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Abstract—In the paper, the explicit form of distribution function for the lengths of arcs connecting neigh-
bouring rational points on the unit circle whose denominators do not exceed given value, is given.
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The aim of this paper is the investigation of the dis-
tribution of the rational points lying on the unit circle.
Let us introduce the necessary notations.

Suppose that Q ≥ 2 and let (xr, yr), r = 1, 2, …, N, be
all the points of the unit circle whose coordinates are
positive irreducible fractions with the denominators
not exceeding Q and ordered in accordance with the

increment of the value ϕr = arctan . Further, let

θr = ϕr – ϕr – 1, where 2 ≤ r ≤ N. Finally, suppose that
t > 0 is any fixed positive value and denote by μ(Q; t)
the number of pairs of neighbouring points (xr – 1, yr – 1),

(xr, yr) that satisfy the inequality θr ≤ . The main

result is the following
Theorem. For any fixed t > 0 and Q → +∞ one has

the implied constant in O-symbol depends on t and the
continuous function h is defined as follows:

1 The article was translated by the authors.
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Remark. One can prove that the number N = N(Q)

of points (xr, yr) satisfies the relation N(Q) =  +

O( lnQ) as Q → +∞. Hence, the formula for μ(Q; t)
can be expressed in the form

In what follows, we give the sketch of the proof and
the necessary auxiliary assertions.

The coordinates (x, y) of all rational points of the
unit circle with the conditions x > 0, y > 0 have the
form

(1)

where 1 ≤ a ≤ b – 1 are any positive integers such that
(a, b) = 1. If a, b have different parity then the fractions
(1) are irreducible; if a, b are both odd numbers, then
the greatest common divisor of the numerator and the
denominator of any such fraction from (1) is equal to 2.
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Suppose that Q ≥ 2 and consider the following
series of the irreducible fractions a/b ordered in the
increasing order and satisfying the conditions a2 + b2 ≤ Q,

1 ≤ a ≤ b – 1. Inserting the fractions  = 0,  = 1, we

denote the resulting series as .

The series  is the analogue of the classical Farey

series FQ = , 1 ≤ a ≤ b ≤ Q, (a, b) = 1  and has similar

properties. In particular, the series  can be con-
structed form  by inserting all the possible medi-

ants  with the condition (a + c)2 + (b + d)2 ≤ Q

between neighbouring fractions  < . Moreover, the

neighbouring fractions  <  of the series  satisfy

the equality ad – bc = 1.
Therefore, all the rational points (x, y) of the unit

circle such that x , y > 0 whose denominators do not
exceed Q are given by (1) when a and b run through the
natural numbers satisfying to one of the following con-
ditions:

(a) (a, b) = 1, 1 ≤ a ≤ b – 1, a2 + b2 ≤ Q;
(b) (a, b) = 1, 1 ≤ a ≤ b – 1, a, b ≡ 1 (mod2), Q < a2 +

b2 ≤ 2Q, that is, the conditions

(a)  ∈ ;

(b)  ∈ \ , a, b ≡ 1 (mod2).

Denote by ΦQ the series of irreducible fractions ,

ordered in the increasing order and satisfying to one of

the conditions (a), (b). If  <  are neighbouring frac-

tions in ΦQ, then one can show that the quantity δ = ad –
bc has only two values, namely 1 and 2. By (1), we have

hence, x and y are strictly monotonic functions of the

fraction . Therefore, there is one-to-one correspon-

dence between neighbouring fractions  <  of ΦQ

and neighbouring points (xr, yr), 1 ≤ r ≤ N. Thus, the
initial problem is reduced to the determining of the
corresponding distribution function for the series ΦQ.

For the below, the set of pairs  <  of neighbour-

ing fractions of the series ΦQ split into 3 families A, B,
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C according to the number of the fractions in the pair
(2, 1 or 0) lying in the series . Next, it is convenient
to split some of these families to the classes and sub-
classes. Namely, the family A consists of the classes A1,
A2, A3 that correspond the following conditions:

(1) ;

(2)  ∈ , but the numerators and denomi-

nators of all mediants of the form , (p, q) = 1,

p, q ≥ 1, inserting between  and , have different par-

ity;

(3) , and some of mediants of the

above form inserting between  and  have odd

numerators and denominators, but all such mediants
do not belong to .

Further, the family B consists of the classes B1 and
B2 that satisfy the conditions ad – bc = 1 and, conse-
quently, ad – bc = 2. Finally, the family C consists of
the single class denoting by the same letter.

The classes A2 and A3 split into subclasses A2, 1, A2, 2
and A3, 1, A3, 2, that satisfy the conditions

and, consequently

Similarly, the classes B1 and B2 split into subclasses B1, 1,
B1, 2 and B2, 1, B2, 2, satisfying the conditions

The following assertions allow one to find the
numerator and the denominator of neighbouring frac-
tion to given fraction from ΦQ.

Lemma 1. The following assertions hold true.

(1) If   ∈ , then  is the neighbouring fraction to

 in ΦQ and the pair ;  belongs to the class X if, and
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where

δ = 1 for X = A1;

δ = 1 for X = A2, 2, and in this case we necessary have a,
b ≡ 1 mod2

δ = 1 for X = A3, 1, and in this case we necessary have a,
b ≡ 1 (mod2);

δ = 1  for X = B1, 2, and in this case d ≡ γ (mod2b);

f1(a, b) = 2  – 1,

δ = 2  for X = B2, 2, and in this case d ≡ γ (mod2b); (here
R = a2 + b2, and γ = γ(a, b) denotes some numbers such
that (γ, 2b) = 1, different in different relations, in gen-
eral).

(2) If   ∈ , then  is the neighbouring fraction to

 in ΦQ and the pair ;  belongs to the class Y if, and

only if the following conditions are satisfied:

where the expressions for the functions gr = gr(c, d) are
obtained from the expressions for fr(a, b) by the replace-
ment a to c, b to d, that corresponds to the class X = A2, 2
for Y = A2, 1, to the class X = A3, 1 for Y = A3, 2, to the class
X = B1, 2  for Y= B1, 1, and Y = B2, 1, to the class for X =
B2, 2. In the case X = A2, 2, A3, 1, the conditions a, b ≡ 1
(mod2) are replaced by c, d ≡ 1 (mod2) for Y = A2, 1, A3, 2,

= − −

= −

1 2

2 2

2 1( , ) 1,

1( , ) ,

Qf a b
R R

Qf a b
R R

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

⎛ ⎞= − − −⎜ ⎟
⎝ ⎠

1 2

2 2 2

1( , ) max 1, 1 ,

21 1( , ) min , 1 ,

Qf a b
R R

Q Qf a b
R RR R

⎛ ⎞= − − − −⎜ ⎟
⎝ ⎠

1 2 2
1 1 1( , ) max 1, ,

2 2
Q Qf a b
R RR R

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

2 2
2 1( , ) min 1, 1 ,Qf a b
R R

⎛ ⎞= − − − −⎜ ⎟
⎝ ⎠

1 2 2
21 1( , ) max 1, 2 ,Q Qf a b

R RR R

= −2 2
2 1( , ) ,Qf a b
R R

− 2
1Q

R R

⎛ ⎞= − − −⎜ ⎟
⎝ ⎠

2 2 2
2 24 1( , ) min , 2 1 ,Q Qf a b
R RR R

c
d

^Q
a
b

c
d (c

d )a
b

δ≡ −δ =

δ< ≤ = +1 2

+(mod ), ,

, ,r r

bcbc d a
d

cB b B B dg
R

DOKLADY MATHEMATICS  Vol. 98  No. 1  2018
and the condition d ≡ γ (mod 2d), by the condition b ≡ γ
(mod 2d), where γ = γ(c, d) are some integers coprime
to 2d and different in different relations, in general.

(3) If   ∈ \ , then  is the neighbouring frac-

tion to   in ΦQ and the pair   belongs to the class C

if, and only if the following conditions are satisfied: a, b ≡ 1

(mod 2), ad ≡ 2 (mod b), where c = , D1 < d ≤ D2,

R = a2 + b2, and d ≡ γ (mod2b), where (γ, 2b) = 1.
Let ,  be the angles of inclination of the lines

connecting the origin with the points (1) of the unit
circle corresponding to the neighbouring fractions
from ΦQ. Then

and hence, setting θ =  –  we get tan  =

. Thus, the investigation of the distribution of

the arc lengths θ reduces to the derivation of the

asymptotic for the number of pairs   such that

 < , where t > 0 is any given quantity.

Denote λ = , x = λQ; then the above condition is

written as follows:
(2)

Let Wr(Q, λ) be the number of pairs  , satisfy-

ing to (2) and belonging to the class Xr, where X1 = A1,
X2 = A2, 1, X3 = A2, 2, X4 = A3, 1, X5 = A3, 2, X6 = B1, 1, X7 =
B1, 2, X8 = B2, 1, X9 = B2, 2, X10 = C.

In the cases r = 1, 3, 4, 7, 9, the condition (2) has

the form d > , R = a2 + b2 and in the cases r =

2, 5, 6, 8 has the form b > , R = c2 + d2. Con-

sequently, the accessory conditions to the given class
(sub-class) together with (2) are obtained from the for-
mulas of Lemma 1 by inserting into the signs of maxi-

mum in the expressions for f1, g1 the quantity  (or by

the replacement f1, g1 by the maximum of two quanti-
ties in the cases of classes (sub-classes) A1, B2, 2, B2, 1,
and C).
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Transforming Wr(Q, λ) by Lemma 2 and Theorem 1
from [1] we arrive at the following assertion.

Lemma 2. For any fixed λ > 0 and Q → +∞ one has

where κ1 = , κr =  for 2 ≤ r ≤ 7, κr =  for 8 ≤ r ≤ 10,

the implied constants in O-symbols depend on λ,

ξ = 1 for 1 ≤ r ≤ 9, ξ =  for r = 10,

and the value [А] is equal to one if the condition А is true
and equal to zero in the opposite case.

Denoting by W(Q, λ) the number of neighbouring

pairs from the series ΦQ such that tan  ≤ , by

Lemma 2 we get:

where j(λ) = j1(λ) + j2(λ) + j4(λ) + j6(λ) + j8(2λ) +

j10(λ) = (u)du, f(u) = – . Since  ≤ tan  ≤

 + θ3 for 0 ≤ θ ≤ , then the number V(Q, λ) of neigh-

bouring pairs from ΦQ with the condition θ ≤  sat-

isfies the inequalities

Since the function  is continuous, setting t = ,

we get:

where

The initial assertion follows now from the explicit
expressions for the function f, that can be obtained by
direct calculation of the quantities jr(λ) in Lemma 2.

Remark. It is interesting to compare the formulas of
the theorem with the results of [2] and, in particular,
with the formulas of the Corollary 0.4 of Theorem 0.3
for the distribution function of the angle between the
neighbouring segments connecting the origin with the
primitive points lying inside the disk of unboundedly
increasing radius.
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