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Spin chains and Arnold’s problem on the
Gauss-Kuz’min statistics for quadratic irrationals

A.V. Ustinov

Abstract. New results related to number theoretic model of spin chains
are proved. We solve Arnold’s problem on the Gauss-Kuz'min statistics for
quadratic irrationals.
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§1. Introduction

In [1], a number-theoretic model for spin chains was presented; this model uses
Farey series (for the subsequent results, see [2]-[4]). In this model, to a finite chain
of spins each of which can be directed upwards (1) or downwards (]), a product of

the matrices
1 0 1 1
=) m=(0)

is assigned, according to the rule T = A and | = B. For example,
ML = 12121 = A°B%A%
By the energy of a given configuration we mean the quantity
E(er 9219 .0) = log(Tr(A** B*2 A% .. .)).

Let G be the free multiplicative monoid generated by the matrices A and B.
From a physical viewpoint, the asymptotic behaviour of the number of configura-
tions with a given energy,

®(N)=|{CeG:TrC =N}, N >3,

and the number of configurations in which the energy does not exceed a given
quantity,
U(N)=[{CeG:3<TrC <N} = Y o),

3<n<N
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are of interest. The conjecture that
N
DO(N) ~ ElogN (1.1)

was presented in [1] and, at the same time, the asymptotic formula

N2log N
T(N) = T(;% +O(N?loglog N) (1.2)
was proved in [3].

The conjecture (1.1) was disproved in [4]. It turns out that the arithmetic
function ®(N)(Nlog N)~! has a smooth limit distribution. In [5], the two-term
asymptotic formula

U(N) = N?(cilog N + cp) + O-(N7/*F%) (1.3)

was obtained for the quantity U(N), where

(3 d2)
Ty @ c(z)(7 2 <(2>>'

Problems concerning the asymptotic behaviour of ®(N) and ¥(N) are closely
related to the distribution of quadratic irrationals and the closed geodesics corres-
ponding to these irrationals on the modular surface (see [6] and [5]). For a reduced
quadratic irrational w (which has a purely periodic representation in the form of
a continued fraction) we let p(w) denote the length which is defined as the length
of the corresponding closed geodesic. As was proved in [6],

e log 2
E 1~ . (1.4)
2¢(2
) ¢(2)

The relationship between reduced quadratic irrationals and finite products of the
matrices A and B (see [3]) was used in [5] to obtain an asymptotic formula with
an explicit estimate for the remainder term,

plw)<z

In this paper, we prove the asymptotic formula
U(N) = N%(c;log N + o) + O(N3/?log* N), (1.6)

which refines equation (1.3), and a formula refining (1.5), namely,

*log?2
pw)<z

Equation (1.6) is a special case of a more general result concerning the Gauss-
Kuz'min statistics for spin chains (see Theorems 1 and 2). Another consequence of
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this result gives a solution to Arnold’s problem (see [7], Problem 1993-11) on the
statistical properties of the partial quotients of quadratic irrationals. Let z,y €
[0,1] be real numbers and

1
r@,y;N) = > [w <z, —— <y}
WER v
eo(w)KN

Here Z is the set of reduced quadratic irrationals, €g(w) is the fundamental solution
of Pell’s equation

X?—AY? =4,

A = B? — 4AC, where AX? + BX + C is the minimal polynomial of w, and w*
stands for the number conjugate to w; moreover, [A] stands for 1 if the statement
A is true and for 0 otherwise. Then (see Theorem 3)

_ log(1 + zy)

r(z,y; N) = 22) N? + O(N3?log* N),

that is, Gauss-Kuz'min statistics for the quadratic irrationals are described by the
same distribution function log,(1 + xy) and the same corresponding density

1 1
log2 (14 zy)?

as occur in the Gauss-Kuz'min statistics for the rationals and for almost all reals.
The proofs of the theorems use the approach suggested in [5].

The author thanks the referee for pointing out the inaccuracies in the original
version of the paper.

8§ 2. Application of bounds for the Kloosterman sums

The main tool for solving problems which can be reduced to the distribution of
solutions of the congruence zy = £1 (mod q) is the following lemma.

Lemma 1. Let q be a positive integer and 0 < Py, P, < q. Then

S Y b= = 29 pp, 1 0(n(a), (2.1)

q2
0<z< P O0<y< P2

where 1 (q) = oo(q) log*(q + 1)¢"/2.

For a proof see, for example, [8].

In the next lemma, an asymptotic formula for the number of solutions of the
congruence xy = +1 (mod ¢) under the graph of the simplest linear function can
be proved in a similar way.
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Lemma 2. Let q be a positive integer, let 0 < Py, Py < q, let a be an integer, and
let f(z) = axx be a linear function for which 0 < f(P1), f(P2) < q. Then the sum

Sp(P1,P) = > D CTERY

P1<z<P2 0<y<f(x)

admits the following asymptotic formula (for any choice of sign in the symbol £):

Py

S;(Pr Py = 29 [ @) do + 0wala),

where 13(q) = o0(q)log(q + 1)(c0(q) + log(q + 1))¢/>.

Proof. Assume that f(x) = a+x. The case of f(x) = a—x can be proved similarly.
Expand the function

F(a,y) =[P <z < P, 0<y< f(z)]
in a finite Fourier series,

F(z,y)= > F(m,n)emimetm/a,
—q/2<m,n<q/2
with the Fourier coefficients

q
Z F(x, y)e—27ri(mrc+ny)/q.

z,y=1

~ 1
F(m,n) = —
( 7

Then the given sum can be represented in the form

Sp(P.P) = Y Fla,y)d,(zy+1) = Y F(mn)Ky(m,Fn),

z,y=1 —q/2<m,n<q/2

where .
Kq(m,n) = Z bq(zy — 1)e2milmatny)/a
x,y=1

are Kloosterman sums. Distinguishing the term with m = n = 0, we obtain the
equation

Si(Py, Py) = ‘P(j) " f(z)dz +O(1) + R, (2.2)
P,
where , R
R = Z F(m,n)K,(m,Fn).

—q/2<m,n<q/2

Here and below, a dash ’ on the summation sign means that the term for which all
variables of summation vanish is omitted.
Using the bound

|Ky(m,n)| < 00(q)(q, m,n)"/?q"/?
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for the Kloosterman sums (see [9]), we obtain the following inequalities for the
remainder R:

/ ~
IRl <oo(g)g’? > F(m,n)(g,m,n)"? < oo(q)g"*(Ry + Ry + Rs + Ra),

—q/2<m,n<q/2

(2.3)
where
! o~ / o~
Ri= > |F(m0)|(myq), Re= Y  [F0,n)|(nq),
—q/2<m<q/2 —q/2<n<q/2
! o~
R3 = Z |F(mv 7m)|(m7q)a
—q/2<m<q/2

Re= % S Fmn)l(nm,q) 2

—q/2<m<q/2 —q/2<n<q/2
m+n#0,q

We will estimate the Fourier coefficients of the function F'. If n = 0, then

~ 1 .
F(m,0) = — Z (a Jr:v)e*%”mz/q,

q Pi<z< P>
Z 6727rimz/q — ei27rim(P27Pl)/q -1 1 i
i e=2mim/q — 1 = sin(mm/q)|  |m|’
1<z P2
Z $672ﬂ'imm/q _ P6727rim(P+1)/q B 6727rim/q(6727rimP/q _ 1)
o0 e—2mim/q _ | (6—27rim/q _ 1)2
<zx<
P 2 2
< d + a 5 < 4 s
im| ~ |m[> " |m]
L (m,q) ~ 1
Ri< Y. <Y dY  — < aolg)loglg+1).
m=1 m dlq m:lm
d|m
If n # 0, then
& L e arina 2ri(mn)z/ 2mima/
J— —zmina —zmi(mTn)xr/q __ —zTmimx/q
F(m’”)qz'e_zm/q_1<e Ty e d. e >
Pi<z< P Pi<z<P;

(2.4)

Therefore, for m = 0 we have
~ 1 1
F(O7n) < — q(q+q> < —
¢ n|\|n| In

and the remainder Ry can be estimated in just the same way as the remainder R;,

q
Ry < 3D < ) log(q + 1),
n=1
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If m +mn =0 and m # 0, then, by (2.4),
~ 1 1
|F(m,—m)| < Z q(q+ q) L —.

m| m| Im|

Hence, the same bound is obtained for the remainder Rg,

R3 <«

(¢)log(q + 1).

m=1

In the remaining cases (m # 0, n # 0, m +n # 0,q), by (2.4) we have

|F(m,n)| < 1 1 ( L + 1 )
T @2 |sin(mn/q)| \ | sin(m(m +n)/q)|  |sin(rm/q)|
1 1 1 1 1
<L — + + +—].
n|\|m+n| |l¢g—m-—n| |¢g+m+n[ |m|

In particular, if m and n have different signs, then

~ 1
|F(m,n)| € ———,
n| - [m —n
and, if the signs are the same, then
~ 1 1 1
|F'(m,n)| < < + )
In|\g—=|m|[—=|n| ~ [m]|

Therefore, Ry < R4 + Ry42, where

Riy = UCLCL VS ).
o Z n-lm-—n|’ -2 Z n q—m—n+m

m,n<q/2 m,n<q/2
m#n m—+n#q

Introducing the variables d = (m,n, q), m; = md~!, and n; = nd~!, we obtain the
following bound for the first sum:

Ry < z:dl/2 Z — << Z d3/2 Z T—nﬂ

d|q m,n<q/2 mi,m1<q
m#n, d\(m n) mi1#ny
€ ¥ o <o)
mi1,n1 < m

mﬁém
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The second sum can be estimated similarly to the first,

1 1 1
raeXat Y (i)

dlg m,n<q/2
m+n#q, d|(m,n)

1 1 1 1
<Yar ¥ algmm—mta)

ni
d|q mi,n1<q/(2d)
mi+ni1#q/d
1 1 1
< Z n(/(iﬁl’fl+m) < logQ(q—l-l).
m1,n1<q/(2d) 1\ ! ! !
mi+ni1#q/d

Thus, Ry < log?(q+1).
Substituting the above bounds for the remainders Ry, Rs, Rs3, and Ry into (2.3),

we arrive at the relation
R < 09(q) log(q + 1)(a0(q) + log(q + 1))g*/? = 12(q),

and, taking account of equation (2.2), this leads to the statement of the lemma.

§ 3. Spin chains and continued fractions

We let .# denote the set of all integer matrices
5 (p p’> _ <p(5) p’(5)>
q q a(S) q'(9)

with determinant +1 for which
1<qg<q, 0<p<gq,  1<p <q.

This set is partitioned into two disjoint sets .# and .Z_, which consist of matrices
with determinants +1 and —1, respectively. The elements of the set .# form a mul-
tiplicative semigroup and are in a one-to-one correspondence with the (non-empty)
families of positive integers constructed using the rule (see [10])

/ 0 1 0 1
(a17a27"')a7l) = (Z §/> = (1 a1> (]— an) '

The inverse map is constructed using the equations

/

gz[o;ah-u,an—l]a = [0;a1,..., anl,

"Q'Q\"U

2/:[0;an7"'7a'2]; /:[O;Cln,...7a1].

)

As in [5] and [3], to evaluate the function W(N), we consider the products of
the matrices A = (19) and B = (}1) of even and odd length separately. To
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be definite, we assume that the products begin with the matrix B. Following the
notation in [5], we introduce the sets We, and Woqq as follows:

Wee(N) = {(a1,...,a2,) € N*" :m > 1, Tr(B" A% ... B®m1A%m) < N},
Woad(N) = {(a1,...,a2m41) € N*"T1:m > 1, Tr(B* A% ... A%m B%m+1) < N}

We set the family of positive integers (aq,...,a,) in correspondence with the
continued fraction [0;aq,...,a,] and the sequence of approximants pg/qr =
[0;a1,...,ak], 0 < k < n. The properties of the continued fractions imply that

JB™ A% B%m-1 fp%m J — ] P2m q2m-—1 J = P2m—1  P2m c %+
D2m  DP2m—1 Gom—-1  Q2m ’

JBal A% A%m Ba2m4l — J d2m q2m+1 _ DP2m  P2m+1 c %7’
P2m  P2m—+1 q2m q2m+1

where J = (9 §). Therefore, the quantities
Vev(N) = [Wey (N)], Yoad(N) = [Woaa (V)]
can also be defined by the equalities
Veo(N) = [{S € Ay : Tx(S) = p(S) +¢'(S) < N},
Woaa(N) = | {5 € A : p($) > 0. 9/(5) + () < N}.
By hypothesis all the products under consideration begin with the matrix B, and so
U(N) = 2(Vey(N) + Coaa(N)).

To describe the behaviour of the partial quotients in the continued fractions for
real numbers, it is convenient to use the measure (see [11])
1 du dv
~log2 (14 wuw)?’

Let a real number « € [0, 1] be given by an infinite continued fraction o = [0; a1, as,
ey G, ... ] and let pp(a)/gn(a) = [0;a1,...,a,] and (@) = [0;ant1, Gnyo, - - -]
Then a = [0; a1, . .., an+7n ()], gn-1()/qn() = [0;an, ..., a1], and the behaviour
of the elements of the continued fraction near the index n is described in the mean
by the function (the Gauss-Kuz'min statistics treated in a generalized sense)

1
Qn—l(a)
F(x,y :/ |:T @ gx,gy}da
i ) A
Here dud
u dv
1 1 .
Faa) = lom(1+an) = o [ "0 oo
In particular, for y = 1 we deal with the Gauss measure
1 d
dy = L
log2 1+wu

and the corresponding distribution function log,(1 + ).
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The spin chains model under consideration is closely connected with continued
fractions. Therefore, to describe the properties of generic configurations, it is natu-
ral to introduce characteristics similar to the Gauss-Kuz’'min statistics. The object
we introduce characterizes local properties of spin configurations.

For real z,y € [0, 1] we write

/
Wey(z,y; N) = {(g Z) e My p<zd,q<yd, p+qd <N},

q
\Ilcv(l'vy;N) = |ch($,y;N)|» \Podd(x;y;N) = |W0dd(xay;N)|~

In particular, Wey(1,1; N) = U (N) and Pogq(1, 1;N) = Toqq(N).

Arnold conjectured (see [7], Problem 1993-11) that the partial quotients of ratio-
nals and quadratic irrationals behave in the mean in just the same way as those
for almost all reals. This statement was proved by Lochs (see [12]) for the ratio-
nals, in the simplest case when the averaging is carried out over the fractions a/b,
1<a<b< R (R — o0). For the case when the averaging is carried out over
the points in a sector 1 < a < b, a®> +b*> < R? (R — 00), as was suggested in
the original setting of the problem, the conjecture was proved by Avdeeva and
Bykovskii (see [13] and [14], and also [15] and [8]). The known Gauss-Kuz'min
statistics for finite continued fractions enabled us to solve the Sinai problem on the
statistical properties of trajectories of particles in two-dimensional crystal lattices
(see [16]), to obtain new results on the behaviour in the mean of various versions
of the Euclidean algorithm (see [17], [18]), and to find the distribution density of
the normalized Frobenius numbers with three arguments (see [19]).

It turns out that the quantities Wy (z,y; N) an Woqq(z, y; N), viewed as functions
of z and y, exhibit fundamentally different behaviour. The even chains satisfy the
Gauss-Kuz’'min law (as do the rational numbers in the Arnold problem), whereas
the odd ones do not.

The relationship between the behaviour of the function ¥e, (N) and the distribu-
tion of quadratic irrationals, which was noted in [5] and [3], helps to prove Arnold’s
conjecture for the quadratic irrationals and to refine the asymptotic formula (1.5).

Wodd(x,y;N){(Z p) €M : p>0,p’<zq/,q<yq’,p’+q<N},

8 4. Spin chains and the Gauss-Kuz’min statistics

Theorem 1. Let 0 < z,y < 1 and N > 2. Then the following asymptotic formula

holds:

log(1 + zy)
2¢(2)

with an absolute constant in the remainder term.

Voo (z,y; N) = N?+ O(N*?1og" N) (4.1)

Proof. We transform the given quantity,
Ueo(w,y;N)= > [u<azqv<yg t+q<N]
(t u)e//[+

= > > ) dultg—1)[t+q< N (4.2)

uLzN g2u/z t<yu+l/q
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There is at most one value of the variable ¢ lying in the interval yu < t < yu+1/q.

Therefore,
> Y sutg-Dt+g< N

uzN gzu/z yu<t<yu+l/q

<D0 bulty(wg—1) <<Z;<<Nl+€

uN g<N uN

for t,(u) = [yu]. Thus,

Voo (z,y; N Z Z Z Su(tq —1)[t < N]+ O(N). (4.3)

uLzN t<yu g=u/x

It follows from the equation

Y
Y
Zéq(xy71)<<g+1

y=1
that the quantity W, (z,y; N) admits the bound

Voo (2, y; N) < D> D> ) dultg—1) < Zyu—<<yN2

u<N t<yu g<N u<N
Since Uy (z,y; N) is symmetric with respect to z and y, the bound
U, (z,y; N) < zN?
also holds. Therefore,
oy (z,y; N) < N3/2 log(1 4+ zy)N? < N3/2

for min{z,y} < N~/2, and formula (4.1) holds. Thus, it is sufficient to prove that
(4.1) holds under the assumption that 2 > N2, In formula (4.3), Lemmas 1
and 2 can be applied to the inner double sum. Taking the formula (see [20], Ch. II,
Problem 19)

into account (here and below, an asterisk * means that the variable of summation
ranges over the reduced system of residues), we obtain the equation

Vey(z,y; N) = (u2/ dt/ [t +q < N]dg
uLzN /x

+ o(fao(u) + 1/)2(10)) +O(N).

It follows from the standard bounds

Z oo(u) < Mlog(M + 1), Z o2(u) < Mlog®(M + 1)
u M uM
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that

dt
u<N/z u/z

Vev(z,y; N) = t [t +q < Nldg+O(N*?log" N).

Applying the identity (u = 5u1)

Z “ Z f(owm) 5“1 (4.4)

u<M S<M uy <M/§

and introducing the variables o = t/u = ¢/(du1) and 8 = q/u = q/(duy), we arrive
at the asymptotic formula

ool ) = Y- @) ) + OO 10gt ), (@5)
SN

where

Z / da/ [+ 3 < Nu~']dp.

uLeN

We represent the sum S(N) in the form

S(N) = 51(N) + S2(N),

SiN)= > /da/lNu_la

u<LzN/(zy+1)

where

—1

Sy(N) = > u/o o da/lNu h dg.

N /(zy+1)<u<zN /@

After evaluating the integrals
o N 1 2
[of ot
1 u oz 2
uwl—1/z Nu™!'—« 1
/ da/ dg = =
0 1/x 2

we arrive at the asymptotic formulae

S (N) = WW +O(N),
~ log(zy +1) zy(3zy + 2) N
Sy(N) = 5 N2 — oy 112 N2+O<x>7
S(N) = %M +0<Z>.

By assumption, z > N~/2. Hence, Nz—! <« N3/2. Therefore, substituting the
asymptotic formula for the sum S(V) into (4.5), we obtain the desired equation for
WeV (x? y; N) °
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Theorem 2. Let 0 < x,y <1 and N > 2. Then

2

2((2)
+ O(N*?10g* N) —&—O(leogN).
Ty

\Ilodd(xa Y N)

<logN+log i 3 CI(Q))

T2

Proof. Repeating the arguments in the proof of Theorem 1, we arrive at the equa-
tions

Voaa(z,y; N) = > [t>0,u<azqv<yg ut+v<N]|
(t“)e/fl_

t 1 t 1
:Z Zét(uvl){v>+,u>+,u+v<1\f
T u y v

t<N u,v>t

— Z Z Z S¢(uv — 1)[u+v < N]+ O(Nlog N).

t<ayN/(z+y) u>t/y v>t/a

The boundary of the domain in which w and v vary intersects at most O(N/t)
squares of the form [at, (a + 1)t] x [bt, (b + 1)t]. Therefore, applying Lemmas 1
and 2, we obtain the equations

R A e )

+ O(NlogN)

\Ilodd($7 Y3 N)

/ du/ [u+v < N]dv+ O(N*?log* N).
t<xyN/ z+y) t/y t/=

Using (4.4) again and changing to the variables a = u/t = u/(0t1) and 8 = v/t =
v/(dt1), we see that

N

Voo N) = WO (F) 0Nt N, (46)

0<zyN /(z+y)

where
t/N 1 1\°
t<xuN/ (z+y) 1y e t<zyN/(z+y) Y
N 3
10gN+log Y —l—’y—* +0 x—i—yN .
2 2 xy

Substituting the asymptotic formula for T(N) into (4.6) and applying the formula

W) 5 ) (log(M 1 1)
e o ()

we obtain the statement of the theorem.
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Corollary 1. For N > 2

_N? 3 {2 3/21 4
\I’<N)_§(2) (logN—i—’y log 2 5 C(2)>—|—O(N log® N).
Remark. Comparing the results of Theorems 1 and 2, we can conclude that the
even and odd spin chains have a fundamentally different structure in the mean. It
seems that these cases should be separated and studied independently. In contrast
to the leading term in Theorem 1, the leading term in Theorem 2 does not depend
on x and y, because it is obtained by summing matrices of the form (,ﬁ g) in which
v =o0(q) and u = o(q).

8§ 5. Gauss-Kuz’min statistics for quadratic irrationals

Let AX?+BX+C € Z[X] (A >0, (A, B,C) = 1) be the minimal polynomial of
a quadratic irrational w and let A = B? — 4AC. We denote the number conjugate
to w by w*. In the field Q(v/A), the number w has trace tr(w) = w +w* = —B/A
and norm A (w) = ww* = C/A. A quadratic irrational w is said to be reduced if it
can be decomposed into a purely periodic continued fraction,

w = [0;ar,az,---, anl, (5.1)

of period n = per(w). Here, by the Galois theorem (see [21]),
—— =[0;@n, .-, a1)-

We denote the set of all reduced quadratic irrationals by Z. The length of a number
w € Z is the quantity p(w) = 2log o, where g = 1 (20 +VAyp) is the fundamental
solution of Pell’s equation

X? - AY? =14.

The term ‘length’ is used because, on the modular surface H/PSLo(Z), where
H = {(z,y) : y > 0} stands for the upper half-plane, there is a closed geodesic
corresponding to a pair of quadratic irrationals w and w* (the projection of the
geodesic joining w and w*) whose length in the classical metric ds? = (dz?+dy?)y =2
is precisely equal to p(w) (see [6] and [22]).

For a reduced quadratic irrational w = [0;a1, .-, a,| we write

er =
pere(w) 2n  if n = per(w) is odd.

{n if n = per(w) is even,
In this case, the fundamental unit can be found using Smith’s formula (see [23] and
[24], §2.4),

gp (W) = wT(w)T?(w) ... TP (w),

where T'(«) stands for the Gauss map T'(«) = {1/a}.

For the manipulations below, we need the following properties of the reduced
quadratic irrationals and their corresponding fundamental units (see [3], Proposi-
tions 2.1 and 4.1).
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1°. For every positive integer k

0 < tr(eh(w)) — eh(w) < %

2°. If w=[0;@1,---; aam), | = per,(w), 2m = ki, then
Tr(B™ A% ... A%m) = tr(ek(w)).

Let

r(N)= Z 1=mp(2log N),

weEZ
co(w)SN

where 7o (z) stands for the number of reduced quadratic irrationals whose length
does not exceed xz. The next statement can be extracted from the proofs of Propo-
sitions 4.3 and 4.5 in [3] (see also [5]).

Lemma 3. For every integer N > 2
7(N) = Uey(N) + O(Nlog N).

Proof. We first assume that N > 2 is a real number. By property 2°, the map

(a1, ... ,a9m) — (k,w),
which assigns the quadratic irrational w = [0;@y, ..., a,] and the number k =
2m/ per,(w) to a family of positive integers (aq,...,asmn), is a bijection between
the set We, (V) and the set of pairs (k,w), where k € N, w € % and tr(ef(w)) < N.
Hence,

Voo (N)=>" > 1= > #(N), (5.2)
k=1 weZ k<2log N
tr(eg (@) <N

where

wN)= > L

wER
tr(eg (w)) <N

We can impose the condition k& < 2log N because the inequality

1+2\/5) _ <1+2\/5>2 .y

go(w) > 50(

holds for every w € Z.
It follows from (5.2) that 71 (N) < U, (N) < N2. By property 1°,

(")

Therefore, 7(N) < N2, 7, (N) < N?/k and

T(N) < r(NVF), (5.3)

N

Y mN)< > NYF<Nlogh, (5.4)
2<k<2log N 2<k<2log N

Ueo (N) =71(N) + O(Nlog N).
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It follows from (5.3) that

Thus,

U (N) + O(Nlog N) < r(N) < Wey <N + ;) + O(Nlog N).

However, the equation e, (N 4 1/2) = Ue,(N) holds for integer N, and therefore
the statement of the lemma follows from the estimates for r(/N') obtained above.

Corollary 2. For N > 2

_10g2 2 3/27. 4
T(N)—QC(Q)N + O(N°/*log” N).

Corollary 3. Let x > 1. Then

T log 2
Z 1= 62 O;g + O(z*e3*/h).
= ¢(2)

p(w)<z

To evaluate the Gauss-Kuz'min statistics for the reduced quadratic irrationals,
we introduce the quantity r(x,y; N) for the reals z,y € [0,1] and for N > 2 (we
assume that the sequence of partial quotients is extended to the negative indices
by periodicity) as follows:

er,(w)
1L
r(z,y; N) = Z [10; 0541, 4542, ] <, [05a5,a5-1,...] <yl
per.(w) 4
WER Jj=1
co(w)<N
1 per, (w) 1
= Z wj < x, N g Yl
e Pore(w) 5 w3
co(w)<N
where w; = T7(w) = [0;aj41,aj+2,...]. In particular, r(1,1; N) = r(N). For all

equivalent numbers w; = 77 (w) we count the Gauss-Kuz’'min statistics only once,
and the sum r(z,y; N) can also be represented in the form

1
T(xall:N): Z |:w<x7_<y:|7
WER
Eo(w)gN

that is, the sum r(z,y; N) describes the behaviour in the mean of the closed
geodesics on the modular surface.

Theorem 3. Let 0 < x,y <1 and N > 2. Then

_ log(1 +xy)

r(x,y; N) = 2@) N2+ O(N*?1og* N).
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Proof. Consider the sums

- 1
Pe(z, i N) = Y [w <z, —— < y]
WER w
tr(ef (@) <N
and
- 1 ~
’f’((E,y;N): Z |:w<$7 —*<y}=7”1(937y’N)
w

weEZR
tr(eo(w)) <N

By definition, 7 (x,y; N) < 7, (N). Thus, it follows from (5.4) that

> Frl(z,y;N) = O(Nlog N)

2<k<2log N
and
r(z,y; N) = o(z,y; N) + O(Nlog N),

where

o(z,y;N) = > > ;{wéx,—;éy}

1<k<2log N wEZA
tr(eg (w)) SN

By property 2° the sum which has arisen can be represented in the form

O'(fL'7y,N): Z [[0;@1,...7a2m]<.’£, [O;ana"wal]gy]'

A pair of positive integers (¢,¢’) (¢ < ¢') can be completed to a matrix (5 2:) eM
in two ways at most. Therefore, the number of matrices

JB¥ A ., B¥2m=1 p%m ] = (p p:)
q 4q

for which ¢’ < /N can be estimated by O(N). For the families (ay,...,asy,) to
which a matrix with ¢’ > v/N corresponds we have

. I 7 1 1

5 m) — 05a1,..., a2, = (0501, G2m] — = < Y
0< [Oaala , 2 ] [0 ai az ] [O ai az ] q/ (q/)2 < N

PR, . a_ 1 _1
0<[O,an,...,al]—[O,agm,...,al]:[O,agm,...,aﬂ—?S (q/)z <N.

Hence, on the one hand,
I q
oleyN)< ) {q/ > VN, g ST g Syrtd <N} +O(N)

/
= Y {p <z, L <y ptd <N} +O(N) = Wey(z,y; N) + O(N),
(5.5)
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On the other hand,

/
. E ’ p 1 ¢ 1 ,
(pp,)EJ/lJr
q4q

that is,

1 1
e (m SRR N) L O(N) < 0(2,5 N) < Yon (2,5 N) + O(N).  (5.6)

If min{z,y} < N~'/2, then Theorem 3 follows from Theorem 1 and from the
bound (5.5). If min{z,y} > N~'/2, then, by Theorem 1,

1 1
2 (‘"’3 N YT NaN) = Vey(w,5; N) + O(N*Zlog' ). (5.7)

Combining the above relations (5.6) and (5.7), we obtain the asymptotic formula
o(z,y; N) = Uo(z,y; N) + O(N3/?log* N). Thus, by Theorem 1,

log(1
@, y; N) = Wey (2,53 N) + O(N*?log" N) = W

To complete the proof of the theorem, it remains to note that, by property 1°,
the desired function r(z,y; N) is connected with 7(z,y; N) by the inequalities

N? + O(N®?1og* N).

_ 1 _
r(x,y;N— 2>< r(z,y; N) < 7(z,y; N).
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