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Spin chains and Arnold’s problem on the
Gauss-Kuz’min statistics for quadratic irrationals

A. V. Ustinov

Abstract. New results related to number theoretic model of spin chains
are proved. We solve Arnold’s problem on the Gauss-Kuz’min statistics for
quadratic irrationals.
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§ 1. Introduction

In [1], a number-theoretic model for spin chains was presented; this model uses
Farey series (for the subsequent results, see [2]–[4]). In this model, to a finite chain
of spins each of which can be directed upwards (↑) or downwards (↓), a product of
the matrices

A =
(

1 0
1 1

)
, B =

(
1 1
0 1

)
is assigned, according to the rule ↑ = A and ↓ = B. For example,

↑↑↑↓↓↑↑↑↑ = ↑3↓2↑4 = A3B2A4.

By the energy of a given configuration we mean the quantity

E(↑a1↓a2↑a3 . . . ) = log(Tr(Aa1Ba2Aa3 . . . )).

Let G be the free multiplicative monoid generated by the matrices A and B.
From a physical viewpoint, the asymptotic behaviour of the number of configura-
tions with a given energy,

Φ(N) =
∣∣{C ∈ G : TrC = N}

∣∣, N > 3,

and the number of configurations in which the energy does not exceed a given
quantity,

Ψ(N) =
∣∣{C ∈ G : 3 6 TrC 6 N}

∣∣ =
∑

36n6N

Φ(n),
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are of interest. The conjecture that

Φ(N) ∼ N

2
logN (1.1)

was presented in [1] and, at the same time, the asymptotic formula

Ψ(N) =
N2 logN
ζ(2)

+O(N2 log logN) (1.2)

was proved in [3].
The conjecture (1.1) was disproved in [4]. It turns out that the arithmetic

function Φ(N)(N logN)−1 has a smooth limit distribution. In [5], the two-term
asymptotic formula

Ψ(N) = N2(c1 logN + c0) +Oε(N7/4+ε) (1.3)

was obtained for the quantity Ψ(N), where

c1 =
1
ζ(2)

, c0 =
1
ζ(2)

(
γ − 3

2
− ζ ′(2)
ζ(2)

)
.

Problems concerning the asymptotic behaviour of Φ(N) and Ψ(N) are closely
related to the distribution of quadratic irrationals and the closed geodesics corres-
ponding to these irrationals on the modular surface (see [6] and [5]). For a reduced
quadratic irrational ω (which has a purely periodic representation in the form of
a continued fraction) we let ρ(ω) denote the length which is defined as the length
of the corresponding closed geodesic. As was proved in [6],∑

ρ(ω)<x

1 ∼ ex log 2
2ζ(2)

. (1.4)

The relationship between reduced quadratic irrationals and finite products of the
matrices A and B (see [3]) was used in [5] to obtain an asymptotic formula with
an explicit estimate for the remainder term,∑

ρ(ω)<x

1 =
ex log 2
2ζ(2)

+Oε(e(7/8+ε)x). (1.5)

In this paper, we prove the asymptotic formula

Ψ(N) = N2(c1 logN + c0) +O(N3/2 log4N), (1.6)

which refines equation (1.3), and a formula refining (1.5), namely,∑
ρ(ω)<x

1 =
ex log 2
2ζ(2)

+O(x4e3x/4).

Equation (1.6) is a special case of a more general result concerning the Gauss-
Kuz’min statistics for spin chains (see Theorems 1 and 2). Another consequence of
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this result gives a solution to Arnold’s problem (see [7], Problem 1993–11) on the
statistical properties of the partial quotients of quadratic irrationals. Let x, y ∈
[0, 1] be real numbers and

r(x, y;N) =
∑
ω∈R

ε0(ω)6N

[
ω 6 x, − 1

ω∗
6 y

]
.

Here R is the set of reduced quadratic irrationals, ε0(ω) is the fundamental solution
of Pell’s equation

X2 −∆Y 2 = 4,

∆ = B2 − 4AC, where AX2 + BX + C is the minimal polynomial of ω, and ω∗

stands for the number conjugate to ω; moreover, [A] stands for 1 if the statement
A is true and for 0 otherwise. Then (see Theorem 3)

r(x, y;N) =
log(1 + xy)

2ζ(2)
N2 +O(N3/2 log4N),

that is, Gauss-Kuz’min statistics for the quadratic irrationals are described by the
same distribution function log2(1 + xy) and the same corresponding density

1
log 2

· 1
(1 + xy)2

as occur in the Gauss-Kuz’min statistics for the rationals and for almost all reals.
The proofs of the theorems use the approach suggested in [5].

The author thanks the referee for pointing out the inaccuracies in the original
version of the paper.

§ 2. Application of bounds for the Kloosterman sums

The main tool for solving problems which can be reduced to the distribution of
solutions of the congruence xy ≡ ±1 (mod q) is the following lemma.

Lemma 1. Let q be a positive integer and 0 6 P1, P2 6 q. Then

∑
0<x6P1

∑
0<y6P2

δq(xy ± 1) =
ϕ(q)
q2

P1P2 +O(ψ1(q)), (2.1)

where ψ1(q) = σ0(q) log2(q + 1)q1/2.

For a proof see, for example, [8].
In the next lemma, an asymptotic formula for the number of solutions of the

congruence xy ≡ ±1 (mod q) under the graph of the simplest linear function can
be proved in a similar way.
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Lemma 2. Let q be a positive integer, let 0 6 P1, P2 6 q, let a be an integer, and
let f(x) = a±x be a linear function for which 0 6 f(P1), f(P2) 6 q. Then the sum

Sf (P1, P2) =
∑

P1<x6P2

∑
0<y6f(x)

δq(xy ± 1)

admits the following asymptotic formula (for any choice of sign in the symbol ±):

Sf (P1, P2) =
ϕ(q)
q2

∫ P2

P1

f(x) dx+O(ψ2(q)),

where ψ2(q) = σ0(q) log(q + 1)(σ0(q) + log(q + 1))q1/2.

Proof. Assume that f(x) = a+x. The case of f(x) = a−x can be proved similarly.
Expand the function

F (x, y) = [P1 < x 6 P2, 0 < y 6 f(x)]

in a finite Fourier series,

F (x, y) =
∑

−q/2<m,n6q/2

F̂ (m,n)e2πi(mx+ny)/q,

with the Fourier coefficients

F̂ (m,n) =
1
q2

q∑
x,y=1

F (x, y)e−2πi(mx+ny)/q.

Then the given sum can be represented in the form

Sf (P1, P2) =
q∑

x,y=1

F (x, y)δq(xy ± 1) =
∑

−q/2<m,n6q/2

F̂ (m,n)Kq(m,∓n),

where

Kq(m,n) =
q∑

x,y=1

δq(xy − 1)e2πi(mx+ny)/q

are Kloosterman sums. Distinguishing the term with m = n = 0, we obtain the
equation

Sf (P1, P2) =
ϕ(q)
q2

∫ P2

P1

f(x) dx+O(1) +R, (2.2)

where
R =

∑′

−q/2<m,n6q/2

F̂ (m,n)Kq(m,∓n).

Here and below, a dash ′ on the summation sign means that the term for which all
variables of summation vanish is omitted.

Using the bound
|Kq(m,n)| 6 σ0(q)(q,m, n)1/2q1/2
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for the Kloosterman sums (see [9]), we obtain the following inequalities for the
remainder R:

|R| 6 σ0(q)q1/2
∑′

−q/2<m,n6q/2

F̂ (m,n)(q,m, n)1/2 6 σ0(q)q1/2(R1 +R2 +R3 +R4),

(2.3)
where

R1 =
∑′

−q/2<m6q/2

|F̂ (m, 0)|(m, q), R2 =
∑′

−q/2<n6q/2

|F̂ (0, n)|(n, q),

R3 =
∑′

−q/2<m6q/2

|F̂ (m,−m)|(m, q),

R4 =
∑′

−q/2<m6q/2

∑′

−q/2<n6q/2
m+n ̸=0,q

|F̂ (m,n)|(n,m, q)1/2.

We will estimate the Fourier coefficients of the function F . If n = 0, then

F̂ (m, 0) =
1
q2

∑
P1<x6P2

(a+ x)e−2πimx/q,

∣∣∣∣ ∑
P1<x6P2

e−2πimx/q

∣∣∣∣ =
∣∣∣∣e−2πim(P2−P1)/q − 1

e−2πim/q − 1

∣∣∣∣ 6
1

| sin(πm/q)|
6

q

|m|
,

∣∣∣∣ ∑
0<x6P

xe−2πimx/q

∣∣∣∣ =
∣∣∣∣Pe−2πim(P+1)/q

e−2πim/q − 1
− e−2πim/q(e−2πimP/q − 1)

(e−2πim/q − 1)2

∣∣∣∣
6
Pq

|m|
+

q2

|m|2
≪ q2

|m|
,

R1 ≪
q∑

m=1

(m, q)
m

6
∑
d|q

d

q∑
m=1
d|m

1
m
≪ σ0(q) log(q + 1).

If n ̸= 0, then

F̂ (m,n) =
1
q2
· e−2πin/q

e−2πin/q − 1

(
e−2πina/q

∑
P1<x6P2

e−2πi(m+n)x/q−
∑

P1<x6P2

e−2πimx/q

)
.

(2.4)
Therefore, for m = 0 we have

F̂ (0, n) ≪ 1
q2
· q
|n|

(
q

|n|
+ q

)
≪ 1
|n|

and the remainder R2 can be estimated in just the same way as the remainder R1,

R2 ≪
q∑

n=1

(n, q)
n

≪ σ0(q) log(q + 1).
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If m+ n = 0 and m ̸= 0, then, by (2.4),

|F̂ (m,−m)| ≪ 1
q2
· q

|m|

(
q +

q

|m|

)
≪ 1
|m|

.

Hence, the same bound is obtained for the remainder R3,

R3 ≪
q∑

m=1

(m, q)
m

≪ σ0(q) log(q + 1).

In the remaining cases (m ̸= 0, n ̸= 0, m+ n ̸= 0, q), by (2.4) we have

|F̂ (m,n)| 6 1
q2
· 1
| sin(πn/q)|

(
1

| sin(π(m+ n)/q)|
+

1
| sin(πm/q)|

)
≪ 1
|n|

(
1

|m+ n|
+

1
|q −m− n|

+
1

|q +m+ n|
+

1
|m|

)
.

In particular, if m and n have different signs, then

|F̂ (m,n)| ≪ 1
|n| · |m− n|

,

and, if the signs are the same, then

|F̂ (m,n)| ≪ 1
|n|

(
1

q − |m| − |n|
+

1
|m|

)
.

Therefore, R4 ≪ R4,1 +R4,2, where

R4,1 =
∑

m,n6q/2
m ̸=n

(m,n, q)1/2

n · |m− n|
, R4,2 =

∑
m,n6q/2
m+n ̸=q

(m,n, q)1/2

n

(
1

q −m− n
+

1
m

)
.

Introducing the variables d = (m,n, q), m1 = md−1, and n1 = nd−1, we obtain the
following bound for the first sum:

R4,1 ≪
∑
d|q

d1/2
∑

m,n6q/2
m ̸=n, d|(m,n)

1
n · |m− n|

≪
∑
d|q

1
d3/2

∑
m1,n16q
m1 ̸=n1

1
n1 · |m1 − n1|

≪
∑

m1,n16q
m1 ̸=n1

1
n1 · |m1 − n1|

≪ log2(q + 1).



768 A. V. Ustinov

The second sum can be estimated similarly to the first,

R4,2 ≪
∑
d|q

d1/2
∑

m,n6q/2
m+n ̸=q, d|(m,n)

1
n

(
1

q −m− n
+

1
m

)

≪
∑
d|q

1
d3/2

∑
m1,n16q/(2d)
m1+n1 ̸=q/d

1
n1

(
1

q/d−m1 − n1
+

1
m1

)

≪
∑

m1,n16q/(2d)
m1+n1 ̸=q/d

1
n1

(
1

q/d−m1 − n1
+

1
m1

)
≪ log2(q + 1).

Thus, R4 ≪ log2(q + 1).
Substituting the above bounds for the remainders R1, R2, R3, and R4 into (2.3),

we arrive at the relation

R≪ σ0(q) log(q + 1)(σ0(q) + log(q + 1))q1/2 = ψ2(q),

and, taking account of equation (2.2), this leads to the statement of the lemma.

§ 3. Spin chains and continued fractions

We let M denote the set of all integer matrices

S =
(
p p′

q q′

)
=

(
p(S) p′(S)
q(S) q′(S)

)
with determinant ±1 for which

1 6 q 6 q′, 0 6 p 6 q, 1 6 p′ 6 q′.

This set is partitioned into two disjoint sets M+ and M−, which consist of matrices
with determinants +1 and −1, respectively. The elements of the set M form a mul-
tiplicative semigroup and are in a one-to-one correspondence with the (non-empty)
families of positive integers constructed using the rule (see [10])

(a1, a2, . . . , an) 7→
(
p p′

q q′

)
=

(
0 1
1 a1

)
. . .

(
0 1
1 an

)
.

The inverse map is constructed using the equations

p

q
= [0; a1, . . . , an−1],

p′

q′
= [0; a1, . . . , an],

p

p′
= [0; an, . . . , a2],

q

q′
= [0; an, . . . , a1].

As in [5] and [3], to evaluate the function Ψ(N), we consider the products of
the matrices A =

(
1 0
1 1

)
and B =

(
1 1
0 1

)
of even and odd length separately. To
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be definite, we assume that the products begin with the matrix B. Following the
notation in [5], we introduce the sets Wev and Wodd as follows:

Wev(N) =
{
(a1, . . . , a2m) ∈ N2m : m > 1, Tr(Ba1Aa2 . . . Ba2m−1Aa2m) 6 N

}
,

Wodd(N) =
{
(a1, . . . , a2m+1) ∈ N2m+1 : m > 1, Tr(Ba1Aa2 . . . Aa2mBa2m+1) 6 N

}
.

We set the family of positive integers (a1, . . . , an) in correspondence with the
continued fraction [0; a1, . . . , an] and the sequence of approximants pk/qk =
[0; a1, . . . , ak], 0 6 k 6 n. The properties of the continued fractions imply that

JBa1Aa2 . . . Ba2m−1Aa2mJ = J

(
q2m q2m−1

p2m p2m−1

)
J =

(
p2m−1 p2m

q2m−1 q2m

)
∈ M+,

JBa1Aa2 . . . Aa2mBa2m+1 = J

(
q2m q2m+1

p2m p2m+1

)
=

(
p2m p2m+1

q2m q2m+1

)
∈ M−,

where J =
(

0 1
1 0

)
. Therefore, the quantities

Ψev(N) = |Wev(N)|, Ψodd(N) = |Wodd(N)|

can also be defined by the equalities

Ψev(N) =
∣∣{S ∈ M+ : Tr(S) = p(S) + q′(S) 6 N}

∣∣,
Ψodd(N) =

∣∣{S ∈ M− : p(S) > 0, p′(S) + q(S) 6 N}
∣∣.

By hypothesis all the products under consideration begin with the matrix B, and so

Ψ(N) = 2
(
Ψev(N) + Ψodd(N)

)
.

To describe the behaviour of the partial quotients in the continued fractions for
real numbers, it is convenient to use the measure (see [11])

dλ =
1

log 2
· du dv

(1 + uv)2
.

Let a real number α ∈ [0, 1] be given by an infinite continued fraction α = [0; a1, a2,
. . . , an, . . . ] and let pn(α)/qn(α) = [0; a1, . . . , an] and rn(α) = [0; an+1, an+2, . . . ].
Then α = [0; a1, . . . , an+rn(α)], qn−1(α)/qn(α) = [0; an, . . . , a1], and the behaviour
of the elements of the continued fraction near the index n is described in the mean
by the function (the Gauss-Kuz’min statistics treated in a generalized sense)

Fn(x, y) =
∫ 1

0

[
rn(α) 6 x,

qn−1(α)
qn(α)

6 y

]
dα.

Here
Fn(x, y) → log2(1 + xy) =

1
log 2

∫ x

0

∫ y

0

du dv

(1 + uv)2
, n→∞.

In particular, for y = 1 we deal with the Gauss measure

dµ =
1

log 2
· du

1 + u

and the corresponding distribution function log2(1 + x).
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The spin chains model under consideration is closely connected with continued
fractions. Therefore, to describe the properties of generic configurations, it is natu-
ral to introduce characteristics similar to the Gauss-Kuz’min statistics. The object
we introduce characterizes local properties of spin configurations.

For real x, y ∈ [0, 1] we write

Wev(x, y;N) =
{(

p p′

q q′

)
∈ M+ : p′ 6 xq′, q 6 yq′, p+ q′ 6 N

}
,

Wodd(x, y;N) =
{(

p p′

q q′

)
∈ M− : p > 0, p′ 6 xq′, q 6 yq′, p′ + q 6 N

}
,

Ψev(x, y;N) = |Wev(x, y;N)|, Ψodd(x, y;N) = |Wodd(x, y;N)|.

In particular, Ψev(1, 1;N) = Ψev(N) and Ψodd(1, 1;N) = Ψodd(N).
Arnold conjectured (see [7], Problem 1993–11) that the partial quotients of ratio-

nals and quadratic irrationals behave in the mean in just the same way as those
for almost all reals. This statement was proved by Lochs (see [12]) for the ratio-
nals, in the simplest case when the averaging is carried out over the fractions a/b,
1 6 a 6 b 6 R (R → ∞). For the case when the averaging is carried out over
the points in a sector 1 6 a 6 b, a2 + b2 6 R2 (R → ∞), as was suggested in
the original setting of the problem, the conjecture was proved by Avdeeva and
Bykovskii (see [13] and [14], and also [15] and [8]). The known Gauss-Kuz’min
statistics for finite continued fractions enabled us to solve the Sinǎı problem on the
statistical properties of trajectories of particles in two-dimensional crystal lattices
(see [16]), to obtain new results on the behaviour in the mean of various versions
of the Euclidean algorithm (see [17], [18]), and to find the distribution density of
the normalized Frobenius numbers with three arguments (see [19]).

It turns out that the quantities Ψev(x, y;N) an Ψodd(x, y;N), viewed as functions
of x and y, exhibit fundamentally different behaviour. The even chains satisfy the
Gauss-Kuz’min law (as do the rational numbers in the Arnold problem), whereas
the odd ones do not.

The relationship between the behaviour of the function Ψev(N) and the distribu-
tion of quadratic irrationals, which was noted in [5] and [3], helps to prove Arnold’s
conjecture for the quadratic irrationals and to refine the asymptotic formula (1.5).

§ 4. Spin chains and the Gauss-Kuz’min statistics

Theorem 1. Let 0 6 x, y 6 1 and N > 2. Then the following asymptotic formula
holds :

Ψev(x, y;N) =
log(1 + xy)

2ζ(2)
N2 +O(N3/2 log4N) (4.1)

with an absolute constant in the remainder term.

Proof. We transform the given quantity,

Ψev(x, y;N) =
∑(

t u
v q

)
∈M+

[u 6 xq, v 6 yq, t+ q 6 N ]

=
∑

u6xN

∑
q>u/x

∑
t6yu+1/q

δu(tq − 1)[t+ q 6 N ]. (4.2)
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There is at most one value of the variable t lying in the interval yu < t 6 yu+ 1/q.
Therefore, ∑

u6xN

∑
q>u/x

∑
yu<t6yu+1/q

δu(tq − 1)[t+ q 6 N ]

≪
∑
u6N

∑
q6N

δu(ty(u)q − 1) ≪
∑
u6N

N

u
≪ N1+ε

for ty(u) = ⌈yu⌉. Thus,

Ψev(x, y;N) =
∑

u6xN

∑
t6yu

∑
q>u/x

δu(tq − 1)[t+ q 6 N ] +O(N). (4.3)

It follows from the equation

Y∑
y=1

δq(xy − 1) ≪ Y

q
+ 1

that the quantity Ψev(x, y;N) admits the bound

Ψev(x, y;N) ≪
∑
u6N

∑
t6yu

∑
q6N

δu(tq − 1) ≪
∑
u6N

yu
N

u
≪ yN2.

Since Ψev(x, y;N) is symmetric with respect to x and y, the bound

Ψev(x, y;N) ≪ xN2

also holds. Therefore,

Ψev(x, y;N) ≪ N3/2, log(1 + xy)N2 ≪ N3/2

for min{x, y} 6 N−1/2, and formula (4.1) holds. Thus, it is sufficient to prove that
(4.1) holds under the assumption that x > N−1/2. In formula (4.3), Lemmas 1
and 2 can be applied to the inner double sum. Taking the formula (see [20], Ch. II,
Problem 19)

q∑
x=1

Y∑
y=1

δq(xy − 1) =
Y∑∗

y=1

1 =
ϕ(q)
q

Y +O(σ0(q))

into account (here and below, an asterisk ∗ means that the variable of summation
ranges over the reduced system of residues), we obtain the equation

Ψev(x, y;N) =
∑

u6xN

(
ϕ(u)
u2

∫ yu

0

dt

∫ ∞

u/x

[t+ q 6 N ] dq

+O

(
N

u
σ0(u) + ψ2(u)

))
+O(N).

It follows from the standard bounds∑
u6M

σ0(u) ≪M log(M + 1),
∑

u6M

σ2
0(u) ≪M log3(M + 1)
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that

Ψev(x, y;N) =
∑

u6N/x

ϕ(u)
u2

∫ yu

0

dt

∫ ∞

u/x

[t+ q 6 N ] dq +O(N3/2 log4N).

Applying the identity (u = δu1)∑
u6M

ϕ(u)
u2

f(u) =
∑
δ6M

µ(δ)
δ2

∑
u16M/δ

f(δu1)
u1

(4.4)

and introducing the variables α = t/u = t/(δu1) and β = q/u = q/(δu1), we arrive
at the asymptotic formula

Ψev(x, y;N) =
∑
δ6N

µ(δ)S
(
N

δ

)
+O(N3/2 log4N), (4.5)

where
S(N) =

∑
u6xN

u

∫ y

0

dα

∫ ∞

1/x

[α+ β 6 Nu−1] dβ.

We represent the sum S(N) in the form

S(N) = S1(N) + S2(N),

where

S1(N) =
∑

u6xN/(xy+1)

u

∫ y

0

dα

∫ Nu−1−α

1/x

dβ,

S2(N) =
∑

xN/(xy+1)<u6xN

u

∫ Nu−1−1/x

0

dα

∫ Nu−1−α

1/x

dβ.

After evaluating the integrals∫ y

0

dα

∫ Nu−1−α

1/x

dβ =
(
N

u
− 1
x

)
y − y2

2
,

∫ Nu−1−1/x

0

dα

∫ Nu−1−α

1/x

dβ =
1
2

(
N

u
− 1
x

)2

we arrive at the asymptotic formulae

S1(N) =
xy(3xy + 2)
4(xy + 1)2

N2 +O(N),

S2(N) =
log(xy + 1)

2
N2 − xy(3xy + 2)

4(xy + 1)2
N2 +O

(
N

x

)
,

S(N) =
log(xy + 1)

2
N2 +O

(
N

x

)
.

By assumption, x > N−1/2. Hence, Nx−1 ≪ N3/2. Therefore, substituting the
asymptotic formula for the sum S(N) into (4.5), we obtain the desired equation for
Ψev(x, y;N).
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Theorem 2. Let 0 6 x, y 6 1 and N > 2. Then

Ψodd(x, y;N) =
N2

2ζ(2)

(
logN + log

xy

x+ y
+ γ − 3

2
− ζ ′(2)
ζ(2)

)
+O(N3/2 log4N) +O

(
x+ y

xy
N logN

)
.

Proof. Repeating the arguments in the proof of Theorem 1, we arrive at the equa-
tions

Ψodd(x, y;N) =
∑(

t u
v q

)
∈M−

[t > 0, u 6 xq, v 6 yq, u+ v 6 N ]

=
∑
t6N

∑
u,v>t

δt(uv − 1)
[
v >

t

x
+

1
u
, u >

t

y
+

1
v
, u+ v 6 N

]
=

∑
t6xyN/(x+y)

∑
u>t/y

∑
v>t/x

δt(uv − 1)[u+ v 6 N ] +O(N logN).

The boundary of the domain in which u and v vary intersects at most O(N/t)
squares of the form [at, (a + 1)t] × [bt, (b + 1)t]. Therefore, applying Lemmas 1
and 2, we obtain the equations

Ψodd(x, y;N) =
∑

t6xyN/(x+y)

(
ϕ(t)
t2

∫ ∞

t/y

du

∫ ∞

t/x

[u+ v 6 N ] dv +O

(
N

t
ψ2(t)

))
+O(N logN)

=
∑

t6xyN/(x+y)

ϕ(t)
t2

∫ ∞

t/y

du

∫ ∞

t/x

[u+ v 6 N ] dv +O(N3/2 log4N).

Using (4.4) again and changing to the variables α = u/t = u/(δt1) and β = v/t =
v/(δt1), we see that

Ψodd(x, y;N) =
∑

δ6xyN/(x+y)

µ(δ)T
(
N

δ

)
+O(N3/2 log4N), (4.6)

where

T (N) =
∑

t6xyN/(x+y)

t

∫ ∞

1/y

dα

∫ ∞

1/x

[
α+ β 6

N

t

]
dβ =

∑
t6xyN/(x+y)

t

2

(
N

t
− 1
x
− 1
y

)2

=
N2

2

(
logN + log

xy

x+ y
+ γ − 3

2

)
+O

(
x+ y

xy
N

)
.

Substituting the asymptotic formula for T (N) into (4.6) and applying the formula∑
δ6M

µ(δ)
δ2

log δ =
ζ ′(2)
ζ2(2)

+O

(
log(M + 1)

M

)
,

we obtain the statement of the theorem.



774 A. V. Ustinov

Corollary 1. For N > 2

Ψ(N) =
N2

ζ(2)

(
logN + γ − log 2− 3

2
− ζ ′(2)
ζ(2)

)
+O(N3/2 log4N).

Remark. Comparing the results of Theorems 1 and 2, we can conclude that the
even and odd spin chains have a fundamentally different structure in the mean. It
seems that these cases should be separated and studied independently. In contrast
to the leading term in Theorem 1, the leading term in Theorem 2 does not depend
on x and y, because it is obtained by summing matrices of the form

(
t u
v q

)
in which

v = o(q) and u = o(q).

§ 5. Gauss-Kuz’min statistics for quadratic irrationals

Let AX2+BX+C ∈ Z[X] (A > 0, (A,B,C) = 1) be the minimal polynomial of
a quadratic irrational ω and let ∆ = B2 − 4AC. We denote the number conjugate
to ω by ω∗. In the field Q(

√
∆), the number ω has trace tr(ω) = ω + ω∗ = −B/A

and norm N (ω) = ωω∗ = C/A. A quadratic irrational ω is said to be reduced if it
can be decomposed into a purely periodic continued fraction,

ω = [0; a1, a2, . . . , an], (5.1)

of period n = per(ω). Here, by the Galois theorem (see [21]),

− 1
ω∗

= [0; an, . . . , a1].

We denote the set of all reduced quadratic irrationals by R. The length of a number
ω ∈ R is the quantity ρ(ω) = 2 log ε0, where ε0 = 1

2 (x0 +
√

∆y0) is the fundamental
solution of Pell’s equation

X2 −∆Y 2 = 4.

The term ‘length’ is used because, on the modular surface H/PSL2(Z), where
H = {(x, y) : y > 0} stands for the upper half-plane, there is a closed geodesic
corresponding to a pair of quadratic irrationals ω and ω∗ (the projection of the
geodesic joining ω and ω∗) whose length in the classical metric ds2 = (dx2+dy2)y−2

is precisely equal to ρ(ω) (see [6] and [22]).
For a reduced quadratic irrational ω = [0; a1, . . . , an] we write

pere(ω) =

{
n if n = per(ω) is even,
2n if n = per(ω) is odd.

In this case, the fundamental unit can be found using Smith’s formula (see [23] and
[24], § 2.4),

ε−1
0 (ω) = ωT (ω)T 2(ω) . . . T pere(ω)−1(ω),

where T (α) stands for the Gauss map T (α) = {1/α}.
For the manipulations below, we need the following properties of the reduced

quadratic irrationals and their corresponding fundamental units (see [3], Proposi-
tions 2.1 and 4.1).
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1◦. For every positive integer k

0 < tr(εk
0(ω))− εk

0(ω) <
1
2
.

2◦. If ω = [0; a1, . . . , a2m], l = pere(ω), 2m = kl, then

Tr(Ba1Aa2 . . . Aa2m) = tr(εk
0(ω)).

Let
r(N) =

∑
ω∈R

ε0(ω)6N

1 = π0(2 logN),

where π0(x) stands for the number of reduced quadratic irrationals whose length
does not exceed x. The next statement can be extracted from the proofs of Propo-
sitions 4.3 and 4.5 in [3] (see also [5]).

Lemma 3. For every integer N > 2

r(N) = Ψev(N) +O(N logN).

Proof. We first assume that N > 2 is a real number. By property 2◦, the map

(a1, . . . , a2m) 7→ (k, ω),

which assigns the quadratic irrational ω = [0; a1, . . . , an] and the number k =
2m/pere(ω) to a family of positive integers (a1, . . . , a2m), is a bijection between
the set Wev(N) and the set of pairs (k, ω), where k ∈ N, ω ∈ R and tr(εk

0(ω)) 6 N .
Hence,

Ψev(N) =
∞∑

k=1

∑
ω∈R

tr(εk
0 (ω))6N

1 =
∑

k62 log N

r̃k(N), (5.2)

where
r̃k(N) =

∑
ω∈R

tr(εk
0 (ω))6N

1.

We can impose the condition k 6 2 logN because the inequality

ε0(ω) > ε0

(
1 +

√
5

2

)
=

(
1 +

√
5

2

)2

> e1/2

holds for every ω ∈ R.
It follows from (5.2) that r̃1(N) 6 Ψev(N) ≪ N2. By property 1◦,

r

((
N − 1

2

)1/k)
6 r̃k(N) 6 r(N1/k). (5.3)

Therefore, r(N) ≪ N2, r̃k(N) ≪ N2/k, and∑
26k62 log N

r̃k(N) ≪
∑

26k62 log N

N2/k ≪ N logN, (5.4)

Ψev(N) = r̃1(N) +O(N logN).
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It follows from (5.3) that

r

(
N − 1

2

)
6 r̃1(N) 6 r(N).

Thus,

Ψev(N) +O(N logN) 6 r(N) 6 Ψev

(
N +

1
2

)
+O(N logN).

However, the equation Ψev(N + 1/2) = Ψev(N) holds for integer N , and therefore
the statement of the lemma follows from the estimates for r(N) obtained above.

Corollary 2. For N > 2

r(N) =
log 2
2ζ(2)

N2 +O(N3/2 log4N).

Corollary 3. Let x > 1. Then∑
ω∈R

ρ(ω)6x

1 =
ex log 2
2ζ(2)

+O(x4e3x/4).

To evaluate the Gauss-Kuz’min statistics for the reduced quadratic irrationals,
we introduce the quantity r(x, y;N) for the reals x, y ∈ [0, 1] and for N > 2 (we
assume that the sequence of partial quotients is extended to the negative indices
by periodicity) as follows:

r(x, y;N) =
∑
ω∈R

ε0(ω)6N

1
pere(ω)

pere(ω)∑
j=1

[
[0; aj+1, aj+2, . . . ] 6 x, [0; aj , aj−1, . . . ] 6 y]

]

=
∑
ω∈R

ε0(ω)6N

1
pere(ω)

pere(ω)∑
j=1

[
ωj 6 x, − 1

ω∗j
6 y

]
,

where ωj = T j(ω) = [0; aj+1, aj+2, . . . ]. In particular, r(1, 1;N) = r(N). For all
equivalent numbers ωj = T j(ω) we count the Gauss-Kuz’min statistics only once,
and the sum r(x, y;N) can also be represented in the form

r(x, y;N) =
∑
ω∈R

ε0(ω)6N

[
ω 6 x, − 1

ω∗
6 y

]
,

that is, the sum r(x, y;N) describes the behaviour in the mean of the closed
geodesics on the modular surface.

Theorem 3. Let 0 6 x, y 6 1 and N > 2. Then

r(x, y;N) =
log(1 + xy)

2ζ(2)
N2 +O(N3/2 log4N).
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Proof. Consider the sums

r̃k(x, y;N) =
∑
ω∈R

tr(εk
0 (ω))6N

[
ω 6 x, − 1

ω∗
6 y

]

and

r̃(x, y;N) =
∑
ω∈R

tr(ε0(ω))6N

[
ω 6 x, − 1

ω∗
6 y

]
= r̃1(x, y;N).

By definition, r̃k(x, y;N) 6 r̃k(N). Thus, it follows from (5.4) that∑
26k62 log N

r̃k(x, y;N) = O(N logN)

and

r̃(x, y;N) = σ(x, y;N) +O(N logN),

where

σ(x, y;N) =
∑

16k62 log N

∑
ω∈R

tr(εk
0 (ω))6N

1
ω∗

[
ω 6 x, − 1

ω∗
6 y

]
.

By property 2◦ the sum which has arisen can be represented in the form

σ(x, y;N) =
∑

(a1,...,a2m)
Tr(Ba1 ...Aa2m )6N

[
[0; a1, . . . , a2m] 6 x, [0; a2m, . . . , a1] 6 y

]
.

A pair of positive integers (q, q′) (q 6 q′) can be completed to a matrix
( p p′

q q′

)
∈ M

in two ways at most. Therefore, the number of matrices

JBa1Aa2 . . . Ba2m−1Aa2mJ =
(
p p′

q q′

)
for which q′ 6

√
N can be estimated by O(N). For the families (a1, . . . , a2m) to

which a matrix with q′ >
√
N corresponds we have

0 < [0; a1, . . . , a2m]− [0; a1, . . . , a2m] = [0; a1, . . . , a2m]− p′

q′
6

1
(q′)2

<
1
N
,

0 < [0; a2m, . . . , a1]− [0; a2m, . . . , a1] = [0; a2m, . . . , a1]−
q

q′
6

1
(q′)2

<
1
N
.

Hence, on the one hand,

σ(x, y;N) 6
∑(

p p′

q q′

)
∈M+

[
q′ >

√
N,

p′

q′
6 x,

q

q′
6 y, p+ q′ 6 N

]
+O(N)

=
∑(

p p′

q q′

)
∈M+

[
p′

q′
6 x,

q

q′
6 y, p+ q′ 6 N

]
+O(N) = Ψev(x, y;N) +O(N),

(5.5)
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On the other hand,

σ(x, y;N) >
∑(

p p′

q q′

)
∈M+

[
q′ >

√
N,

p′

q′
6 x− 1

N
,
q

q′
6 y − 1

N
, p+ q′ 6 N

]
+O(N)

= Ψev

(
x− 1

N
, y − 1

N
;N

)
+O(N),

that is,

Ψev

(
x− 1

N
, y − 1

N
;N

)
+O(N) ≪ σ(x, y;N) ≪ Ψev(x, y;N) +O(N). (5.6)

If min{x, y} 6 N−1/2, then Theorem 3 follows from Theorem 1 and from the
bound (5.5). If min{x, y} > N−1/2, then, by Theorem 1,

Ψev

(
x− 1

N
, y − 1

N
;N

)
= Ψev(x, y;N) +O(N3/2 log4N). (5.7)

Combining the above relations (5.6) and (5.7), we obtain the asymptotic formula
σ(x, y;N) = Ψev(x, y;N) +O(N3/2 log4N). Thus, by Theorem 1,

r̃(x, y;N) = Ψev(x, y;N) +O(N3/2 log4N) =
log(1 + xy)

2ζ(2)
N2 +O(N3/2 log4N).

To complete the proof of the theorem, it remains to note that, by property 1◦,
the desired function r(x, y;N) is connected with r̃(x, y;N) by the inequalities

r̃

(
x, y;N − 1

2

)
6 r(x, y;N) 6 r̃(x, y;N).
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