 0 otherwise.

Corollary 1. Let G(x, y) be a continuous real function defined in the interior of
a simply connected domain Ω with perimeter P > 1 and such that 0 6 G(x, y) 6 B,
(x, y) ∈ Ω. Assume further that G(x, y) is monotonic in each argument and for
every z ∈ [0, B] the inequality G(x, y) 6 z defines a simply connected domain of
perimeter O(P ) in Ω. Then∑

(x,y)∈Ω∩Z2

G(x, y) =
∫∫

Ω

G(x, y) dx dy +O(BP ).

Proof. It is sufficient to approximate G(x, y) by a linear combination of the func-
tions

Gk(x, y) =
[
G(x, y) 6

k

n
B

]
, 0 6 k 6 n,

to apply Lemma 1 to each of them and to pass to the limit as n→∞.

Remark 2. Let Λ be a sublattice of Z2 of index d. Let N(Λ) be the number of
points in Λ lying in Ω. Then

|V − dN(Λ)| 6 4d(P + 1).

To prove this inequality we can repeat the arguments in the proof of Lemma 1,
replacing the unit squares by fundamental parallelograms of Λ spanned by the
reduced basis.

As a consequence of this inequality (under the same constraints as Corollary 1
and in a similar way), we obtain∑

(x,y)∈Ω∩Λ

G(x, y) =
1
d

∫∫
Ω

G(x, y) dx dy +O(BP ). (5)
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§ 5. Distinguishing the density

For rational r we denote by square brackets the canonical expansion of r in
a continued fraction of length s = s(r),

r = [a0; a1, . . . , as] = a0 +
1

a1 + .. . +
1
as

,

where a0 = brc (the integer part of r), a1, . . . , as, which are positive integers, are
the partial quotients, as > 2, s > 1. We denote by s1(r) the sum of partial quotients
of r: s1(r) = a0+a1+· · ·+as. For a positive integer q let δq(a) be the characteristic
function of divisibility by q:

δq(a) = [a ≡ 0 (mod q)] =

{
1 if a ≡ 0 (mod q),
0 if a 6≡ 0 (mod q).

Lemma 2. Assume that 1 6 l < a, (l, a) = 1, let δ1, δ2 be positive integers and let
x1, x2 be positive real numbers. Then the sum

Sl,a(δ1, δ2;x1, x2) =
∑

b6x1a
δ1|b

∑
c6x2a
δ2|c

δa(bl − c)ρl,a(b, c)

has the asymptotic representation

Sl,a(δ1, δ2;x1, x2) = a2 (a, δ1, δ2)
δ1δ2

∫ x1

0

∫ x2

0

ρl,a(t1, t2) dt1 dt2 +O

(
x1x2a

2s1

(
l

a

))
.

Proof. Consider the lattice

Λl(δ1, δ2) = {(x, y) ∈ Λl : δ1 |x, δ2 |y}.

Any point (x, y) in Λl has the form (x, y) = ue−1 +ve0, where u and v are integers,
e−1 = (0, a), e0 = (1, l) (see property 3◦). This point belongs to the sublattice
Λl(δ1, δ2) only when

v ≡ 0 (mod δ1), au+ lv ≡ 0 (mod δ2).

Hence Λl(δ1, δ2) is a sublattice of Λl of index δ1δ2/(a, δ1, δ2).
Consider the sum

Sn = Sl,a,n(δ1, δ2;x1, x2)

=
∑

b6x1a
δ1|b

∑
c6x2a
δ2|c

[
(b, c) ∈ Λl(δ1, δ2),

sn

qn
6
c

b
<
sn−1

qn−1

]
ρl,a(b, c).

As the sequences {sj} and {qj} satisfy property 3◦, all solutions of the congruence
bl ≡ c (mod a) for which sn/qn 6 c/b < sn−1/qn−1 have the form

b(u, v) = uqn + vqn−1, c(u, v) = usn + vsn−1
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with integer u > 0 and v > 0. Hence

Sn =
∑
u>0

∑
v>0

[
b(u, v) 6 x1a, δ1 |b(u, v), c(u, v) 6 x2a, δ2 |c(u, v)

]
hl,a(u, v),

where hl,a(u, v) = ρl,a(uqn + vqn−1, usn + vsn−1).
Consider r = r(l, a) defined by the inequalities

sr

qr
6
x2

x1
<
sr−1

qr−1
.

For n > r only the first of the constraints b 6 x1a and c 6 x2a is essential.
Hence

Sn =
∑
u>0

∑
v>0

[
uqn + vqn−1 6 x1a, δ1 |uqn + vqn−1, δ2 |usn + vsn−1

]
hl,a(u, v).

The variables u and v range over a domain with perimeter O(x1a/qn−1). It follows
from the estimate

ρl,a(t1, t2) 6 t1sn−1 + t2qn (6)

that the maximum of hl(u, v) it this domain does not exceed 2x1asn−1qn/qn−1.
Moreover, as we pointed out above, Λl(δ1, δ2) is a sublattice of Λl of index
δ1δ2/(a, δ1, δ2). Hence from (5) we obtain

Sn =
(a, δ1, δ2)
δ1δ2

∫ a

0

∫ a

0

[uqn + vqn−1 6 x1a]hl,a(u, v) du dv +O

(
x2

1a
2

q2n−1

sn−1qn

)
=

(a, δ1, δ2)
aδ1δ2

∫ x1a

0

∫ x2a

0

[
sn

qn
6
c

b
<
sn−1

qn−1

]
ρl,a(b, c) db dc+O

(
x1x2

a2qn
qn−1

)
.

Observing now that

qn
qn−1

=
K(a1, . . . , an)
K(a1, . . . , an−1)

= 〈an; an−1, . . . , a1〉 6 an,

we see that

Sn = a2 (a, δ1, δ2)
δ1δ2

∫ x1

0

∫ x2

0

[
sn

qn
6
t2
t1
<
sn−1

qn−1

]
ρl,a(t1, t2) dt1 dt2 +O(x1x2a

2an).

(7)
In a similar way, if n < r, then from the constraints b 6 x1a and c 6 x2a only

the second remains. Taking account of the relations

sn−1

sn
=
K(an+1, . . . , am)
K(an+2, . . . , am)

= 〈an+1; . . . , am〉 6 an+1,

we arrive at the equality

Sn = a2 (a, δ1, δ2)
δ1δ2

∫ x1

0

∫ x2

0

[
sn

qn
6
t2
t1
<
sn−1

qn−1

]
ρl,a(t1, t2) dt1 dt2 +O(x1x2a

2an+1).

(8)
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On the other hand, if n = r, then the line c/b = x2/x1 in the plane Obc
partitions the sector sn/qn 6 c/b < sn−1/qn−1 into two parts; in the first (where
sn/qn 6 c/b < x2/x1) we must bear in mind that b 6 x1a, while in the second
(where x2/x1 6 c/b < sn−1/qn−1) we have c 6 x2a. Hence

Sn =
∑
u>0

∑
v>0

[
b(u, v) 6 x1a, x2b(u, v) > x1c(u, v), δ1 |b(u, v), δ2 |c(u, v)

]
hl,a(u, v)

+
∑
u>0

∑
v>0

[
c(u, v) 6 x2a, x2b(u, v) 6 x1c(u, v), δ1 |b(u, v), δ2 |c(u, v)

]
hl,a(u, v).

The variables u and v range over a domain whose perimeter is

O

(
x1a

qr
+

x2a

sr−1
+ x1(sr−1 − sr) + x2(qr − qr−1)

)
= O

(
x1a

qr
+

x2a

sr−1

)
(see property 6◦). The maximum of hl,a(u, v), in accordance with (6), is
O(ax1sr−1 + ax2qr). Furthermore,(

x1a

qr
+

x2a

sr−1

)
(ax1sr−1 + ax2qr) � x1x2a

2(ar + ar+1).

Hence from Remark 2 we obtain

Sr = a2 (a, δ1, δ2)
δ1δ2

∫ x1

0

∫ x2

0

[
sr

qr
6
t2
t1
<
sr−1

qr−1

]
ρl,a(t1, t2) dt1 dt2

+O(x1x2a
2(ar + ar+1)). (9)

Thus, in view of (7)–(9), for the sum

Sl,a(δ1, δ2;x1, x2) =
m∑

n=o

Sn,

we can deduce the asymptotic formula

Sl,a(δ1, δ2;x1, x2) = a2 (a, δ1, δ2)
δ1δ2

∫ x1

0

∫ x2

0

ρl,a(t1, t2) dt1 dt2

+O(x1x2a
2(a1 + · · ·+ am)).

The continued fraction ‘with minus signs’ a/l = 〈a1; a2, . . . , am〉 can be obtained
from an ordinary continued fraction a/l = [b1; b2, . . . , bs] by transforming the partial
quotients with even indices as follows:

[t2j−1; t2j , t2j+1 + α] = 〈t2j−1 + 1; 2, . . . , 2,︸ ︷︷ ︸
t2j−1 terms

t2j+1 + 1 + α〉.

However, the last partial quotient (if it has even index) is transformed by the
formula

[t2j−1; t2j ] = 〈t2j−1 + 1; 2, . . . , 2︸ ︷︷ ︸
t2j−1 terms

〉.
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Thus,

a1 + · · ·+ am 6 2(b1 + · · ·+ bs) = 2s1

(
l

a

)
,

which yields the required asymptotic formula.

In what follows, an asterisk on a summation sign of the form

a∑∗

x=1

,

a−1∑∗

x=0

means that the variable of summation x is coprime with a: (a, x) = 1.

Corollary 2. Under the assumptions of Lemma 2 the sum

Sa(δ1, δ2;x1, x2) =
a∑∗

l=1

Sl,a(δ1, δ2;x1, x2)

has the asymptotic representation

Sa(δ1, δ2;x1, x2) = a2 (a, δ1, δ2)
δ1δ2

∫ x1

0

∫ x2

0

ρa(t1, t2) dt1 dt2 +O(x1x2a
3 log2 a),

where

ρa(t1, t2) =
a∑∗

l=1

ρl,a(t1, t2).

Proof. It is sufficient to sum all the equalities in Lemma 2 and to use the estimate

q∑
p=1

s1

(
p

q

)
� q log2(q + 1)

(see [24]).

Lemma 3. Let x1 and x2 be positive real numbers. Then the sum

Fa(x1, x2) =
∑

(b,c)∈Ma(x1,x2)

f(a, b, c)

has the following asymptotic representation :

Fa(x1, x2) = a2
∑

d1d2|a
(d1,d2)=1

1
d1d2

∑
δ1|d2a1

µ(δ1)
δ1

∑
δ2|d1a1

µ(δ2)
δ2

(a, δ1, δ2)

×
∫ x1d2

0

∫ x2d1

0

ρa1(t1, t2) dt1 dt2 +O(x1x2a
3+ε),

where a1 = a/(d1d2).
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Proof. To find the sum Fa(x1, x2) we introduce the parameters d1 = (a, b),
d2 = (a, c) and set b1 = b/d1, c1 = c/d2, a1 = a/(d1d2). For terms distinct
from zero (d1, d2) = 1. Hence

Fa(x1, x2) =
∑

d1d2|a
(d1,d2)=1

∑
b6x1a

(b,a)=d1

∑
c6x2a

(c,a)=d2

f(a, b, c)

=
∑

d1d2|a
(d1,d2)=1

∑
b16x1d2a1
(b1,d2a1)=1

∑
c16x2d1a1
(c1,d1a1)=1

f(d1d2a1, d1b1, d2c1).

From Johnson’s identity

f(a, b, c) = df

(
a

d
,
b

d
, c

)
(see [25]) we obtain

Fa(x1, x2) =
∑

d1d2|a
(d1,d2)=1

d1d2

∑
b16x1d2a1
(b1,d2a1)=1

∑
c16x2d1a1
(c1,d1a1)=1

f(a1, b1, c1).

Now we can express the Frobenius number in terms of the Rødseth function by
formula (4). Hence

Fa(x1, x2) =
∑

d1d2|a
(d1,d2)=1

d1d2

a1∑∗

l=1

∑
b16x1d2a1
(b1,d2a1)=1

∑
c16x2d1a1
(c1,d1a1)=1

δa1(b1l − c1)ρl,a1(b1, c1)

=
∑

d1d2|a
(d1,d2)=1

d1d2

∑
δ1|d2a1

µ(δ1)
∑

δ2|d1a1

µ(δ2)
a1∑∗

l=1

∑
b16x1d2a1

δ1|b1

∑
c16x2d1a1

δ2|c1

δa1(b1l− c1)ρl,a1(b1, c1).

Next by Corollary 2,

Fa(x1, x2) = a2
∑

d1d2|a
(d1,d2)=1

1
d1d2

∑
δ1|d2a1

µ(δ1)
δ1

∑
δ2|d1a1

µ(δ2)
δ2

(a, δ1, δ2)

×
∫ x1d2

0

∫ x2d1

0

ρa1(t1, t2) dt1 dt2 +O(x1x2a
3+ε).

Remark 3. Applying the same arguments to the sum

Ga(x1, x2) =
∑

(b,c)∈Ma(x1,x2)

√
abc

we obtain the formula

Ga(x1, x2) = a2
∑

d1d2|a
(d1,d2)=1

1
d1d2

∑
δ1|d2a1

µ(δ1)
δ1

∑
δ2|d1a1

µ(δ2)
δ2

(a, δ1, δ2)ϕ(a1)a
1/2
1

×
∫ x1d2

0

∫ x2d1

0

√
t1t2 dt1 dt2 +O(x1x2a

3+ε).
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Remark 4. By homogeneity

ρl,a(t1, t2) = t1ρl,a

(
t2
t1

)
,

where
ρl,a(ξ) = sn−1 + ξqn −min{sn, ξqn−1}

for sn/qn 6 ξ < sn−1/qn−1. Hence if we know the function

ρa(ξ) =
a∑∗

l=1

ρl,a(ξ),

then it is easy to find the required density

ρa(t1, t2) = t1ρa

(
t2
t1

)
. (10)

§ 6. The density transformation

In accordance with property 5◦ of the sequences {sj} and {qj},

ρ∗a(ξ) =
a∑

u1=1

u1−1∑∗

v1=0

a∑
u2=1

u2−1∑∗

v2=0

[
u1u2 − v1v2 = a,

v2
u1

6 ξ <
u2

v1

]
h(u1, u2, v1, v2; ξ),

where
h(u1, u2, v1, v2; ξ) = u2 + ξu1 −min{v2, ξv1}.

Considering the cases v2 > ξv1 and v2 6 ξv1 separately, we express the required
density in the following form:

ρ∗a(ξ) = λ∗(a; ξ) + η∗(a; ξ),

where

λ∗(a; ξ) =
a∑

u1=1

u1−1∑∗

v1=0

a∑
u2=1

u2−1∑∗

v2=0

[
u1u2 − v1v2 = a,

v2
u1

6 ξ <
v2
v1

]
h1(u1, u2, v1, v2; ξ),

η∗(a; ξ) =
a∑

u1=1

u1−1∑∗

v1=0

a∑
u2=1

u2−1∑∗

v2=0

[
u1u2 − v1v2 = a,

v2
v1

6 ξ <
u2

v1

]
h2(u1, u2, v1, v2; ξ),

h1(u1, u2, v1, v2; ξ) = u2 + ξ(u1 − v1), h2(u1, u2, v1, v2; ξ) = u2 − v2 + ξu1.

In view of Remark 1, the change of variables u1 ↔ u2 and v1 ↔ v2 leads to the
equality η∗(a; ξ) = ξλ∗(a; 1/ξ). Hence

ρ∗a(ξ) = λ∗(a; ξ) + ξλ∗
(
a;

1
ξ

)
. (11)

To calculate λ∗(a; ξ) we write the equation u1u2 − v1v2 = a as

u1(u2 − v2) + v2(u1 − v1) = a
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and introduce the variables x = u1, y = u2 − v2, z = u1 − v1, w = v2. Then we can
write the sum λ∗(a; ξ) in the following form:

λ∗(a; ξ) =
a∑

x=1

x∑∗

z=1

a∑
y=1

a−1∑∗

w=0

[
xy + wz = a,

w

x
6 ξ <

w

x− z

]
(y + w + ξz).

Eliminating the conditions on being coprime we obtain

λ∗(a; ξ) =
∑

d1d2|a

µ(d1)µ(d2)d2λ

(
a

d1d2
,
d1ξ

d2

)
, (12)

where

λ(a; ξ) =
∑
x>1

x∑
z=1

∑
y>1

∑
w>0

[
xy + wz = a,

w

x
6 ξ <

w

x− z

]
(y + w + ξz).

Taking into account the terms in the last pair of parentheses we express λ(a; ξ) as

λ(a; ξ) = Y (a; ξ) +W (a; ξ) + ξZ(a; ξ) (13)

and find each of the three sums separately.

§ 7. Using estimates for Kloosterman sums

Let q be a positive integer, a an integer, and f a non-negative function. Let
T [f ] be the number of solutions of the congruence xy ≡ a (mod q) in the domain
P1 < x 6 P2, 0 < y 6 f(x):

T [f ] =
∑

P1<x6P2

∑
0<y6f(x)

δq(xy − a).

Bykovskǐı [26] showed that calculating T [f ] reduces to finding the sum

S[f ] =
1
q

∑
P1<x6P2

µq,a(x)f(x),

where µq,a(x) is the number of solutions of the congruence xy ≡ a (mod q) with
respect to y in the interval 1 6 y 6 q.

Now we present a simplified version of a result from [18], which refines the cor-
responding theorem in [26]. It is based on estimates for the Kloosterman sums

Kq(l,m, n) =
q∑

x,y=1

δq(xy − l) exp
(

2πi
mx+ ny

q

)
(14)

and van der Corput’s method for estimating trigonometric sums. The proof uses
the inequality

|Kq(l,m, n)| 6 σ0(q)σ0((l,m, n, q))(lm, ln,mn, q)1/2q1/2,
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which generalizes the following result due to Estermann [27]:

|Kq(±1,m, n)| 6 σ0(q)(m,n, q)1/2q1/2.

Here and in what follows
σα(q) =

∑
d|q

dα

is the sum of powers of the divisors of the positive integer q. Throughout, ε > 0
will be arbitrarily small. We shall replace 2ε by ε in exponents.

Lemma 4. Let P1 and P2 be real numbers, P = P2 − P1 > 2, and assume that
a real function f(x) > 0 has two continuous derivatives on [P1, P2] and that for
some A > 0 and w > 1,

1
A

6 |f ′′(x)| 6 w

A
.

Then the asymptotic formula

T [f ] = S[f ]− Pδq(a)
2

+R[f ]

holds, where

R[f ] �w,ε (PA−1/3 +A1/2D + q1/2)P ε, D = (a, q).

Remark 5. It follows from Lemma 4 that the asymptotic formula for T [f ] does not
change if the inequality y 6 f(x) is replaced by the strict inequality y < f(x) in
the definition of T [f ].

Lemma 5. Let P1 and P2 be real numbers, P = P2 − P1 > 0, and let f(x) > 0 be
a real function that is constant on [P1, P2]. Then

T [f ] = S[f ] +O

((
q1/2 +

(
P

q
+ 1

)
D

)
qε

)
,

where D = (a, q).

Proof. By the definition of µk,a(x), for any Y we have∑
P1<x6P2

∑
Y <y6Y +q

δq(xy − a) =
∑

P1<x6P2

µk,a(x). (15)

Next (see [18], Remark 2) for any X and 0 < Y 6 q we have the estimate∑
X<x6X+q

∑
0<y6Y

δq(xy − a) =
Y

q
Kq(a, 0, 0) +O(Dqε), (16)

where Kq(l,m, n) is defined by (14). Moreover, for X2−X1 = X 6 q and Y2−Y1 =
Y 6 q we have∑

X1<x6X2

∑
Y1<y6Y2

δq(xy − a) =
XY

q2
Kq(a, 0, 0) +O((q1/2 +D)qε) (17)
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(see [18], Lemma 3). Bearing in mind the relations∑
X1<x6X2

µk,a(x) =
∑

k|(a,q)

k
∑

X1<x6X2
(x,q)=k

1 =
∑

k|(a,q)

k

(
ϕ(q/k)
q/k

X

k
+O

(
σ0

(
q

k

)))

=
X

q

∑
k|(a,q)

kϕ

(
q

k

)
+O(Dqε) =

X

q
Kq(a, 0, 0) +O(Dqε)

and asymptotic formulae (15)–(17) we arrive at the statement of the lemma.

Lemma 6. Let f be a decreasing function on [P1, P2] and let f(P1)− f(P2) = Q.
Then

S[f ] = ψ(a, q)
∫ P2

P1

f(x) dx+O(DQq−1+ε),

where

ψ(a, q) =
1
q

∑
k|(a,q)

∑
δ|q/k

µ(δ)
δ

=
Kq(a, 0, 0)

q2
. (18)

Proof. In fact, µq,a(x) = kδk(a), where k = (q, x). Hence

S[f ] =
1
q

∑
P1<x6P2

kδk(a)f(x) =
1
q

∑
k|(a,q)

k
∑

P1/k<x6P2/k
(x,q/k)=1

f(kx)

=
1
q

∑
k|(a,q)

k
∑
δ|q/k

µ(δ)
∑

P1/(kδ)<x6P2/(kδ)

f(kδx).

Replacing the inner sum by an integral we arrive at the required asymptotic formula:

S[f ] =
1
q

∑
k|(a,q)

k
∑
δ|q/k

µ(δ)
(

1
kδ

∫ P2

P1

f(x) dx+O(Q)
)

=
1
q

∑
k|(a,q)

∑
δ|q/k

µ(δ)
δ

∫ P2

P1

f(x) dx+O(DQq−1+ε).

Lemma 7. Assume that the function I(r)/r ∈ C[0, 1] has finitely many intervals
of monotonicity and that |I(r)/r| 6 B for all r ∈ [0, 1], let ψ(a, q) be defined by
equality (18), and assume that 1 6 U 6 a and 0 6 θ 6 1. Then

∑
q6θU

ψ(a, q)I
(
q

U

)
=
σ−1(a)
ζ(2)

∫ θ

0

I(r)
r

dr +O(BU−1aε).

Proof. From the definition of ψ(a, q) we obtain∑
q6θU

ψ(a, q)
(
q

U

)
=

∑
k|a

∑
δ<U/k

µ(δ)
δ

∑
q<θU
δk|q

I(q/U)
q

.
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Replacing the inner sum by an integral we obtain the desired result:∑
q6θU

ψ(a, q)
(
q

U

)
=

∑
k|a

∑
δ<U/k

µ(δ)
δ

(
1
δk

∫ θ

0

I(r)
r

dr +O(BU−1)
)

=
∑
k|a

1
k

(
1
ζ(2)

+O

(
k

U

)) ∫ θ

0

I(r)
r

dr +O(BU−1aε)

=
σ−1(a)
ζ(2)

∫ θ

0

I(r)
r

dr +O(BU−1aε).

§ 8. Calculating three auxiliary sums

To calculate the sums Y (a; ξ), W (a; ξ) and Z(a; ξ) we introduce the param-
eters U1 �

√
aξ and U2 = aU−1

1 �
√
a/ξ . We shall assume that a > 9 and

9/a 6 ξ 6 a/9, since otherwise the results that follow are trivial. For ξ > 1 we set
n = b

√
aξ c − 2 > 1. Then for U1 ∈ [n + 1/4, n + 3/4] the parameter U2 = a/U1

ranges over the interval
[

a
n+3/4 ,

a
n+1/4

]
, which has length greater than 1/2. Hence

we can select U1 and U2 > 1 such that

U1U2 = a, ‖U1‖, ‖U2‖ >
1
4
,

1
12

√
aξ 6 U1 6

√
aξ ,

√
a

ξ
6 U2 6 12

√
a

ξ

(‖x‖ is the distance from the real number x to the closest integer). For ξ > 1 we
set n = b

√
a/ξ c − 2 > 1. Looking at U2 over [n+ 1/4, n+ 3/4] we see in a similar

way that we can select U1, U2 > 1 so that

U1U2 = a, ‖U1‖, ‖U2‖ >
1
4
,

√
aξ 6 U1 6 12

√
aξ ,

1
12

√
a

ξ
6 U2 6

√
a

ξ
.

Lemma 8. The sum

Y (a; ξ) =
∑
x>1

x∑
z=1

∑
y>1

∑
w>1

[
xy + wz = a,

w

x
6 ξ <

w

x− z

]
y

has the asymptotic representation

Y (a; ξ) =
2(4− π)
3ζ(2)

σ−1(a)a3/2ξ1/2 +O(R(a, ξ)),

where
R(a, ξ) =

(
a4/3(1 + ξ) + a5/4(ξ5/4 + ξ−1/4)

)
aε. (19)

Proof. We can write Y (a; ξ) in the form

Y (a; ξ) =
a∑

t=1

Y (a, t; ξ),

where

Y (a, t; ξ) =
∑
x>1

x∑
z=1

∑
y>t

∑
w>1

[
xy + wz = a,

w

x
6 ξ <

w

x− z

]
.
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We split Y (a, t; ξ) into two sums:

Y (a, t; ξ) = Y1(a, t; ξ) + Y2(a, t; ξ),

where the first sum contains the terms for which w 6 U1, and the second sum
contains all other terms. For this decomposition, in the second sum we always have
z 6 U2.

In the sum

Y1(a, t; ξ) =
∑

w6U1

∑
x>1

∑
y>t

x∑
z=1

[
xy + wz = a,

w

x
6 ξ <

w

x− z

]
,

for fixed w > 1 the variables x and y are related by xy ≡ a (modw). If w, x and y
are known, then we find z is unique:

z =
a− xy

w
.

Hence, in view of the constraint z 6 x, we can express the sum Y1(a, t; ξ) in the
following form:

Y1(a, t; ξ) =
∑

w6U1

∑
w/ξ6x6a

∑
y>t

δw(xy − a)
[
y1(x) 6 y < y2(x)

]
=

∑
w6U1

∑
y>t

∑
x>1

δw(xy − a)
[
x1(y) 6 x < x2(y)

]
=

∑
w6U1

∑
(x,y)∈Ω

[y > t]δw(xy − a),

where

y1(x) =
a

x
− w, y2(x) =

a

x
− w +

w2

ξx
, (20)

x1(y) =
a

w + y
, x2(y) =

1
w + y

(
a+

w2

ξ

)
, (21)

and the domain Ω is defined by

x >
w

ξ
, y > 0, y1(x) 6 y < y2(x)

or by the equivalent conditions

x >
w

ξ
, y > 0, x1(y) 6 x < x2(y).

We take U =
√
a+ w2/ξ and represent Ω as

Ω = (Ω1 \ Ω2) ∪ (Ω3 \ (Ω4 ∪ Ω5)),
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where

Ω1 =
{

(x, y) : t 6 y 6 U − w,
w

ξ
< x < x2(y)

}
,

Ω2 =
{

(x, y) : t 6 y 6 U − w,
w

ξ
< x < x1(y)

}
,

Ω3 =
{

(x, y) :
w

ξ
< x 6 U, t 6 y < y2(x)

}
,

Ω4 =
{

(x, y) :
w

ξ
< x 6

a

U
, t 6 y < y1(x)

}
,

Ω5 =
{

(x, y) : max
{
w

ξ
,
a

U

}
< x 6 U, t 6 U − w

}
.

Thus, the line y = U − w partitions Ω into two pieces Ω1 \ Ω2 and Ω3 \ (Ω4 ∪ Ω5),
where Ω1, Ω2, Ω3, and Ω4 are curvilinear trapezia and Ω5 is a rectangle.

In Ω1 and Ω2 we apply Lemmas 4 and 6 to the functions x1(y) and x2(y). To
this end we partition the range of y into intervals of the form (Y, 2Y ] = (P1, P2],
where Y = (U −w)/2, (U −w)/4, (U −w)/8, . . . ; on each of these intervals we have

x′′1(y) � x′′2(y) � a

(w + Y )3
, A � (w + Y )3

a
.

Bearing in mind that

S[x2]− S[x1] = S[x2 − x1], x2(y)− x1(y) 6
w2

(w + t)ξ
= Q,

after integrating over these intervals we obtain the leading term

ψ(a,w)
∫∫

Ω1\Ω2

[y > t] dx dy +O
(
δw(a)U [t 6 U ]

)
+O

(
Dwwa

ε

ξ(w + t)

)
,

where Dw = (a,w), and also the remainder

O
(
(a1/3 + a1/4Dw + w1/2)aε

)
. (22)

(We have added the condition t 6 U because for t > U the domain Ω1 \ Ω2 is
empty.)

In a similar way, in Ω3 and Ω4 we apply Lemmas 4 and 6 to the functions y1(x)
and y2(x). Then for x ∈ (X, 2X] we obtain

y′′1 (x) � y′′2 (x) � a

X3
, y2(x)− y1(x) 6

w2

ξx
6 w.

Hence after integrating over intervals of the form (X, 2X], where X = U/2, U/4,
U/8, . . . , we obtain the leading term

ψ(a,w)
∫∫

Ω3\Ω4

[y > t] dx dy +O

(
δw(a) min

{
U,

a

w + t

})
+O(Dwa

ε)

and remainder (22).
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Using Lemmas 5 and 6 in the domain Ω5 we obtain

ψ(a,w)
∫∫

Ω5

[y > t] dx dy +O

(
Dw

w
min

{
U,

a

w + t

})
+O((w1/2 +Dw)aε).

Combining the above, the sum Y1(a, t; ξ) has the estimate

Y1(a, t; ξ) =
∑

w6U1

(
ψ(a,w)

∫ a

w/ξ

dx

∫ a

t

[
y1(x) 6 y < y2(x)

]
dy +O(R1(a, t, w; ξ))

)
,

where

R1(a, t, w; ξ) =
(
a1/3 + a1/4Dw + w1/2 +

Dwwa
ε

ξ(w + t)

)
aε + δw(a)U [t 6 U ]

+ δw(a) min
{
U,

a

w + t

}
.

The terms in Y1(a, t; ξ) are distinct from zero only for tw 6 aξ. Hence from the
inequalities ∑

w6N

Dw 6
∑
D|a

∑
w6N
D|w

1 6 Nσ0(a)

we obtain the following estimate for the remainder term:∑
tw6aξ
w6U1

R1(a, t, w; ξ) � R1(a, ξ),

where
R1(a, ξ) = (a4/3ξ + a5/4(ξ5/4 + ξ) + a)aε.

Thus, for the sum

Y1(a; ξ) =
a∑

t=1

Y1(a, t; ξ)

we have the formula

Y1(a; ξ) =
a∑

t=1

∑
w6U1

ψ(a,w)
∫ a

w/ξ

dx

∫ a

t

[
y1(x) 6 y < y2(x)

]
dy +O(R1(a; ξ))

=
∑

w6U1

ψ(a,w)
∫ a

w/ξ

dx

∫ a

t

[
y1(x) 6 y < y2(x)

]
y dy +O(R1(a; ξ))

=
1
2

∑
w6U1

ψ(a,w)
(∫ a/w+w/ξ

w/ξ

y2
2(x) dx−

∫ a/w

w/ξ

y2
1(x) dx

)
+O(R1(a; ξ)).

The integrals in it can be calculated directly, so we obtain

Y1(a; ξ) =
a3/2ξ1/2

2

∑
16w6U1

ψ(a,w)I1

(
w

U1

)
+O(R1(a; ξ)),
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where

I1(r) = r3 − 2r3 log
(

1 +
1
r2

)
+ 2r − 2r log(1 + r2).

By Lemma 7,

Y1(a; ξ) =
a3/2ξ1/2σ−1(a)

2ζ(2)

∫ 1

0

I1(r)
r

dr +O(R1(a; ξ))

=
a3/2ξ1/2σ−1(a)

ζ(2)

(
5
2
− π

3
− 4

3
log 2

)
+O(R1(a; ξ)). (23)

Now consider the sum

Y2(a, t; ξ) =
∑
z>1

∑
x>z

∑
y>t

∑
w>U1

[
xy + wz = a,

w

x
6 ξ <

w

x− z

]
.

For fixed z > 1 the variables x and y satisfy the relation xy ≡ a (mod z), and if z,
x and y are known, then w is determined uniquely:

w =
a− xy

z
.

The constraint w > U1 means that z < a/U1 = U2, therefore we can express the
sum Y2(a, t; ξ) in the following form:

Y2(a, t; ξ) =
∑

z6U2

∑
x>U2

∑
y>t

δz(xy − a)
[
y3(x) 6 y < y4(x)

]
=

∑
z6U2

∑
y>t

∑
x>U2

δz(xy − a)
[
x3(y) 6 x < x4(y)

]
,

where

y3(x) =
a

x
− ξz, y4(x) = min

{
a− U1z

x
,
a

x
− ξz +

ξz2

x

}
, (24)

x3(y) =
a

ξz + y
, x4(y) = min

{
a− U1z

y
,
a+ ξz2

ξz + y

}
. (25)

Now we select U =
√
a+ ξz2 . As in the case of the sum Y1(a, t; ξ), for y 6 U

we apply Lemmas 4 and 6 to the functions x3(y) and x4(y) and for y > U we apply
them to the functions y3(x) and y4(x). Partitioning the ranges of the variables x
and y in a similar fashion, into intervals of the form (X, 2X] and (Y, 2Y ], we obtain

Y2(a, t; ξ) =
∑

z6U2

(
ψ(a, z)

∫ a

z

dx

∫ a

t

[
y3(x) 6 y < y4(x)

]
dy +O(R2(a, t, z; ξ))

)
,

where

R2(a, t, z; ξ) = (a1/3 + a1/4Dz + z1/2)aε + δz(a)
(
U [t 6 U ] +

a

t

)
+Dz(ξ + 1) +Dz

a3/4

(a− U1z)1/2
.
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In the sum Y2(a, t; ξ) the terms are distinct from zero only for t 6 U1. Therefore,
taking account of the estimate∑

tz6a
z6U2

a3/4

(a− U1z)1/2
� a7/4

U
1/2
1

∑
z6U2

1
z(U2 − z)1/2

� a5/4+ε,

we find the remainder term

R2(a, ξ) =
∑
tz6a
z6U2

R2(a, t, z; ξ)

satisfies
R2(a, ξ) � (a4/3 + a5/4ξ−1/4 + aξ)aε.

Hence the sum

Y2(a; ξ) =
a∑

t=1

Y2(a, t; ξ)

satisfies the relations

Y2(a; ξ) =
a∑

t=1

∑
z6U2

ψ(a, z)
∫ a

0

dx

∫ a

t

[
y3(x) 6 y < y4(x)

]
dy +O(R2(a; ξ))

=
∑

z6U2

ψ(a, z)
∫ a

0

dx

∫ a

t

[
y3(x) 6 y < y4(x)

]
y dy +O(R2(a; ξ))

=
1
2

∑
z6U2

ψ(a, z)
(∫ a/(ξz)+z

U2

y2
4(x) dx−

∫ a/(ξz)

U2

y2
3(x) dx

)
+O(R2(a; ξ)).

Calculating the integrals we arrive at the equality

Y2(a; ξ) =
a3/2ξ1/2

2

∑
16z6U2

ψ(a, z)I2

(
z

U2

)
+O(R2(a; ξ)),

where

I2(r) = 2r
(
r2 log r − (1 + r2) log

1 + r2

1 + r

)
.

By Lemma 7, ∑
z6U2

ψ(a, z)I2

(
z

U 2

)
=
σ−1(a)
ζ(2)

∫ 1

0

I2(r)
r

dr +O(a1+εξ).

Hence

Y2(a; ξ) =
a3/2ξ1/2σ−1(a)

ζ(2)

(
1
6
− π

3
+

4
3

log 2
)

+O(R2(a; ξ)). (26)

Substituting equalities (23) and (26) into the formula

Y (a; ξ) = Y1(a; ξ) + Y2(a; ξ)

we obtain the required result.
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Lemma 9. The sum

W (a; ξ) =
∑
x>1

x∑
z=1

∑
y>1

∑
w>0

[
xy + wz = a,

w

x
6 ξ <

w

x− z

]
w

has the asymptotic representation

W (a; ξ) =
2(π − 2)
3ζ(2)

σ−1(a)a3/2ξ1/2 +O(R(a, ξ))

with its remainder term R(a, ξ) defined by equality (19).

Proof. We write the sum under consideration as

W (a; ξ) =
a∑

t=1

W (a, t; ξ),

where

W (a, t; ξ) = W1(a, t; ξ) +W2(a, t; ξ),

W1(a, t; ξ) =
∑

t6w<U1

∑
x,y>1

x∑
z=1

[
xy + wz = a,

w

x
6 ξ <

w

x− z

]
,

W2(a, t; ξ) =
∑

z6U2

∑
x,y>1

∑
w>max{t,U1}

[
xy + wz = a,

w

x
6 ξ <

w

x− z

]
.

In W1(a, t; ξ) we pass from the equality xy + wz = a to the congruence xy ≡
a (modw). The constraints on the variables z 6 x, w 6 ξx, and ξ(x− z) < w are
the same as in the sum Y1(a, t; ξ). Hence

W1(a, t; ξ) =
∑

t6w6U1

∑
x>w/ξ

∑
y>1

δw(xy − a)
[
x1(y) 6 x < x2(y)

]
=

∑
t6w<U1

∑
y>1

∑
x>w/ξ

δw(xy − a)
[
y1(x) 6 y < y2(x)

]
,

where x1(y), x2(y), y1(x) and y2(x) are defined by equalities (20) and (21). Lem-
mas 4 and 6 lead to the asymptotic formula

W1(a, t; ξ) =
∑

w6U1

(
ψ(a,w)

∫ a

w/ξ

dx

∫ a

0

[
y1(x) 6 y < y2(x)

]
dy +O(R3(a, t, w; ξ))

)
,

where

R3(a, t, w; ξ) = (a1/3 + a1/4Dw + w1/2)aε + δw(a)U +Dwξ
−1.

As for the sum Y1(a; ξ), we have here∑
t6a

∑
t6w<U1

R3(a, t, w; ξ) � R1(a; ξ).
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Hence

W1(a; ξ) =
∑

w6U1

wψ(a,w)
∫ a

w/ξ

dx

∫ a

0

[
y1(x) 6 y < y2(x)

]
dy +O(R1(a; ξ))

= a
∑

w6U1

wψ(a,w)I3

(
w

U 1

)
+O(R1(a; ξ)),

where
I3(r) = (1 + r2) log(1 + r2)− r2 log r − r2. (27)

By Lemma 7 we obtain

W1(a; ξ) =
a3/2ξ1/2σ−1(a)

ζ(2)

∫ 1

0

I3(r) dr +O(R1(a; ξ))

=
a3/2ξ1/2σ−1(a)

ζ(2)

(
−5

3
+
π

3
+

4
3

log 2
)

+O(R1(a; ξ)). (28)

In W2(a, t; ξ) we pass from the equality xy + wz = a to the congruence xy ≡
a (mod z). Then

W2(a, t; ξ) =
∑

z6U2

∑
x>U2

∑
y>0

δz(xy − a)
[
y3(x) 6 y < y4(x, t)

]
=

∑
z6U2

∑
x>U2

∑
y>0

δz(xy − a)
[
x3(y) 6 x < x4(y, t)

]
,

where the functions x3(y) and y3(x) are defined in (24) and (25),

y4(x, t) = min
{
a−max{U1, t}z

x
,
a

x
− ξz +

ξz2

x

}
and

x4(y, t) = min
{
a−max{U1, t}z

y
,
a+ ξz2

ξz + y

}
.

Applying Lemmas 4 and 6 to the functions x3(y), x4(y, t), y3(x) and y4(x, t) we
arrive at the equality

W2(a, t; ξ) =
∑

z6U2

(
ψ(a, z)

∫ a

U2

dx

∫ a

0

[
y3(x) 6 y < y4(x, t)

]
dy +O(R4(a, t, z; ξ))

)
,

where

R3(a, t, z; ξ) = (a1/3 + a1/4Dz + z1/2)aε + δz(a) min
{
U1,

aξ

t

}
+Dz(1 + ξ) +Dz

a3/4

(a− zU1)1/2
.
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Here the terms will be distinct from zero only for tz 6 a and

a∑
t=1

∑
z6min{U2,a/t}

R4(a, t, z; ξ) � R2(a, ξ).

Thus,

W2(a; ξ) =
∑
t6U1

∑
z6U2

ψ(a, z)
∫ a

U2

dx

∫ a

0

[
y3(x) 6 y < y4(x)

]
dy

+
∑

U1<t6a

∑
z6a/t

ψ(a, z)
∫ a

U2

dx

∫ a

0

[
y3(x) 6 y < y4(x, t)

]
dy +O(R2(a; ξ)).

The double integrals are straightforward to calculate:∫ a

U2

dx

∫ a

0

[
y3(x) 6 y < y4(x)

]
dy = aI4

(
z

U2

)
,∫ a

U2

dx

∫ a

0

[
y3(x) 6 y < y4(x, t)

]
dy = aI4

(
z

U2
,
U1

t

)
,

where I4(r) = I4(r, 1) and

I4(r, τ) = (1 + r2) log(1 + r2)− r2 log r + rτ log τ − r(r + τ) log(r + τ). (29)

Hence by Lemma 7,

W2(a; ξ) =
a3/2ξ1/2σ−1(a)

ζ(2)

(∫ 1

0

I4(r)
r

dr +
∫ ∞

1

dτ

∫ 1/τ

0

I4(r, τ)
r

dr

)
+O(R2(a; ξ))

=
a3/2ξ1/2σ−1(a)

ζ(2)

(
1
3

+
π

3
− 4

3
log 2

)
+O(R2(a; ξ)). (30)

Adding (28) and (30) together we obtain the required result.

Lemma 10. The sum

Z(a; ξ) =
∑
x>1

x∑
z=1

∑
y>1

∑
w>0

[
xy + wz = a,

w

x
6 ξ <

w

x− z

]
z

has the asymptotic representation

Z(a; ξ) =
2(π − 2)
3ζ(2)

σ−1(a)a3/2ξ−1/2 +O(ξ−1R(a, ξ)),

where the remainder term R(a, ξ) is defined in (19).

Proof. We split Z(a; ξ) into four sums:

Z(a; ξ) = Z1(a; ξ) + Z2(a; ξ) + Z3(a; ξ) + Z4(a; ξ), (31)
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where

Z1(a; ξ) =
∑
t6U2

∑
w6ξt

∑
x,y>1

∑
t6z6x

[
xy + wz = a,

w

x
6 ξ <

w

x− z

]
,

Z2(a; ξ) =
∑
t6U2

∑
ξt<w6U1

∑
x,y>1

∑
t6z6x

[
xy + wz = a,

w

x
6 ξ <

w

x− z

]
,

Z3(a; ξ) =
∑
t>U2

∑
w6a/t

∑
x,y>1

∑
t6z6x

[
xy + wz = a,

w

x
6 ξ <

w

x− z

]
,

Z4(a; ξ) =
∑
t6U2

∑
t<z<U2

∑
x>z

∑
y>1

∑
w>U1

[
xy + wz = a,

w

x
6 ξ <

w

x− z

]
,

The condition z > t holds automatically for the nonzero terms of the sum Z1(a; ξ),
therefore

Z1(a; ξ) =
∑
t6U2

∑
w6ξt

∑
x,y>1

δw(xy − a)
[
y1(x) 6 y < y2(x)

]
.

We can single out the leading terms as in Y1(a; ξ); namely,

Z1(a; ξ) =
∑
t6U2

∑
w6ξt

ψ(a,w)
(∫ a

t

dx

∫ a

0

[
y1(x) 6 y < y2(x)

]
dy +O(R5(a, t, w; ξ))

)

= a
∑
t6U2

∑
w6ξt

ψ(a,w)
(
I4

(
w

U1
,
t

U2

)
+O(R5(a, t, w; ξ))

)
,

where I4(r, τ) is defined by equality (29) and

R5(a, t, w; ξ) =
(
a1/3 + a1/4Dw + w1/2 +

Dwa
3/4

(a− wt)1/2

)
aε

+ δw(a) min
{
U,
a

t

}
+Dw(1 + ξ−1).

To estimate the remainder we observe that∑
wt<a

a3/4

(a− wt)1/2
� a3/4+ε

a∑
n=1

1√
n
� a5/4+ε.

The other terms in R5(a, t, w; ξ) are estimated as in Lemma 8. Hence∑
t6U2

∑
w6ξt

R5(a, t, w; ξ) � (a4/3 + a5/4(ξ1/4 + aξ−1))aε � R1(a; ξ)ξ−1.

By Lemma 7,

Z1(a; ξ) =
a3/2ξ−1/2σ−1(a)

ζ(2)

∫ 1

0

dτ

∫ τ

0

I4(r, τ)
r

dr +O(R1(a; ξ)ξ−1)

=
a3/2ξ−1/2σ−1(a)

ζ(2)

(
3
2
− π

3
+
ζ(2)
4

− log 2
)

+O(R1(a; ξ)ξ−1).
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We calculate Z3(a; ξ) in a similar way:

Z3(a; ξ) =
∑
t>U2

∑
w6a/t

ψ(a,w)
(∫ a

t

dx

∫ a

0

[
y1(x) 6 y <y2(x)

]
dy+O(R5(a, t, w; ξ))

)

= a
∑
t>U2

∑
w6a/t

ψ(a,w)I4

(
w

U1
,
t

U2

)
+O(R1(a; ξ)ξ−1)

=
a3/2ξ−1/2σ−1(a)

ζ(2)

∫ ∞

1

dτ

∫ 1/τ

0

I4(r, τ)
r

dr +O(R1(a; ξ)ξ−1)

=
a3/2ξ−1/2σ−1(a)

ζ(2)

(
−1

6
+
π

3
− ζ(2)

4
− 1

3
log 2

)
+O(R1(a; ξ)ξ−1).

Analogous transformations lead to the following representation for the sum
Z2(a; ξ):

Z2(a; ξ) =
∑
t6U2

∑
ξt<w6U1

ψ(a,w)
(∫ a

w/ξ

dx

∫ a

0

[
y1(x)6 y <y2(x)

]
dy+O(R5(a, t, w; ξ))

)

= a
∑
t6U2

∑
ξt<w6U1

ψ(a,w)I5

(
w

U1
,
t

U2

)
+O(R1(a; ξ)ξ−1),

where

I5(r, τ) = (1 + r2) log(1 + r2)− r(r + τ) log(r + τ)− r(τ − r) log r + r(τ − r).

By Lemma 7,

Z2(a; ξ) =
a3/2ξ−1/2σ−1(a)

ζ(2)

∫ 1

0

dτ

∫ 1

τ

I5(r, τ)
r

dr +O(R1(a; ξ)ξ−1)

=
a3/2ξ−1/2σ−1(a)

ζ(2)

(
−5

4
+
π

3
+

2
3

log 2
)

+O(R1(a; ξ)ξ−1).

The sum Z4(a; ξ) is calculated similarly to W2(a; ξ) (using Lemmas 4 and 6):

Z4(a; ξ) =
∑
t6U2

∑
t<z<U2

(
ψ(a, z)

∫ a

U2

dx

∫ a

0

[
y3(x) 6 y < y4(x, t)

]
dy

+O(R4(a, t, z; ξ))
)
.

Here we have ∑
t6U2

∑
z<U2

R4(a, t, z; ξ) � R(a; ξ)ξ−1.

Finding the leading term reduces to integrating the function I3(r) defined by equal-
ity (27):

Z4(a; ξ) =
a3/2ξ−1/2σ−1(a)

ζ(2)

∫ 1

0

dτ

∫ 1

τ

I4(r, τ)
r

dr +O(R(a; ξ)ξ−1)

=
a3/2ξ−1/2σ−1(a)

ζ(2)

(
−17

12
+
π

3
+

2
3

log 2
)

+O(R(a; ξ)ξ−1).
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Substituting the values of the sums Z1(a; ξ), Z2(a; ξ), Z3(a; ξ) and Z4(a; ξ) which
we have obtained into (31) we arrive at the conclusion of the lemma.

§ 9. The proof of the main result

Corollary 3. Let x1, x2 ∈ [0, 1]. Then the density ρa(ξ) has the asymptotic expres-
sion

ρa(ξ) =
8
π
ϕ(a)a1/2ξ1/2 +O

(
(a4/3(1 + ξ) + a5/4(ξ5/4 + ξ−1/4))aε

)
.

Proof. Substituting the expressions from Lemmas 8–10 into equality (13) we obtain

λ(a; ξ) =
4
π
σ−1(a)a3/2ξ1/2 +O

(
(a4/3(1 + ξ) + a5/4(ξ5/4 + ξ−1/4))aε

)
.

Hence formula (12) yields

λ∗(a; ξ) =
4
π
ϕ(a)a1/2ξ1/2 +O

(
(a4/3(1 + ξ) + a5/4(ξ5/4 + ξ−1/4))aε

)
.

Substituting this expression into (11) we arrive at the required result.

Proof of Theorem 1. From formula (10), on the basis of Corollary 3 we obtain

ρa(t1, t2) =
8
π
ϕ(a)

√
t1t2a+O

(
(a4/3(t1 + t2) + a5/4(t5/4

1 t
−1/4
2 + t

−1/4
1 t

5/4
2 ))aε

)
.

Substituting this into the asymptotic formula from Lemma 3 and taking Remark 3
into account we arrive at the result of the theorem with the remainder term as
required.

To prove Theorem 2 we can partition the square [1, N ]2 containing the pairs
(b, c) into smaller squares with side length N11/12 and can use Theorem 1 in each
of these squares.

Remark 6. The ideas underlying the approach used in the proof of Theorem 1
are close to Porter’s approach in [28] (see also [18]). In it the following asymptotic
formula for the mean value of the length of continued fractions for rational numbers
with equal denominators was obtained:

1
ϕ(d)

∑
16c6d
(c,d)=1

s

(
c

d

)
=

2 log 2
ζ(2)

log d+ CP − 1 +Oε(d−1/6+ε),

where the constant

CP =
2 log 2
ζ(2)

(
3 log 2

2
+ 2γ − 2

ζ ′(2)
ζ(2)

− 1
)
− 1

2

is now known as the Porter constant. The key point in both cases is root estimates
for Kloosterman sums and van der Corput’s method, which explains why there is
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the same decrease of the exponent in the remainder terms. A more precise result
was obtained in [17] for averaging over the numerators and denominators:

E(R) =
2

R(R+ 1)

∑
d6R

∑
c6d

s

(
c

d

)
=

2 log 2
ζ(2)

logR+ C ′
P +O(R−1 log4R)

with absolute constant C ′
P . Hence in the case when f(a, b, c) is averaged over all

the three arguments we can conjecture the following result.

Conjecture 4. The estimate

1
x1x2x3N9/2

∑
a6x1N

∑
b6x2N

∑
c6x3N

(a,b,c)=1

(
f(a, b, c)− 8

π

√
abc

)
= Oε,x1,x2,x3(N

−1/2+ε)

holds.

Remark 7. The method used in the proof of Theorem 1 also enables us to describe
the distribution density of f(a, b, c)/

√
abc. It turns out that

1
|Ma(x1, x2)|

∑
(a,b,c)∈Ma(x1,x2)

[
f(a, b, c) 6 τ

√
abc

]
=

∫ τ

0

p(t) dt+Oε(R(a;x1, x2; τ)aε),

where
R(a, x1, x2, τ) �x1,x2,τ a

−1/6

and the density p(t) is defined by

p(t) =



0 for t ∈ [0,
√

3 ];
12
π

(
t√
3
−
√

4− t2
)

for t ∈ [
√

3 , 2];

12
π2

(
t
√

3 arccos
t+ 3

√
t2 − 4

4
√
t2 − 3

+
3
2
√
t2 − 4 log

t2 − 4
t2 − 3

)
for t ∈ [2,+∞).

Figure 1. The graph of the density p(t)
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This density has the following properties:
1) the function p(t) increases on [

√
3 , 2] and decreases on the semi-infinite inter-

val [2,+∞), limt→2−0 p
′(t) = +∞ and limt→2+0 p

′(t) = −∞;

2) p(t) =
18
π2t3

+O

(
1
t5

)
as t→∞;

3)
∫ ∞

0

p(t) dt = 1;

4)
∫ ∞

0

tp(t) dt =
8
π

.

The author is going to present the proof in a forthcoming paper.

Bibliography
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