5 класс

5.1. Сколько существует трёзначных чисел с суммой цифр равной 5? Ответ объясните.

Решение. Задача может быть решена полным перебором: 104, 113, 122, 131, 140, 203, 212, 221, 230, 302, 311, 320, 401, 410, 500.

Ответ: 15.

5.2. Представьте число 2014 в виде суммы четырёх натуральных слагаемых так, чтобы все цифры в записи всех этих слагаемых были различны (все цифры использовать не обязательно).

Решение.

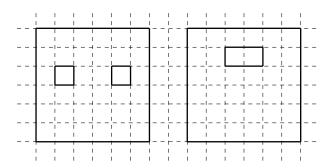
Ответ: Например: 2014=1850+94+63+7.

5.3. Двое по очереди ломают шоколадку 4 на 8. За ход разрешается сделать прямолинейный разлом любого из кусков вдоль углубления. Проигрывает тот, кто не сможет сделать ход. Кто выиграет в этой игре?

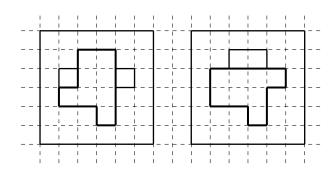
Решение. После каждого хода количество кусков увеличивается ровно на 1. Сначала был один кусок. В конце игры, когда нельзя сделать ни одного хода, шоколадка разломана на маленькие дольки. А их 32. Таким образом, игра будет продолжаться ровно 31 ход. Последний, 31-й ход (так же, как и все другие ходы с нечетными номерами) сделает первый игрок. Поэтому он в этой игре побеждает, причем независимо от того, как будет играть.

Ответ: первый.

5.4. Разрежьте (по линиям сетки) фигуру слева на две детали так, чтобы после их перекладывания получилась фигура справа.



Решение. Ответ:



6 класс

6.1. Шли два крестьянина, и было у них 3 одинакового веса и стоимости хлеба: у одного 2 хлеба, а у другого 1. Пришло время обедать, они сели и достали свои хлебы. Тогда к ним подошел третий крестьянин и попросил поделится с ним хлебом, обещая заплатит свою долю. Ему дали один хлеб, а он уплатил 15 копеек. Как должны поделить два первых крестьянина эти деньги?

Решение. Первый крестьянин отдает один хлеб и берет за это 15 копеек.

Ответ: не делят, все берет первый.

6.2. В двух мешках находится 70 кг конфет. Если из первого мешка переложить во второй $\frac{1}{8}$ часть конфет, находившихся в первом мешке, то в обоих мешках станет конфет поровну. Сколько конфет в каждом мешке?

Решение. Если из первого мешка переложить во второй $\frac{1}{8}$ часть конфет, находившихся в первом мешке, то в обоих мешках станет конфет поровну, то есть по 35 кг. В первом мешке осталось $\frac{7}{8}$ от того, что было. Значит изначально в первом мешке находилось $35:7\cdot 8=40$ (кг) конфет, а в первом 70-40=30 (кг).

Ответ: 40 и 30 кг.

6.3. Можно ли с помощью двух взвешиваний на чашечных весах без гирь определить хотя бы одну настоящую монету из пяти одинаковых по внешнему виду, если известно, что среди этих монет 3 настоящие и 2 фальшивые, одна из которых легче, а другая тяжелее настоящих монет?

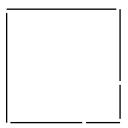
Решение. Сравниваем на весах две пары монет. Если весы в равновесии, то на одной из чаш находятся две фальшивые, а на другой две настоящие. В качестве настоящей указываем пятую (оставшуюся, невзвешенную монету). В остальных случаях берем более легкую (более тяжелую) кучку и сравниваем две монеты, лежавшие на одной чаше. В качестве настоящей указываем более тяжелую (более легкую) или, если весы в равновесии, то любую из двух.

Ответ: да.

6.4. Представьте, что у вас есть набор из палочек: 6 штук по 1 см, 3 штуки по 2 см, 6 штук по 3 см и 5 штук по 4 см. Можно ли составить

квадрат, используя все эти палочки? Ломать палочки и накладывать одну на другую нельзя.

Например: если бы у вас был набор: 2 штуки по 3 см, 2 штуки по 2 см и 2 штуки по 1 см, то вы бы смогли сложить такой квадрат как на картинке снизу.



Решение. Периметр искомого квадрата делится на 4. Сумма длин всех палочек 50 см, величина не делится на 4, следовательно, такой квадрат составить нельзя.

Ответ: квадрат из предложенного набора составить нельзя.

7 класс

- **7.1.** В соревнованиях приняли участие пять школьников. После соревнований пятеро зрителей заявили:
 - "Маша заняла I место, а Серёжа IV";
 - "Витя занял II место, а Серёжа IV";
 - "Витя занял II место, а Маша III";
 - "Юля заняла I место, а Катя II";
 - "Катя заняла III место, а Юля V".

Зная, что одно из показаний каждого зрителя верное, а другое – неверное, найти правильное распределение мест.

Решение.

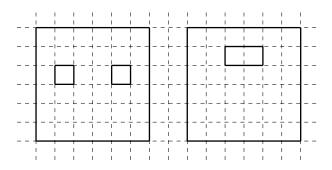
Ответ: Витя – І место, Катя – ІІ, Маша – ІІІ, Серёжа – ІV, Юля – V.

7.2. Даны три последовательных целых числа в порядке возрастания – (a-b+2014), (b-c+2014) и (c-a+2014). Найдите эти числа.

Решение. Обозначим эти числа как n-1, n, n+1. Тогда их сумма равна 3n, то есть утроенному второму числу. Так как (a-b+2014)+(b-c+2014)+(c-a+2014)=6042, то n=2014. Значит, n-1=2013, n+1=2015.

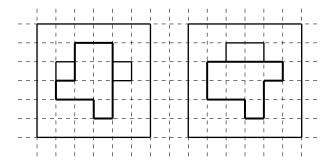
Ответ: 2013, 2014, 2015.

7.3. Разрежьте (по линиям сетки) фигуру слева на две детали так, чтобы после их перекладывания получилась фигура справа.



Решение.

Ответ:



7.4. Хоккейный клуб "Мечел" обыграл "Красноярских Рысей" со счетом 9: 4. Докажите, что по ходу матча был момент, когда хоккейному клубу "Мечел" оставалось забить столько голов, сколько уже забили "Красноярские Рыси".

Решение. Рассмотрим тот момент матча, когда всего было забито 9 голов. Пусть "Мечел" к этому моменту забила n мячей, тогда "Красноярские Рыси" забили 9-n мячей. Но хоккейному клубу "Мечел" осталось забить как раз 9-n мячей, что и требовалось доказать.

8 класс

8.1. Даны три последовательных целых числа в порядке возрастания -(a-b+2014), (b-c+2014) и (c-a+2014). Найдите эти числа.

Решение. Обозначим эти числа как $n-1,\ n,\ n+1.$ Тогда их сумма равна $3n,\$ то есть утроенному второму числу. Так как (a-b+2014)+(b-c+2014)+(c-a+2014)=6042, то n=2014. Значит, n-1=2013, n+1=2015.

Ответ: 2013, 2014, 2015.

8.2. Дан прямоугольник ABCD. На стороне BC взята точка E, а на стороне AD взята точка F так, что BE = DF. Отрезки AE и BF пересекаются в точке K, а отрезки DE и CF – в точке L. Докажите, что треугольники KAB и LCD равны.

Решение. $\triangle ABE = \triangle CDF(AB = CD, BE = FD, \angle B = \angle D)$, откуда следует, что $\angle BAE = \angle DCF, \angle BAK = \angle DCL$. Аналогично $\triangle BAF = \triangle DCE$, откуда $\angle FBA = \angle EDC$. Значит, $\angle KBA = \angle LDC$, а следовательно искомые треугольники равны по стороне и двум прилежащим к ней углам.

8.3. Периметр квадратного парка имеет длину 10 км. Два велосипедиста катаются вокруг парка навстречу друг другу со скоростями 17 и 23 км/ч соответственно. Сколько раз они встретятся за 10 часов, если в начальный момент времени они находились в противоположных углах парка?

Решение. Относительно первого велосипедиста второй едет по кругу со скоростью $40~\rm{km/v}$. Поэтому каждый час они встречаются $4~\rm{pasa}$, а за $10~\rm{vacob}$ встретятся $40~\rm{pas}$.

Ответ: 40 раз.

8.4. Найдите все простые числа p и q, для которых числа p+q и p-q также являются простыми числами.

Решение. Так как p+q — сумма двух простых чисел, то она больше 2, следовательно, она нечетна. Значит, одно из слагаемых p или q четно, т. е. q равно двум. Следовательно, числа p-2, p и p+2 — простые. Из трех последовательных нечетных чисел по крайней мере одно делится

на 3. Значит, одно из чисел $p-2,\ p,\ p+2$ равно трем. Ясно, что этим числом может быть только p-2. Итак, p – это число 5, а q равно двум.

Ответ: p = 5, q = 2.

9 класс

9.1. Найдите всевозможные числа вида $\overline{2014x2014}$, которые делятся на 11.

Решение. Воспользовавшись признаком делимости на 11 получим, что 2+1+x+0+4-(0+4+2+1)=x : 11. Следовательно, x=0.

Решение полным перебором значений x также является правильным. **Ответ:** 201402014.

9.2. Кот Базилио и лиса Алиса напечатали много монет по 7 и 17 рублей. Смогут ли они такими монетами набрать сумму в 2014 рублей?

Решение. Например, 39 монет по 17 рублей и 193 монет по 7 рублей. **Ответ:** да, смогут.

9.3. Дан треугольник со сторонами 3, 4, 5. В каком отношении центр вписанной окружности делит биссектрису наибольшего угла.

Решение. Треугольник ABC — прямоугольный (по теореме, обратной теореме Пифагора). Пусть AA_1 и BB_1 — биссектрисы углов A и B соответственно. O — точка их пересечения, то есть центр вписанной окружности. По свойству биссектрисы $BA_1:A_1C=4:3$, то есть $BA_1=4x,A_1C=3x.$ BC=7x=5, откуда $x=\frac{5}{7},$ $BA_1=\frac{20}{7}$. Рассмотрим треугольник ABA_1 , по свойству биссектрисы (BO) $AO:OA_1=AB:BA_1=7:5$.



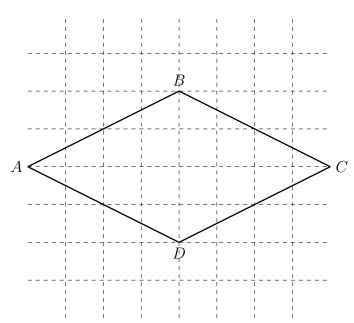
Otbet: $\frac{7}{5}$.

9.4. При каких a прямая y = 4x + a имеет ровно одну общую точку с параболой $y = x^2$?

Решение. Прямая y = 4x + a имеет ровно одну общую точку с параболой $y=x^2$, если квадратное уравнение $x^2-4x-a=0$ имеет единственный корень. Тогда $\frac{D}{4}=4+a=0$. **Ответ:** a=-4.

9.5. Найдите площадь фигуры, которая на плоскости Oxy задаётся неравенством $|x| + 2|y| \le 4$.

Решение. Решения неравенства на плоскости Оху образуют ромб, ограниченный прямыми y = 2 - 0.5x, y = 2 + 0.5x, y = -2 - 0.5x, y = -2 - 0, 5x.



Его диагонали равны 4 и 8 единиц, следовательно площадь равна 16. Ответ: 16.

10 класс

10.1. Окружность радиуса 5 касается катетов AC и BC прямоугольного треугольника ABC. Центр окружности O лежит на гипотенузе AB. Найдите длину катета AC, если известно, что OB = 13.

Решение.

Ответ: 85/12.

10.2. При каких a прямая y = 4x + a имеет ровно одну общую точку с параболой $y = x^2$?

Решение. Прямая y = 4x + a имеет ровно одну общую точку с параболой $y = x^2$, если квадратное уравнение $x^2 - 4x - a = 0$ имеет единственный корень. Тогда $\frac{D}{4} = 4 + a = 0$. **Ответ:** a = -4.

10.3. Из бесконечного набора чисел

$$\frac{1}{10}, \frac{1}{100}, \dots, \frac{1}{10^n}, \dots$$

выберите различные числа так, чтобы их сумма равнялась 1/99.

Решение.

Ответ: 1/99 = 0,010101... = 0,(01).

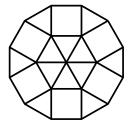
10.4. Можно ли четырьмя бумажными кругами радиуса 1 заклеить поверхность куба с ребром 1?

Решение. Если центр круга поместить в вершину куба, то на каждой из прилежащих граней этот круг заклеит сектор с углом 90°. Приклеив таким образом круги в четырёх попарно несмежных вершинах куба, получим, что вся его поверхность заклеена.

Ответ: да.

10.5. Разрежьте правильный 12-угольник на квадраты и правильные треугольники.

Решение. См. рисунок.



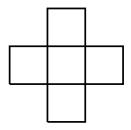
11 класс

11.1. Числа a, b, c, d образуют геометрическую прогрессию со знаменателем q. Решите уравнение $ax^3 - bx^2 + cx - d = 0$.

Решение. Число q, очевидно, является корнем данного уравнения. Поделив многочлен ax^3-bx^2+cx-d на x-q получаем квадратный трёхчлен, не имеющий корней.

Ответ: x = q.

11.2. Крест составлен из 5 единичных квадратов. Рисуются всевозможные круги радиуса 1, центры которых находятся на периметре данного креста. Найдите площадь образовавшейся фигуры.



Решение.

Ответ: $13 + 2\pi$.

11.3. При каком значении a парабола $y = a(x-2)^2 + 1$ касается параболы $y = x^2$.

Решение. Если параболы касаются, то система из двух уравнений

$$y = a(x-1)^2 + 1, y = x^2$$

имеет единственное решение. Значит, дискриминант уравнения $a(x-2)^2+1=x^2$ равен нулю. Из равенства $D/4=4a^2-(4a+1)(a-1)=0$ находим, что a=-1/3. Ответ: a=-1/3.

11.4. Числа $\sin x$ и $\sin 3x$ рациональны. Докажите, что число $\cos 2x$ также рационально.

Решение. Рациональность числа $\cos 2x$ следует из равенств $\frac{\sin 3x}{\sin x} = 4\cos^2 x - 1 = 2\cos 2x + 1$.

11.5. На сколько частей делят простриство плоскости, проходящие через грани треугольной пирамиды?

Решение. Пусть ABC — основание пирамиды и D — её вершина. Тогда под основанием ABC будет 7 областей, 7 областей будут находиться над ними (и иметь общие границы на плоскости ABC), и ещё одна область (над вершиной D) не будет иметь общих точек с плоскостью ABC.

Ответ: 15.