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Abstract—A general formula for elements of double Somos-4 sequences is obtained. A sufficient integrality
condition for such sequences is presented.
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Let  be a nonzero sequence of complex num-
bers. In [5, 6, 13], it was proved that if

(1)

for some fixed  and , then there exist complex
numbers , , g2, and g3 such that

(2)

where

and  is the Weierstrass function associated with the
elliptic curve

(3)

Moreover, if curve (3) is singular, i.e., its discrimi-
nant  vanishes, then the Weierstrass -func-
tion can be replaced by its degenerate analogues (see
[1])

The Somos-4 sequences are closely related to ellip-
tic divisibility sequences (see [12, 13, 15]) and integra-
ble discrete-time dynamical systems (see [3, 6, 8, 9,
11, 14]). One of the fundamental properties of a
Somos-4 sequence is the identity (see [10])
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which holds for any integer or simultaneously half-
integer . In particular, for ,

, , , , and , this iden-
tity transforms into the initial recursive relation (1).
Verifying that (4) holds for sequence (2) reduces to
applying the Weierstrass three-term identity (see [2])

In the same way, we verify that the sequences

(5)

satisfy the following relation similar to (4):

(6)

Consider the more general problem of finding
sequences ,  specified by their initial
terms

(7)
and the recurrence relations

(8)

(9)

We assume that the sequences contain no zero ele-
ments, because otherwise, relations (8) and (9) do not
determine them for all integer n. A general solution of
this problem is not described by (5), because the
sequences  are determined by 12 free param-
eters (the 10 initial conditions (7) and the four coeffi-
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cients related by the two linear equations
obtained from (8) and (9) at ), while expressions
(5) use only nine free parameters , , , , and

. However, if the initial terms of the
sequences   are assumed to satisfy (6), then
the general solution indeed has the form (5).

We assume that the initial conditions (7) are
related by

(10)

and  and  obtained from (8) and (9) at  satisfy
the relations

(11)

(12)

This means, in particular, that the coefficients
of the recurrence relations (8) and (9) are

uniquely determined by the initial terms (7). Indeed,
 and  can be found from relations (11) and (12).

Relation (8) with  and  gives the following
system of two linear equations, which uniquely deter-
mines the unknowns  and :

(13)

The parameters  and  are found in a similar way:

(14)

Thus, the problem stated above can be reformu-
lated as follows: describe complex sequences 

 determined by the initial terms (7) whose terms
 and  are determined from (11) and (12) and the

remaining terms are calculated by the recurrence rela-
tions
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To ensure that , ,  are well-defined,
we must require that , where  are
determined by (13) and (14), respectively, and

.

Remark. Relations (10)–(12), (15), and (16) are
obtained from (6) at

 ,

respectively.
Theorem. A general solution of the problem stated

above has the form (5), where

 are complex numbers, and  is the Weierstrass
function (possibly degenerate) associated with a curve of
the form (3).

If the sequences  and  satisfy relations (8)
and (9), then, obviously, the sequences

satisfy (8) and (9) as well for any . There-
fore, it is natural to pass to the gauge-invariant vari-
ables

(17)

for which condition (10) can be rewritten in the form
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or in the equivalent form
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Proposition. If parameters  are
related by (18) and , then there exists a curve

(20)

and numbers  such that

(21)

Proof. We follow the same line of reasoning as in
the proof of Proposition 2.2 in [6]. We successively
determine the coordinates of the points

(22)

on curve (20). Obviously, we have

(23)

It follows from the identity (see [5])

that
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Therefore,  is determined by

According to the addition formula (see [1, 2])

we have

(26)

Considering the differences  and ,
we see that
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where
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First, suppose that . Then  and  can be
found from (27). Writing relations (26) in the form
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and combining them with (23), we obtain a system of
linear equations, which determines , and 
(condition (18) ensures the consistency of this sys-
tem). The parameters  and  are found from the
system

(29)

(30)

whose consistency is ensured by the same condition
(18). Thus, the coordinates of points (22) are deter-
mined uniquely up to the involution ,

, which corresponds to the change
 . A direct verification

shows that the value  determined by the
doubling formula (see [1, 2])

(under condition (18)) satisfies Eqs. (24) and (25). If
, then curve (20) is singular, and the Weier-

strass elliptic function in (21) should be replaced by its
degenerate analogues (see [1])

Now, consider the case where . In this case,
we have , and condition (18) implies

 = . It follows from (27) that
 and , i.e. .

Let us successively express the unknowns in terms
of the parameter . From (23) and (26) we find
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fore,  or  In each of these cases, as
well as at , parameters (22) are determined
uniquely up to the involution

,  .
Proof of the theorem. The proposition proved

above and the relation (see [1, 2])

imply (5) for . Since the remaining terms of
the sequences  and  are determined by rela-

tions (11)–(16) and the sequences ,

 satisfy the same relations (see the remark to the
theorem), it follows that (5) holds for all integer .

Corollary. Special cases of relation (6) are

which can also be used to calculate the elements of the
sequences  and . It follows that all terms of these
sequences are Laurent polynomials in the initial data
and the parameters :

.
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