Far Eastern Mathematical Journal

To content of the issue


Analysis of semilinear elliptic boundary value problem and its applications


Pishchikov A. A., Chebotarev A. Yu.

2024, issue 2, P. 259-267
DOI: https://doi.org/10.47910/FEMJ202423


Abstract
A stationary model of the reaction-diffusion type in a three-dimensional domain is considered. Sufficient conditions for the existence and uniqueness of a weak solution to the posed boundary value problem are found. As an example, diffusion models of complex heat exchange and oxygen transfer in biological tissues are considered.

Keywords:
stationary diffusion-reaction models, weak solution, unique solvability, radiative heat transfer equations.

Download the article (PDF-file)

References

[1] Modest M. F., Radiative Heat Transfer, Academic Press, 2003.
[2] Kovtaniuk A. E., Chebotarev A. IU., “ Stat?sionarnaia zadacha slozhnogo teploobmena”, ZH. vychisl. matem. i matem. fiz., 54:4, (2014), 191–199.
[3] Kovtaniuk A. E., CHebotarev A. IU., “ Nelokal?naia odnoznachnaia razreshimost? stat?sionarno? zadachi slozhnogo teploobmena”, ZH. vychisl. matem. i matem. fiz., 56:5, (2016), 816–823.
[4] Chebotarev A. Yu., Grenkin G. V., Kovtanyuk A. E., “Inhomogeneous steady-state problem of complex heat transfer”, ESAIM Math. Model. Numer. Anal., 51:6, (2017), 2511-2519.
[5] Valabregue R., Aubert A., Burger J., Bittoun J., Costalat R., “Relation between cerebral blood flow and metabolism explained by a model of oxygen exchange”, J. Cereb. Blood Flow Metab., 23, (2003), 536–545.
[6] Kovtanyuk Andrey E., Chebotarev Alexander Yu., Botkin Nikolai D., Turova Varvara L., Sidorenko Irina N., Lampe Renee, “Continuum model of oxygen transport in brain”, J. Math. Anal. Appl., 474, (2019), 1352–1363.

To content of the issue